File size: 23,080 Bytes
31c4f57
de78ef4
 
 
 
f40f8d6
 
54a0ae6
de78ef4
cd2e5be
be1eb02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cdff55
 
 
f3bf55f
de78ef4
5cdff55
 
 
 
 
 
de78ef4
1951f67
 
074885c
de9769e
 
 
de78ef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b958903
 
 
 
 
 
 
 
 
de78ef4
 
 
de9769e
 
 
de78ef4
de9769e
f40f8d6
 
de9769e
 
6cdc2f9
de78ef4
6cdc2f9
 
de78ef4
f40f8d6
de78ef4
074885c
6cdc2f9
de78ef4
78bde42
 
de78ef4
de9769e
6cdc2f9
 
de9769e
 
6cdc2f9
074885c
 
6cdc2f9
de9769e
6cdc2f9
54a0ae6
6cdc2f9
de78ef4
de9769e
f40f8d6
 
de78ef4
 
f40f8d6
 
 
5cdff55
f40f8d6
5cdff55
f40f8d6
 
 
074885c
 
6cdc2f9
 
 
e03ef78
de78ef4
 
 
 
9166768
5cdff55
f40f8d6
9166768
b958903
cd2e5be
de78ef4
f40f8d6
de78ef4
f40f8d6
 
 
 
 
 
 
 
de78ef4
f40f8d6
de78ef4
9166768
e03ef78
b958903
074885c
 
de9769e
b958903
 
6cdc2f9
 
 
 
b958903
 
 
 
 
 
 
 
6cdc2f9
 
b958903
de78ef4
6cdc2f9
b958903
6cdc2f9
b958903
 
 
c83c34e
b958903
de78ef4
b958903
de78ef4
b958903
 
 
f3bf55f
b958903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de78ef4
 
 
 
 
 
 
b958903
de78ef4
 
 
 
 
 
 
 
 
 
b958903
 
de78ef4
 
b958903
de78ef4
b958903
de78ef4
b958903
 
 
 
6d38093
 
 
 
 
8ca8042
6d38093
9166768
de78ef4
 
 
6a82e11
ebf6079
1b55a50
 
 
 
8315908
de78ef4
 
 
b958903
4496cce
39106dd
54a5de6
4496cce
b958903
de78ef4
1cdba30
e02ead4
1cdba30
b958903
de78ef4
 
b958903
b641dd3
 
 
de78ef4
54a5de6
de78ef4
b958903
de78ef4
 
 
 
 
6cdc2f9
de78ef4
 
 
 
 
f40f8d6
de78ef4
 
 
 
 
 
b958903
 
 
eda6777
b958903
 
 
89c7d88
b958903
eda6777
9166768
8c28e46
 
b226633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c28e46
 
89c7d88
8c28e46
 
2a82352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6a8153
2a82352
 
f3bf55f
de78ef4
 
 
 
 
 
 
 
 
 
 
5cdff55
f3bf55f
de78ef4
 
 
 
 
 
 
 
 
 
 
b958903
de78ef4
b958903
 
de78ef4
 
 
 
 
 
f40f8d6
be1eb02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import os
import shutil
import torch
import numpy as np
from PIL import Image
import tempfile
from typing import *
from datetime import datetime
from pathlib import Path

from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

colors.orange_red = colors.Color(
    name="orange_red",
    c50="#FFF0E5",
    c100="#FFE0CC",
    c200="#FFC299",
    c300="#FFA366",
    c400="#FF8533",
    c500="#FF4500",
    c600="#E63E00",
    c700="#CC3700",
    c800="#B33000",
    c900="#992900",
    c950="#802200",
)

class OrangeRedTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.orange_red,
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_secondary_text_color="black",
            button_secondary_text_color_hover="white",
            button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
            button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
            button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
            button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

orange_red_theme = OrangeRedTheme()

os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1'
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["ATTN_BACKEND"] = "flash_attn_3"

os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'autotune_cache.json')
os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1'

import gradio as gr
from gradio_client import Client, handle_file
import spaces
from diffusers import ZImagePipeline

from trellis2.pipelines import Trellis2ImageTo3DPipeline
import o_voxel

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')

print("Initializing models...")

