Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,31 +1,37 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
-
import base64
|
| 8 |
-
import io
|
| 9 |
-
import tempfile
|
| 10 |
-
from typing import *
|
| 11 |
from datetime import datetime
|
| 12 |
-
from pathlib import Path
|
| 13 |
|
| 14 |
-
# --- Environment
|
| 15 |
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1'
|
| 16 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 17 |
os.environ["ATTN_BACKEND"] = "flash_attn_3"
|
| 18 |
-
#
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1'
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
import spaces
|
| 26 |
from diffusers import ZImagePipeline
|
| 27 |
|
| 28 |
-
# ---
|
| 29 |
from trellis2.modules.sparse import SparseTensor
|
| 30 |
from trellis2.pipelines import Trellis2ImageTo3DPipeline
|
| 31 |
from trellis2.renderers import EnvMap
|
|
@@ -33,13 +39,13 @@ from trellis2.utils import render_utils
|
|
| 33 |
import o_voxel
|
| 34 |
|
| 35 |
# ==========================================
|
| 36 |
-
# Global
|
| 37 |
# ==========================================
|
| 38 |
|
| 39 |
MAX_SEED = np.iinfo(np.int32).max
|
| 40 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 41 |
|
| 42 |
-
#
|
| 43 |
MODES = [
|
| 44 |
{"name": "Normal", "icon": "assets/app/normal.png", "render_key": "normal"},
|
| 45 |
{"name": "Clay render", "icon": "assets/app/clay.png", "render_key": "clay"},
|
|
@@ -52,57 +58,71 @@ STEPS = 8
|
|
| 52 |
DEFAULT_MODE = 3
|
| 53 |
DEFAULT_STEP = 3
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
# ==========================================
|
| 58 |
-
|
| 59 |
-
css = """
|
| 60 |
-
/* Overwrite Gradio Default Style */
|
| 61 |
.stepper-wrapper { padding: 0; }
|
| 62 |
.stepper-container { padding: 0; align-items: center; }
|
| 63 |
.step-button { flex-direction: row; }
|
| 64 |
-
.step-connector { transform: none; }
|
| 65 |
-
.step-number { width: 16px; height: 16px; }
|
| 66 |
-
.step-label { position: relative; bottom: 0; }
|
| 67 |
-
.wrap.center.full { inset: 0; height: 100%; }
|
| 68 |
-
.wrap.center.full.translucent { background: var(--block-background-fill); }
|
| 69 |
-
.meta-text-center { display: block !important; position: absolute !important; top: unset !important; bottom: 0 !important; right: 0 !important; transform: unset !important; }
|
| 70 |
-
|
| 71 |
-
/* Previewer */
|
| 72 |
.previewer-container {
|
| 73 |
-
position: relative;
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
}
|
| 77 |
-
.previewer-container .tips-icon { position: absolute; right: 10px; top: 10px; z-index: 10; border-radius: 10px; color: #fff; background-color: var(--color-accent); padding: 3px 6px; user-select: none; }
|
| 78 |
-
.previewer-container .tips-text { position: absolute; right: 10px; top: 50px; color: #fff; background-color: var(--color-accent); border-radius: 10px; padding: 6px; text-align: left; max-width: 300px; z-index: 10; transition: all 0.3s; opacity: 0%; user-select: none; }
|
| 79 |
-
.previewer-container .tips-text p { font-size: 14px; line-height: 1.2; }
|
| 80 |
.tips-icon:hover + .tips-text { display: block; opacity: 100%; }
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
.previewer-container .mode-btn:hover { opacity: 0.9; transform: scale(1.1); }
|
| 86 |
.previewer-container .mode-btn.active { opacity: 1; border-color: var(--color-accent); transform: scale(1.1); }
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
| 91 |
.previewer-container .previewer-main-image.visible { display: block; }
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
.previewer-container input[type=range] {
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
.previewer-container input[type=range]::-webkit-slider-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
.gradio-container .padded:has(.previewer-container) { padding: 0 !important; }
|
| 102 |
-
.gradio-container:has(.previewer-container) [data-testid="block-label"] { position: absolute; top: 0; left: 0; }
|
| 103 |
"""
|
| 104 |
|
| 105 |
-
|
| 106 |
<script>
|
| 107 |
function refreshView(mode, step) {
|
| 108 |
const allImgs = document.querySelectorAll('.previewer-main-image');
|
|
@@ -120,7 +140,6 @@ head = """
|
|
| 120 |
const targetId = 'view-m' + mode + '-s' + step;
|
| 121 |
const targetImg = document.getElementById(targetId);
|
| 122 |
if (targetImg) targetImg.classList.add('visible');
|
| 123 |
-
|
| 124 |
const allBtns = document.querySelectorAll('.mode-btn');
|
| 125 |
allBtns.forEach((btn, idx) => {
|
| 126 |
if (idx === mode) btn.classList.add('active');
|
|
@@ -132,10 +151,11 @@ head = """
|
|
| 132 |
</script>
|
| 133 |
"""
|
| 134 |
|
| 135 |
-
|
| 136 |
<div class="previewer-container">
|
| 137 |
-
<
|
| 138 |
-
|
|
|
|
| 139 |
</div>
|
| 140 |
"""
|
| 141 |
|
|
@@ -145,43 +165,54 @@ empty_html = f"""
|
|
| 145 |
|
| 146 |
print("Initializing models...")