print("Loading Z-Image-Turbo...")
try:
    z_pipe = ZImagePipeline.from_pretrained(
        "Tongyi-MAI/Z-Image-Turbo",
        torch_dtype=torch.bfloat16,
        low_cpu_mem_usage=False,
    )
    device = "cuda" if torch.cuda.is_available() else "cpu"
    z_pipe.to(device)
    print("Z-Image-Turbo loaded.")
except Exception as e:
    print(f"Failed to load Z-Image-Turbo: {e}")
    z_pipe = None

print("Loading TRELLIS.2...")
try:
    trellis_pipeline = Trellis2ImageTo3DPipeline.from_pretrained('microsoft/TRELLIS.2-4B')
    trellis_pipeline.rembg_model = None
    trellis_pipeline.low_vram = False
    trellis_pipeline.cuda()
    print("TRELLIS.2 loaded.")
except Exception as e:
    print(f"Failed to load TRELLIS.2: {e}")
    trellis_pipeline = None

rmbg_client = Client("briaai/BRIA-RMBG-2.0")

def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)

def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    if os.path.exists(user_dir):
        shutil.rmtree(user_dir)

def remove_background(input: Image.Image) -> Image.Image:
    with tempfile.NamedTemporaryFile(suffix='.png') as f:
        input = input.convert('RGB')
        input.save(f.name)
        output = rmbg_client.predict(handle_file(f.name), api_name="/image")[0][0]
        output = Image.open(output)
        return output

def preprocess_image(input: Image.Image) -> Image.Image:
    """Preprocess the input image: remove bg, crop, resize."""
    if input is None:
        return None
        
    has_alpha = False
    if input.mode == 'RGBA':
        alpha = np.array(input)[:, :, 3]
        if not np.all(alpha == 255):
            has_alpha = True
    max_size = max(input.size)
    scale = min(1, 1024 / max_size)
    if scale < 1:
        input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
    if has_alpha:
        output = input
    else:
        output = remove_background(input)
    
    output_np = np.array(output)
    alpha = output_np[:, :, 3]
    bbox = np.argwhere(alpha > 0.8 * 255)
    if bbox.size == 0:
        return output 
    bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
    center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
    size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
    size = int(size * 1)
    bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2
    output = output.crop(bbox)
    output = np.array(output).astype(np.float32) / 255
    output = output[:, :, :3] * output[:, :, 3:4]
    output = Image.fromarray((output * 255).astype(np.uint8))
    return output

def get_seed(randomize_seed: bool, seed: int) -> int:
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed

@spaces.GPU
def generate_txt2img(prompt, progress=gr.Progress(track_tqdm=True)):
    """Generate Image using Z-Image Turbo"""
    if z_pipe is None:
        raise gr.Error("Z-Image-Turbo model failed to load.")
    if not prompt.strip():
        raise gr.Error("Please enter a prompt.")
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    generator = torch.Generator(device).manual_seed(42)
    
    progress(0.1, desc="Generating Text-to-Image...")
    try:
        result = z_pipe(
            prompt=prompt,
            negative_prompt=None,
            height=1024,
            width=1024,
            num_inference_steps=9,
            guidance_scale=0.0,
            generator=generator,
        )
        return result.images[0]
    except Exception as e:
        raise gr.Error(f"Z-Image Generation failed: {str(e)}")

@spaces.GPU(duration=120)
def generate_3d(
    image: Image.Image,
    seed: int,
    resolution: str,
    decimation_target: int,
    texture_size: int,
    ss_guidance_strength: float,
    ss_guidance_rescale: float,
    ss_sampling_steps: int,
    ss_rescale_t: float,
    shape_guidance: float,
    shape_rescale: float,
    shape_steps: int,
    shape_rescale_t: float,
    tex_guidance: float,
    tex_rescale: float,
    tex_steps: int,
    tex_rescale_t: float,
    req: gr.Request,
    progress=gr.Progress(track_tqdm=True),
) -> Tuple[str, str]:
    
    if image is None:
        raise gr.Error("Please provide an input image.")
    
    if trellis_pipeline is None:
        raise gr.Error("TRELLIS model is not loaded.")