|
| 147 |
|
| 148 |
-
# 1. Z-Image-Turbo (Text to Image)
|
| 149 |
print("Loading Z-Image-Turbo...")
|
| 150 |
try:
|
| 151 |
-
|
| 152 |
"Tongyi-MAI/Z-Image-Turbo",
|
| 153 |
torch_dtype=torch.bfloat16,
|
| 154 |
low_cpu_mem_usage=False,
|
| 155 |
)
|
| 156 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 157 |
-
|
| 158 |
print("Z-Image-Turbo loaded.")
|
| 159 |
except Exception as e:
|
| 160 |
print(f"Failed to load Z-Image-Turbo: {e}")
|
| 161 |
-
|
| 162 |
|
| 163 |
-
# 2. TRELLIS.2 (Image to 3D)
|
| 164 |
print("Loading TRELLIS.2...")
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
|
|
|
| 173 |
|
| 174 |
-
#
|
| 175 |
-
|
| 176 |
-
# Try to load assets, handle gracefully if running in a basic environment
|
| 177 |
try:
|
| 178 |
-
|
| 179 |
-
'forest': EnvMap(torch.tensor(cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda')),
|
| 180 |
-
'sunset': EnvMap(torch.tensor(cv2.cvtColor(cv2.imread('assets/hdri/sunset.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda')),
|
| 181 |
-
'courtyard': EnvMap(torch.tensor(cv2.cvtColor(cv2.imread('assets/hdri/courtyard.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda')),
|
| 182 |
-
}
|
| 183 |
except Exception as e:
|
| 184 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
# ==========================================
|
| 187 |
# Helper Functions
|
|
@@ -199,48 +230,90 @@ def start_session(req: gr.Request):
|
|
| 199 |
os.makedirs(user_dir, exist_ok=True)
|
| 200 |
|
| 201 |
def end_session(req: gr.Request):
|
| 202 |
-
|
| 203 |
-
|
| 204 |
shutil.rmtree(user_dir)
|
|
|
|
|
|
|
| 205 |
|
| 206 |
def remove_background(input: Image.Image) -> Image.Image:
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
input = input.convert('RGB')
|
| 209 |
input.save(f.name)
|
| 210 |
-
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
| 212 |
return output
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
def preprocess_image(input: Image.Image) -> Image.Image:
|
| 215 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
has_alpha = False
|
| 217 |
if input.mode == 'RGBA':
|
| 218 |
alpha = np.array(input)[:, :, 3]
|
| 219 |
if not np.all(alpha == 255):
|
| 220 |
has_alpha = True
|
|
|
|
|
|
|
| 221 |
max_size = max(input.size)
|
| 222 |
scale = min(1, 1024 / max_size)
|
| 223 |
if scale < 1:
|
| 224 |
input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
|
|
|
|
|
|
|
| 225 |
if has_alpha:
|
| 226 |
output = input
|
| 227 |
else:
|
| 228 |
output = remove_background(input)
|
| 229 |
-
|
|
|
|
| 230 |
output_np = np.array(output)
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
return output
|
| 245 |
|
| 246 |
def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict:
|
|
@@ -264,34 +337,30 @@ def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
| 264 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 265 |
|
| 266 |
# ==========================================
|
| 267 |
-
#
|
| 268 |
# ==========================================
|
| 269 |
|
| 270 |
@spaces.GPU()
|
| 271 |
-
def
|
| 272 |
-
"""
|
| 273 |
-
if
|
| 274 |
-
raise gr.Error("
|
| 275 |
if not prompt.strip():
|
| 276 |
-
raise gr.Error("
|
| 277 |
-
|
| 278 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 279 |
-
generator = torch.Generator(device).manual_seed(42) #
|
| 280 |
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
)
|
| 292 |
-
return result.images[0]
|
| 293 |
-
except Exception as e:
|
| 294 |
-
raise gr.Error(f"Z-Image Generation failed: {str(e)}")
|
| 295 |
|
| 296 |
@spaces.GPU(duration=120)
|
| 297 |
def image_to_3d(
|
|
@@ -312,16 +381,24 @@ def image_to_3d(
|
|
| 312 |
tex_slat_rescale_t: float,
|
| 313 |
req: gr.Request,
|
| 314 |
progress=gr.Progress(track_tqdm=True),
|
| 315 |
-
) -> str:
|
| 316 |
|
|
|
|
|
|
|
|
|
|
| 317 |
if image is None:
|
| 318 |
raise gr.Error("Input image is missing.")
|
| 319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
# --- Sampling ---
|
| 321 |
-
outputs, latents =
|
| 322 |
image,
|
| 323 |
seed=seed,
|
| 324 |
-
preprocess_image=False, # We
|
| 325 |
sparse_structure_sampler_params={
|
| 326 |
"steps": ss_sampling_steps,
|
| 327 |
"guidance_strength": ss_guidance_strength,
|
|
@@ -340,45 +417,71 @@ def image_to_3d(
|
|
| 340 |
"guidance_rescale": tex_slat_guidance_rescale,
|
| 341 |
"rescale_t": tex_slat_rescale_t,
|
| 342 |
},
|
| 343 |
-
pipeline_type={
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
return_latent=True,
|
| 345 |
)
|
|
|
|
| 346 |
mesh = outputs[0]
|
| 347 |
mesh.simplify(16777216)
|
| 348 |
|
| 349 |
# Render Preview
|
| 350 |
-
|
| 351 |
state = pack_state(latents)
|
| 352 |
torch.cuda.empty_cache()
|
| 353 |
|
| 354 |
# --- HTML Construction ---
|
| 355 |
images_html = ""
|
| 356 |
for m_idx, mode in enumerate(MODES):
|
|
|
|
| 357 |
for s_idx in range(STEPS):
|
| 358 |
unique_id = f"view-m{m_idx}-s{s_idx}"
|
| 359 |
is_visible = (m_idx == DEFAULT_MODE and s_idx == DEFAULT_STEP)
|
| 360 |
vis_class = "visible" if is_visible else ""
|
| 361 |
-
img_base64 = image_to_base64(Image.fromarray(
|
| 362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
|
| 364 |
btns_html = ""
|
| 365 |
-
for idx, mode in enumerate(MODES):
|
|
|
|
| 366 |
active_class = "active" if idx == DEFAULT_MODE else ""
|
| 367 |
-
btns_html += f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
full_html = f"""
|
| 370 |
<div class="previewer-container">
|
| 371 |
<div class="tips-wrapper">
|
| 372 |
<div class="tips-icon">💡Tips</div>
|
| 373 |
-
<div class="tips-text"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
</div>
|
| 375 |
-
<div class="display-row">{images_html}</div>
|
| 376 |
-
<div class="mode-row" id="btn-group">{btns_html}</div>
|
| 377 |
<div class="slider-row">
|
| 378 |
<input type="range" id="custom-slider" min="0" max="{STEPS - 1}" value="{DEFAULT_STEP}" step="1" oninput="onSliderChange(this.value)">
|
| 379 |
</div>
|
| 380 |
</div>
|
| 381 |
"""
|
|
|
|
| 382 |
return state, full_html
|
| 383 |
|
| 384 |
@spaces.GPU(duration=120)
|
|
@@ -389,12 +492,10 @@ def extract_glb(
|
|
| 389 |
req: gr.Request,
|
| 390 |
progress=gr.Progress(track_tqdm=True),
|
| 391 |
) -> Tuple[str, str]:
|
| 392 |
-
|
| 393 |
-
raise gr.Error("No 3D model generated yet.")
|
| 394 |
-
|
| 395 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 396 |
shape_slat, tex_slat, res = unpack_state(state)
|
| 397 |
-
mesh =
|
| 398 |
mesh.simplify(16777216)
|
| 399 |
|
| 400 |
glb = o_voxel.postprocess.to_glb(
|
|
@@ -402,7 +503,7 @@ def extract_glb(
|
|
| 402 |
faces=mesh.faces,
|
| 403 |
attr_volume=mesh.attrs,
|
| 404 |
coords=mesh.coords,
|
| 405 |
-
attr_layout=
|
| 406 |
grid_size=res,
|
| 407 |
aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
|
| 408 |
decimation_target=decimation_target,
|
|
@@ -412,6 +513,7 @@ def extract_glb(
|
|
| 412 |
remesh_project=0,
|
| 413 |
use_tqdm=True,
|
| 414 |
)
|
|
|
|
| 415 |
now = datetime.now()
|
| 416 |
timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}"
|
| 417 |
os.makedirs(user_dir, exist_ok=True)
|
|
@@ -421,113 +523,109 @@ def extract_glb(
|
|
| 421 |
return glb_path, glb_path
|
| 422 |
|
| 423 |
# ==========================================
|
| 424 |
-
# Gradio
|
| 425 |
# ==========================================
|
| 426 |
|
| 427 |
if __name__ == "__main__":
|
| 428 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 429 |
|
| 430 |
-
# Pre-
|
| 431 |
for i in range(len(MODES)):
|
| 432 |
if os.path.exists(MODES[i]['icon']):
|
| 433 |
icon = Image.open(MODES[i]['icon'])
|
| 434 |
MODES[i]['icon_base64'] = image_to_base64(icon)
|
| 435 |
else:
|
| 436 |
-
MODES[i]['icon_base64'] = "" #
|
| 437 |
|
| 438 |
-
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 439 |
gr.Markdown("""
|
| 440 |
# TRELLIS.2-3D
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
1. **Text to Image**: Generate a base image using Z-Image-Turbo.
|
| 444 |
-
2. **Image to 3D**: Convert that image into a high-quality 3D asset using TRELLIS.2.