    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    progress(0.1, desc="Generating 3D Geometry...")
    try:
        outputs, latents = trellis_pipeline.run(
            image,
            seed=seed,
            preprocess_image=False,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "guidance_strength": ss_guidance_strength,
                "guidance_rescale": ss_guidance_rescale,
                "rescale_t": ss_rescale_t,
            },
            shape_slat_sampler_params={
                "steps": shape_steps,
                "guidance_strength": shape_guidance,
                "guidance_rescale": shape_rescale,
                "rescale_t": shape_rescale_t,
            },
            tex_slat_sampler_params={
                "steps": tex_steps,
                "guidance_strength": tex_guidance,
                "guidance_rescale": tex_rescale,
                "rescale_t": tex_rescale_t,
            },
            pipeline_type={"512": "512", "1024": "1024_cascade", "1536": "1536_cascade"}[resolution],
            return_latent=True,
        )
        
        # 2. Process Mesh
        progress(0.7, desc="Processing Mesh...")
        mesh = outputs[0]
        mesh.simplify(16777216) # Simplify for processing limits
        
        # 3. Export to GLB
        progress(0.9, desc="Baking Texture & Exporting GLB...")
        
        # Note: We use the latent grid resolution from the pipeline output
        grid_size = latents[2] 
        
        glb = o_voxel.postprocess.to_glb(
            vertices=mesh.vertices,
            faces=mesh.faces,
            attr_volume=mesh.attrs,
            coords=mesh.coords,
            attr_layout=trellis_pipeline.pbr_attr_layout,
            grid_size=grid_size,
            aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
            decimation_target=decimation_target,
            texture_size=texture_size,
            remesh=True,
            remesh_band=1,
            remesh_project=0,
            use_tqdm=True,
        )
        
        now = datetime.now()
        timestamp = now.strftime("%Y-%m-%dT%H%M%S")
        glb_path = os.path.join(user_dir, f'trellis_output_{timestamp}.glb')
        glb.export(glb_path, extension_webp=True)
        
        # Clean up
        torch.cuda.empty_cache()
        return glb_path, glb_path
        
    except Exception as e:
        torch.cuda.empty_cache()
        raise gr.Error(f"Generation failed: {str(e)}")

css="""
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
#main-title h1 {font-size: 2.4em !important;}
"""

if __name__ == "__main__":
    os.makedirs(TMP_DIR, exist_ok=True)

    with gr.Blocks(delete_cache=(300, 300)) as demo:
        gr.Markdown("# **TRELLIS.2 (Text-to-3D)**", elem_id="main-title")
        gr.Markdown("""
        **Workflow:**
        Generate a 3D asset directly by converting Text-to-Image → 3D or Image-to-3D, powered by TRELLIS.2 and Z-Image-Turbo.
        """)

        with gr.Row():
            with gr.Column(scale=1, min_width=360):
                
                with gr.Tabs():
                    with gr.Tab("Text-to-Image-3D"):
                        txt_prompt = gr.Textbox(label="Prompt", placeholder="eg. A Plane 3D", lines=2)
                        btn_gen_img = gr.Button("1.Generate Image", variant="primary")
                    with gr.Tab("Image-to-3D"):
                        gr.Markdown("Upload an image directly if you have one.")
                
                image_prompt = gr.Image(label="Input Image", format="png", image_mode="RGBA", type="pil", height=350)

                with gr.Accordion(label="3D Settings", open=False):                     
                    resolution = gr.Radio(["512", "1024", "1536"], label="Generation Resolution", value="1024")
                    seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                    randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                    
                #gr.Markdown("**Export Settings**")
                decimation_target = gr.Slider(50000, 500000, label="Target Faces", value=150000, step=10000)
                texture_size = gr.Slider(512, 4096, label="Texture Size", value=1024, step=512)
                
                btn_gen_3d = gr.Button("2.Generate 3D", variant="primary", scale=2)

                with gr.Accordion(label="Advanced Sampler Settings", open=False):                
                    gr.Markdown("**Stage 1: Sparse Structure**")
                    ss_guidance_strength = gr.Slider(1.0, 10.0, value=7.5, label="Guidance")
                    ss_guidance_rescale = gr.Slider(0.0, 1.0, value=0.7, label="Rescale")
                    ss_sampling_steps = gr.Slider(1, 50, value=12, label="Steps")
                    ss_rescale_t = gr.Slider(1.0, 6.0, value=5.0, label="Rescale T")
                    
                    gr.Markdown("**Stage 2: Shape**")
                    shape_guidance = gr.Slider(1.0, 10.0, value=7.5, label="Guidance")
                    shape_rescale = gr.Slider(0.0, 1.0, value=0.5, label="Rescale")
                    shape_steps = gr.Slider(1, 50, value=12, label="Steps")
                    shape_rescale_t = gr.Slider(1.0, 6.0, value=3.0, label="Rescale T")
                    
                    gr.Markdown("**Stage 3: Material**")
                    tex_guidance = gr.Slider(1.0, 10.0, value=1.0, label="Guidance")
                    tex_rescale = gr.Slider(0.0, 1.0, value=0.0, label="Rescale")
                    tex_steps = gr.Slider(1, 50, value=12, label="Steps")
                    tex_rescale_t = gr.Slider(1.0, 6.0, value=3.0, label="Rescale T")

            with gr.Column(scale=2):
                gr.Markdown("### 3D Output")
                glb_output = gr.Model3D(
                    label="Generated GLB", 
                    display_mode="solid", 
                    clear_color=(0.2, 0.2, 0.2, 1.0),
                    height=600,
                    interactive=False  # Changed to False to hide upload area
                )
                download_btn = gr.DownloadButton(label="3.Download GLB File", variant="primary")

                gr.Examples(
                    examples=[
                        ["example-images/A (1).webp"],
                        ["example-images/A (2).webp"],
                        ["example-images/A (3).webp"],
                        ["example-images/A (4).webp"],
                        ["example-images/A (5).webp"],
                        ["example-images/A (6).webp"],
                        ["example-images/A (7).webp"],
                        ["example-images/A (8).webp"],
                        ["example-images/A (9).webp"],
                        ["example-images/A (10).webp"],
                        ["example-images/A (11).webp"],
                        ["example-images/A (12).webp"],
                        ["example-images/A (13).webp"],
                        ["example-images/A (14).webp"],
                        ["example-images/A (15).webp"],
                        ["example-images/A (16).webp"],
                        ["example-images/A (17).webp"],
                        ["example-images/A (18).webp"],
                        ["example-images/A (19).webp"],
                        ["example-images/A (20).webp"],
                        ["example-images/A (21).webp"],
                        ["example-images/A (22).webp"],
                        ["example-images/A (23).webp"],
                        ["example-images/A (24).webp"],
                        ["example-images/A (25).webp"],
                        ["example-images/A (26).webp"],
                        ["example-images/A (27).webp"],
                        ["example-images/A (28).webp"],
                        ["example-images/A (29).webp"],
                        ["example-images/A (30).webp"],
                        ["example-images/A (31).webp"],
                        ["example-images/A (32).webp"],
                        ["example-images/A (33).webp"],
                        ["example-images/A (34).webp"],
                        ["example-images/A (35).webp"],
                        ["example-images/A (36).webp"],
                        ["example-images/A (37).webp"],
                        ["example-images/A (38).webp"],
                        ["example-images/A (39).webp"],
                        ["example-images/A (40).webp"],
                        ["example-images/A (41).webp"],
                        ["example-images/A (42).webp"],
                        ["example-images/A (43).webp"],
                        ["example-images/A (44).webp"],
                        ["example-images/A (45).webp"],
                        ["example-images/A (46).webp"],
                        ["example-images/A (47).webp"],
                        ["example-images/A (48).webp"],
                        ["example-images/A (49).webp"],
                        ["example-images/A (50).webp"],
                        ["example-images/A (51).webp"],
                        ["example-images/A (52).webp"],
                        ["example-images/A (53).webp"],
                        ["example-images/A (54).webp"],
                        ["example-images/A (55).webp"],
                        ["example-images/A (56).webp"],
                        ["example-images/A (57).webp"],
                        ["example-images/A (58).webp"],
                        ["example-images/A (59).webp"],
                        ["example-images/A (60).webp"],
                        ["example-images/A (61).webp"],
                        ["example-images/A (62).webp"],
                        ["example-images/A (63).webp"],
                        ["example-images/A (64).webp"],
                        ["example-images/A (65).webp"],
                        ["example-images/A (66).webp"],
                        ["example-images/A (67).webp"],
                        ["example-images/A (68).webp"],
                        ["example-images/A (69).webp"],
                        ["example-images/A (70).webp"],
                        ["example-images/A (71).webp"],
                    ],
                    inputs=[image_prompt],
                    label="Image Examples [image-to-3d]"
                )
                