|
| 445 |
""")
|
| 446 |
|
| 447 |
with gr.Row():
|
| 448 |
-
#
|
| 449 |
-
with gr.Column(scale=1
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
gr.Markdown("### Step 1: Generate Image")
|
| 454 |
-
txt_prompt = gr.Textbox(label="Prompt", placeholder="A sci-fi helmet, high quality, white background")
|
| 455 |
-
btn_gen_img = gr.Button("Generate Image", variant="secondary")
|
| 456 |
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
|
|
|
| 460 |
|
| 461 |
-
with gr.Accordion("3D
|
| 462 |
resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="1024")
|
| 463 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 464 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 465 |
-
decimation_target = gr.Slider(100000, 500000, label="Decimation Target (For GLB)", value=300000, step=10000)
|
| 466 |
-
texture_size = gr.Slider(1024, 4096, label="Texture Size (For GLB)", value=2048, step=1024)
|
| 467 |
-
|
| 468 |
-
btn_gen_3d = gr.Button("Generate 3D", variant="primary")
|
| 469 |
-
|
| 470 |
-
with gr.Accordion(label="Advanced Sampling Settings", open=False):
|
| 471 |
-
gr.Markdown("**Stage 1: Sparse Structure**")
|
| 472 |
-
ss_guidance_strength = gr.Slider(1.0, 10.0, value=7.5, label="Guidance")
|
| 473 |
-
ss_guidance_rescale = gr.Slider(0.0, 1.0, value=0.7, label="Rescale")
|
| 474 |
-
ss_sampling_steps = gr.Slider(1, 50, value=12, label="Steps")
|
| 475 |
-
ss_rescale_t = gr.Slider(1.0, 6.0, value=5.0, label="Rescale T")
|
| 476 |
|
| 477 |
-
gr.
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 491 |
with gr.Walkthrough(selected=0) as walkthrough:
|
| 492 |
with gr.Step("Preview", id=0):
|
| 493 |
-
preview_output = gr.HTML(
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
|
| 505 |
-
# State to hold the latent 3D representation
|
| 506 |
-
output_buf = gr.State()
|
| 507 |
-
|
| 508 |
demo.load(start_session)
|
| 509 |
demo.unload(end_session)
|
| 510 |
|
| 511 |
-
# 1. Text to Image
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
inputs=[
|
| 515 |
-
outputs=[
|
| 516 |
-
).then(
|
| 517 |
-
preprocess_image, # Auto preprocess the generated image (rmbg)
|
| 518 |
-
inputs=[image_prompt],
|
| 519 |
-
outputs=[image_prompt]
|
| 520 |
)
|
| 521 |
|
| 522 |
-
# 2.
|
| 523 |
-
|
| 524 |
preprocess_image,
|
| 525 |
-
inputs=[
|
| 526 |
-
outputs=[
|
| 527 |
)
|
| 528 |
|
| 529 |
-
# 3. Image to 3D
|
| 530 |
-
|
| 531 |
get_seed,
|
| 532 |
inputs=[randomize_seed, seed],
|
| 533 |
outputs=[seed],
|
|
@@ -536,21 +634,24 @@ if __name__ == "__main__":
|
|
| 536 |
).then(
|
| 537 |
image_to_3d,
|
| 538 |
inputs=[
|
| 539 |
-
|
| 540 |
ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t,
|
| 541 |
-
|
| 542 |
-
|
| 543 |
],
|
| 544 |
-
outputs=[
|
| 545 |
)
|
| 546 |
|
| 547 |
-
# 4.
|
| 548 |
extract_btn.click(
|
| 549 |
lambda: gr.Walkthrough(selected=1), outputs=walkthrough
|
| 550 |
).then(
|
| 551 |
extract_glb,
|
| 552 |
-
inputs=[
|
| 553 |
outputs=[glb_output, download_btn],
|
| 554 |
)
|
|
|
|
|
|
|
|
|
|
| 555 |
|
| 556 |
-
demo.launch(
|
|
|
|
| 1 |
import os
|
| 2 |
+
import io
|
| 3 |
import cv2
|
| 4 |
+
import time
|
| 5 |
+
import base64
|
| 6 |
+
import shutil
|
| 7 |
+
import tempfile
|
| 8 |
import torch
|
| 9 |
import numpy as np
|
| 10 |
+
import gradio as gr
|
| 11 |
+
from gradio_client import Client, handle_file
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from typing import Tuple, List, Optional
|
| 14 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from datetime import datetime
|
|
|
|
| 16 |
|
| 17 |
+
# --- Environment Configuration (Must be set before importing trellis2) ---
|
| 18 |
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1'
|
| 19 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 20 |
os.environ["ATTN_BACKEND"] = "flash_attn_3"
|
| 21 |
+
# Adjust path if necessary or ensure autotune_cache.json exists in trellis2 dir
|
| 22 |
+
try:
|
| 23 |
+
from trellis2 import modules
|
| 24 |
+
os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(modules.__file__)), 'autotune_cache.json')
|
| 25 |
+
except:
|
| 26 |
+
pass
|
| 27 |
os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1'
|
| 28 |
|
| 29 |
+
import spaces # For GPU management in Hugging Face Spaces
|
| 30 |
+
|
| 31 |
+
# --- Imports for Z-Image-Turbo ---
|
|
|
|
| 32 |
from diffusers import ZImagePipeline
|
| 33 |
|
| 34 |
+
# --- Imports for TRELLIS.2 ---
|
| 35 |
from trellis2.modules.sparse import SparseTensor
|
| 36 |
from trellis2.pipelines import Trellis2ImageTo3DPipeline
|
| 37 |
from trellis2.renderers import EnvMap
|
|
|
|
| 39 |
import o_voxel
|
| 40 |
|
| 41 |
# ==========================================
|
| 42 |
+
# Global Constants & CSS/JS
|
| 43 |
# ==========================================
|
| 44 |
|
| 45 |
MAX_SEED = np.iinfo(np.int32).max
|
| 46 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 47 |
|
| 48 |
+
# Asset definitions
|
| 49 |
MODES = [
|
| 50 |
{"name": "Normal", "icon": "assets/app/normal.png", "render_key": "normal"},
|
| 51 |
{"name": "Clay render", "icon": "assets/app/clay.png", "render_key": "clay"},
|
|
|
|
| 58 |
DEFAULT_MODE = 3
|
| 59 |
DEFAULT_STEP = 3
|
| 60 |
|
| 61 |
+
CSS = """
|
| 62 |
+
/* TRELLIS Custom Styles */
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
.stepper-wrapper { padding: 0; }
|
| 64 |
.stepper-container { padding: 0; align-items: center; }
|
| 65 |
.step-button { flex-direction: row; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
.previewer-container {
|
| 67 |
+
position: relative;
|
| 68 |
+
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
|
| 69 |
+
width: 100%;
|
| 70 |
+
height: 722px;
|
| 71 |
+
margin: 0 auto;
|
| 72 |
+
padding: 20px;
|
| 73 |
+
display: flex;
|
| 74 |
+
flex-direction: column;
|
| 75 |
+
align-items: center;
|
| 76 |
+
justify-content: center;
|
| 77 |
+
}
|
| 78 |
+
.previewer-container .tips-icon {
|
| 79 |
+
position: absolute; right: 10px; top: 10px; z-index: 10;
|
| 80 |
+
border-radius: 10px; color: #fff; background-color: var(--color-accent);
|
| 81 |
+
padding: 3px 6px; user-select: none;
|
| 82 |
+
}
|
| 83 |
+
.previewer-container .tips-text {
|
| 84 |
+
position: absolute; right: 10px; top: 50px; color: #fff;
|
| 85 |
+
background-color: var(--color-accent); border-radius: 10px;
|
| 86 |
+
padding: 6px; text-align: left; max-width: 300px; z-index: 10;
|
| 87 |
+
transition: all 0.3s; opacity: 0%; user-select: none;
|
| 88 |
}
|
|
|
|
|
|
|
|
|
|
| 89 |
.tips-icon:hover + .tips-text { display: block; opacity: 100%; }
|
| 90 |
+
.previewer-container .mode-row {
|
| 91 |
+
width: 100%; display: flex; gap: 8px; justify-content: center;
|
| 92 |
+
margin-bottom: 20px; flex-wrap: wrap;
|
| 93 |
+
}
|
| 94 |
+
.previewer-container .mode-btn {
|
| 95 |
+
width: 24px; height: 24px; border-radius: 50%; cursor: pointer;
|
| 96 |
+
opacity: 0.5; transition: all 0.2s; border: 2px solid #ddd; object-fit: cover;
|
| 97 |
+
}
|
| 98 |
.previewer-container .mode-btn:hover { opacity: 0.9; transform: scale(1.1); }
|
| 99 |
.previewer-container .mode-btn.active { opacity: 1; border-color: var(--color-accent); transform: scale(1.1); }
|
| 100 |
+
.previewer-container .display-row {
|
| 101 |
+
margin-bottom: 20px; min-height: 400px; width: 100%; flex-grow: 1;
|
| 102 |
+
display: flex; justify-content: center; align-items: center;
|
| 103 |
+
}
|
| 104 |
+
.previewer-container .previewer-main-image {
|
| 105 |
+
max-width: 100%; max-height: 100%; flex-grow: 1; object-fit: contain; display: none;
|
| 106 |
+
}
|
| 107 |
.previewer-container .previewer-main-image.visible { display: block; }
|
| 108 |
+
.previewer-container .slider-row {
|
| 109 |
+
width: 100%; display: flex; flex-direction: column; align-items: center; gap: 10px; padding: 0 10px;
|
| 110 |
+
}
|
| 111 |
+