                gr.Examples(
                    examples=[
                        ["A Cat 3D model"],
                        ["A realistic Cat 3D model"],
                        ["A cartoon Cat 3D model"],
                        ["A low poly Cat 3D"],
                        ["A cyberpunk Cat 3D"],
                        ["A robotic Cat 3D"],
                        ["A fluffy Cat 3D"],
                        ["A fantasy Cat 3D creature"],
                        ["A stylized Cat 3D"],
                        ["A Cat 3D sculpture"],
                
                        ["A Plane 3D model"],
                        ["A commercial Plane 3D"],
                        ["A fighter jet Plane 3D"],
                        ["A low poly Plane 3D"],
                        ["A vintage Plane 3D"],
                        ["A futuristic Plane 3D"],
                        ["A cargo Plane 3D"],
                        ["A private jet Plane 3D"],
                        ["A toy Plane 3D"],
                        ["A realistic Plane 3D"],
                
                        ["A Car 3D model"],
                        ["A sports Car 3D"],
                        ["A luxury Car 3D"],
                        ["A low poly Car 3D"],
                        ["A racing Car 3D"],
                        ["A cyberpunk Car 3D"],
                        ["A vintage Car 3D"],
                        ["A futuristic Car 3D"],
                        ["A SUV Car 3D"],
                        ["A electric Car 3D"],
                
                        ["A Shoe 3D model"],
                        ["A sneaker Shoe 3D"],
                        ["A running Shoe 3D"],
                        ["A leather Shoe 3D"],
                        ["A high heel Shoe 3D"],
                        ["A boot Shoe 3D"],
                        ["A low poly Shoe 3D"],
                        ["A futuristic Shoe 3D"],
                        ["A sports Shoe 3D"],
                        ["A casual Shoe 3D"],
                
                        ["A Chair 3D model"],
                        ["A Table 3D model"],
                        ["A Sofa 3D model"],
                        ["A Lamp 3D model"],
                        ["A Watch 3D model"],
                        ["A Backpack 3D model"],
                        ["A Drone 3D model"],
                        ["A Robot 3D model"],
                        ["A Smartphone 3D model"],
                        ["A Headphones 3D model"],
                
                        ["A House 3D model"],
                        ["A Skyscraper 3D model"],
                        ["A Bridge 3D model"],
                        ["A Castle 3D model"],
                        ["A Spaceship 3D model"],
                        ["A Rocket 3D model"],
                        ["A Satellite 3D model"],
                        ["A Tank 3D model"],
                        ["A Motorcycle 3D model"],
                        ["A Bicycle 3D model"]
                    ],
                    inputs=[txt_prompt],
                    label="3D Prompt Examples [text-to-3d]"
                )
            
        demo.load(start_session)
        demo.unload(end_session)

        btn_gen_img.click(
            generate_txt2img,
            inputs=[txt_prompt],
            outputs=[image_prompt]
        ).then(
            preprocess_image,
            inputs=[image_prompt],
            outputs=[image_prompt]
        )
        
        image_prompt.upload(
            preprocess_image,
            inputs=[image_prompt],
            outputs=[image_prompt],
        )

        btn_gen_3d.click(
            get_seed,
            inputs=[randomize_seed, seed],
            outputs=[seed],
        ).then(
            generate_3d,
            inputs=[
                image_prompt, seed, resolution, 
                decimation_target, texture_size,
                ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t,
                shape_guidance, shape_rescale, shape_steps, shape_rescale_t,
                tex_guidance, tex_rescale, tex_steps, tex_rescale_t,
            ],
            outputs=[glb_output, download_btn],
        )

    demo.launch(theme=orange_red_theme, css=css, mcp_server=True, ssr_mode=False, show_error=True)