.previewer-container input[type=range] {
|
| 112 |
+
-webkit-appearance: none; width: 100%; max-width: 400px; background: transparent;
|
| 113 |
+
}
|
| 114 |
+
.previewer-container input[type=range]::-webkit-slider-runnable-track {
|
| 115 |
+
width: 100%; height: 8px; cursor: pointer; background: #ddd; border-radius: 5px;
|
| 116 |
+
}
|
| 117 |
+
.previewer-container input[type=range]::-webkit-slider-thumb {
|
| 118 |
+
height: 20px; width: 20px; border-radius: 50%; background: var(--color-accent);
|
| 119 |
+
cursor: pointer; -webkit-appearance: none; margin-top: -6px;
|
| 120 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.2); transition: transform 0.1s;
|
| 121 |
+
}
|
| 122 |
.gradio-container .padded:has(.previewer-container) { padding: 0 !important; }
|
|
|
|
| 123 |
"""
|
| 124 |
|
| 125 |
+
HEAD = """
|
| 126 |
<script>
|
| 127 |
function refreshView(mode, step) {
|
| 128 |
const allImgs = document.querySelectorAll('.previewer-main-image');
|
|
|
|
| 140 |
const targetId = 'view-m' + mode + '-s' + step;
|
| 141 |
const targetImg = document.getElementById(targetId);
|
| 142 |
if (targetImg) targetImg.classList.add('visible');
|
|
|
|
| 143 |
const allBtns = document.querySelectorAll('.mode-btn');
|
| 144 |
allBtns.forEach((btn, idx) => {
|
| 145 |
if (idx === mode) btn.classList.add('active');
|
|
|
|
| 151 |
</script>
|
| 152 |
"""
|
| 153 |
|
| 154 |
+
EMPTY_HTML = f"""
|
| 155 |
<div class="previewer-container">
|
| 156 |
+
<div style="opacity: 0.5; text-align: center;">
|
| 157 |
+
<p>3D Asset Preview will appear here.</p>
|
| 158 |
+
</div>
|
| 159 |
</div>
|
| 160 |
"""
|
| 161 |
|
|
|
|
| 165 |
|
| 166 |
print("Initializing models...")
|
| 167 |
|
| 168 |
+
# 1. Load Z-Image-Turbo (Text to Image)
|
| 169 |
print("Loading Z-Image-Turbo...")
|
| 170 |
try:
|
| 171 |
+
t2i_pipe = ZImagePipeline.from_pretrained(
|
| 172 |
"Tongyi-MAI/Z-Image-Turbo",
|
| 173 |
torch_dtype=torch.bfloat16,
|
| 174 |
low_cpu_mem_usage=False,
|
| 175 |
)
|
| 176 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 177 |
+
t2i_pipe.to(device)
|
| 178 |
print("Z-Image-Turbo loaded.")
|
| 179 |
except Exception as e:
|
| 180 |
print(f"Failed to load Z-Image-Turbo: {e}")
|
| 181 |
+
t2i_pipe = None
|
| 182 |
|
| 183 |
+
# 2. Load TRELLIS.2 (Image to 3D)
|
| 184 |
print("Loading TRELLIS.2...")
|
| 185 |
+
try:
|
| 186 |
+
pipeline_trellis = Trellis2ImageTo3DPipeline.from_pretrained('microsoft/TRELLIS.2-4B')
|
| 187 |
+
pipeline_trellis.rembg_model = None # We use external Bria RMBG
|
| 188 |
+
pipeline_trellis.low_vram = False
|
| 189 |
+
pipeline_trellis.cuda()
|
| 190 |
+
print("TRELLIS.2 loaded.")
|
| 191 |
+
except Exception as e:
|
| 192 |
+
print(f"Failed to load TRELLIS.2: {e}")
|
| 193 |
+
pipeline_trellis = None
|
| 194 |
|
| 195 |
+
# 3. Load RMBG Client
|
| 196 |
+
print("Loading RMBG Client...")
|
|
|
|
| 197 |
try:
|
| 198 |
+
rmbg_client = Client("briaai/BRIA-RMBG-2.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
except Exception as e:
|
| 200 |
+
print(f"Failed to connect to RMBG client: {e}")
|
| 201 |
+
rmbg_client = None
|
| 202 |
+
|
| 203 |
+
# 4. Load EnvMaps (Assuming assets folder exists)
|
| 204 |
+
envmap = {}
|
| 205 |
+
if os.path.exists('assets/hdri'):
|
| 206 |
+
try:
|
| 207 |
+
envmap = {
|
| 208 |
+
'forest': EnvMap(torch.tensor(cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda')),
|
| 209 |
+
'sunset': EnvMap(torch.tensor(cv2.cvtColor(cv2.imread('assets/hdri/sunset.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda')),
|
| 210 |
+
'courtyard': EnvMap(torch.tensor(cv2.cvtColor(cv2.imread('assets/hdri/courtyard.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda')),
|
| 211 |
+
}
|
| 212 |
+
except Exception as e:
|
| 213 |
+
print(f"Warning: Could not load HDRIs: {e}")
|
| 214 |
+
else:
|
| 215 |
+
print("Warning: 'assets/hdri' folder not found. Preview modes may fail.")
|
| 216 |
|
| 217 |
# ==========================================
|
| 218 |
# Helper Functions
|
|
|
|
| 230 |
os.makedirs(user_dir, exist_ok=True)
|
| 231 |
|
| 232 |
def end_session(req: gr.Request):
|
| 233 |
+
try:
|
| 234 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 235 |
shutil.rmtree(user_dir)
|
| 236 |
+
except:
|
| 237 |
+
pass
|
| 238 |
|
| 239 |
def remove_background(input: Image.Image) -> Image.Image:
|
| 240 |
+
"""Removes background using Bria RMBG API via Gradio Client."""
|
| 241 |
+
if rmbg_client is None:
|
| 242 |
+
return input # Fallback
|
| 243 |
+
|
| 244 |
+
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as f:
|
| 245 |
input = input.convert('RGB')
|
| 246 |
input.save(f.name)
|
| 247 |
+
f_path = f.name
|
| 248 |
+
|
| 249 |
+
try:
|
| 250 |
+
output_path = rmbg_client.predict(handle_file(f_path), api_name="/image")[0][0]
|
| 251 |
+
output = Image.open(output_path)
|
| 252 |
return output
|
| 253 |
+
finally:
|
| 254 |
+
if os.path.exists(f_path):
|
| 255 |
+
os.remove(f_path)
|
| 256 |
|
| 257 |
def preprocess_image(input: Image.Image) -> Image.Image:
|
| 258 |
+
"""Preprocesses image (resizing, centering, BG removal) for TRELLIS."""
|
| 259 |
+
if input is None:
|
| 260 |
+
return None
|
| 261 |
+
|
| 262 |
+
# Check Alpha
|
| 263 |
has_alpha = False
|
| 264 |
if input.mode == 'RGBA':
|
| 265 |
alpha = np.array(input)[:, :, 3]
|
| 266 |
if not np.all(alpha == 255):
|
| 267 |
has_alpha = True
|
| 268 |
+
|
| 269 |
+
# Resize if too large
|
| 270 |
max_size = max(input.size)
|
| 271 |
scale = min(1, 1024 / max_size)
|
| 272 |
if scale < 1:
|
| 273 |
input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
|
| 274 |
+
|
| 275 |
+
# Remove BG if needed
|
| 276 |
if has_alpha:
|
| 277 |
output = input
|
| 278 |
else:
|
| 279 |
output = remove_background(input)
|
| 280 |
+
|
| 281 |
+
# Centering and Cropping logic
|
| 282 |
output_np = np.array(output)
|
| 283 |
+
# Ensure it has alpha now
|
| 284 |
+
if output_np.shape[2] == 4:
|
| 285 |
+
alpha = output_np[:, :, 3]
|
| 286 |
+
rows = np.any(alpha > 200, axis=1)
|
| 287 |
+
cols = np.any(alpha > 200, axis=0)
|
| 288 |
+
if np.any(rows) and np.any(cols): # Check if image is not empty
|
| 289 |
+
ymin, ymax = np.where(rows)[0][[0, -1]]
|
| 290 |
+
xmin, xmax = np.where(cols)[0][[0, -1]]
|
| 291 |
+
|
| 292 |
+
w = xmax - xmin
|
| 293 |
+
h = ymax - ymin
|
| 294 |
+
size = max(w, h)
|
| 295 |
+
center_x, center_y = (xmin + xmax) / 2, (ymin + ymax) / 2
|
| 296 |
+
|
| 297 |
+
# Add some padding
|
| 298 |
+
size = int(size * 1.1)
|
| 299 |
+
|
| 300 |
+
# Crop
|
| 301 |
+
left = max(0, int(center_x - size // 2))
|
| 302 |
+
top = max(0, int(center_y - size // 2))
|
| 303 |
+
right = min(output.width, int(center_x + size // 2))
|
| 304 |
+
bottom = min(output.height, int(center_y + size // 2))
|
| 305 |
+
|
| 306 |
+
output = output.crop((left, top, right, bottom))
|
| 307 |
+
|
| 308 |
+
# Premultiply alpha on black background logic for clean tensor conversion later?
|
| 309 |
+
# Actually TRELLIS pipeline usually handles RGBA.
|
| 310 |
+
# But let's standardize:
|
| 311 |
+
output_np = np.array(output).astype(np.float32) / 255
|
| 312 |
+
if output_np.shape[2] == 4:
|
| 313 |
+
# Premultiply
|
| 314 |
+
output_np[:, :, :3] * output_np[:, :, 3:4]
|
| 315 |
+
|
| 316 |
+
output = Image.fromarray((output_np * 255).astype(np.uint8))
|
| 317 |
return output
|
| 318 |
|
| 319 |
def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict:
|
|
|
|
| 337 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 338 |
|
| 339 |
# ==========================================
|
| 340 |
+
# Main Processing Functions
|
| 341 |
# ==========================================
|
| 342 |
|
| 343 |
@spaces.GPU()
|
| 344 |
+
def generate_text_to_image(prompt, progress=gr.Progress(track_tqdm=True)):
|
| 345 |
+
"""Generates an image from text using Z-Image-Turbo."""
|
| 346 |
+
if t2i_pipe is None:
|
| 347 |
+
raise gr.Error("Text-to-Image Model not loaded.")
|
| 348 |
if not prompt.strip():
|
| 349 |
+
raise gr.Error("Prompt is empty.")
|
| 350 |
+
|
| 351 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 352 |
+
generator = torch.Generator(device).manual_seed(42) # Fixed seed for consistency demo, or make parametric
|
| 353 |
|
| 354 |
+
result = t2i_pipe(
|
| 355 |
+
prompt=prompt,
|
| 356 |
+
negative_prompt=None,
|
| 357 |
+
height=1024,
|
| 358 |
+
width=1024,
|
| 359 |
+
num_inference_steps=9,
|
| 360 |
+
guidance_scale=0.0,
|
| 361 |
+
generator=generator,
|
| 362 |
+
)
|
| 363 |
+
return result.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
@spaces.GPU(duration=120)
|
| 366 |
def image_to_3d(
|
|
|
|
| 381 |
tex_slat_rescale_t: float,
|
| 382 |
req: gr.Request,
|
| 383 |
progress=gr.Progress(track_tqdm=True),
|
| 384 |
+
) -> Tuple[dict, str]:
|
| 385 |
|
| 386 |
+
if pipeline_trellis is None:
|
| 387 |
+
raise gr.Error("TRELLIS Model not loaded.")
|
| 388 |
+
|
| 389 |
if image is None:
|
| 390 |
raise gr.Error("Input image is missing.")
|
| 391 |
|
| 392 |
+
# Ensure image is preprocessed (if it came directly from T2I, it has a background)
|
| 393 |
+
# If the user manually uploaded an RGBA, preprocess_image ensures it's clean.
|
| 394 |
+
# Note: Logic handled by calling preprocess_image in the Gradio event chain or inside here.
|
| 395 |
+
# We will assume the input 'image' to this function is the result of the Preprocess step.
|
| 396 |
+
|
| 397 |
# --- Sampling ---
|
| 398 |
+
outputs, latents = pipeline_trellis.run(
|
| 399 |
image,
|
| 400 |
seed=seed,
|
| 401 |
+
preprocess_image=False, # We assume input is already preprocessed
|
| 402 |
sparse_structure_sampler_params={
|
| 403 |
"steps": ss_sampling_steps,
|
| 404 |
"guidance_strength": ss_guidance_strength,
|
|
|
|
| 417 |
"guidance_rescale": tex_slat_guidance_rescale,
|
| 418 |
"rescale_t": tex_slat_rescale_t,
|
| 419 |
},
|
| 420 |
+
pipeline_type={
|
| 421 |
+
"512": "512",
|
| 422 |
+
"1024": "1024_cascade",
|
| 423 |
+
"1536": "1536_cascade",
|
| 424 |
+
}[resolution],
|
| 425 |
return_latent=True,
|
| 426 |
)
|
| 427 |
+
|
| 428 |
mesh = outputs[0]
|
| 429 |
mesh.simplify(16777216)
|
| 430 |
|
| 431 |
# Render Preview
|
| 432 |
+
images_rendered = render_utils.render_snapshot(mesh, resolution=1024, r=2, fov=36, nviews=STEPS, envmap=envmap)
|
| 433 |
state = pack_state(latents)
|
| 434 |
torch.cuda.empty_cache()
|
| 435 |
|
| 436 |
# --- HTML Construction ---
|
| 437 |
images_html = ""
|
| 438 |
for m_idx, mode in enumerate(MODES):
|
| 439 |
+
if mode['render_key'] not in images_rendered: continue # skip if missing hdri
|
| 440 |
for s_idx in range(STEPS):
|
| 441 |
unique_id = f"view-m{m_idx}-s{s_idx}"
|
| 442 |
is_visible = (m_idx == DEFAULT_MODE and s_idx == DEFAULT_STEP)
|
| 443 |
vis_class = "visible" if is_visible else ""
|
| 444 |
+
img_base64 = image_to_base64(Image.fromarray(images_rendered[mode['render_key']][s_idx]))
|
| 445 |
+
|
| 446 |
+
images_html += f"""
|
| 447 |
+
<img id="{unique_id}"
|
| 448 |
+
class="previewer-main-image {vis_class}"
|
| 449 |
+
src="{img_base64}"
|
| 450 |
+
loading="eager">
|
| 451 |
+
"""
|
| 452 |
|
| 453 |
btns_html = ""
|
| 454 |
+
for idx, mode in enumerate(MODES):
|
| 455 |
+
if mode['render_key'] not in images_rendered: continue
|
| 456 |
active_class = "active" if idx == DEFAULT_MODE else ""
|
| 457 |
+
btns_html += f"""
|
| 458 |
+
<img src="{mode['icon_base64']}"
|
| 459 |
+
class="mode-btn {active_class}"
|
| 460 |
+
onclick="selectMode({idx})"
|
| 461 |
+
title="{mode['name']}">
|
| 462 |
+
"""
|
| 463 |
|
| 464 |
full_html = f"""
|
| 465 |
<div class="previewer-container">
|
| 466 |
<div class="tips-wrapper">
|
| 467 |
<div class="tips-icon">💡Tips</div>
|
| 468 |
+
<div class="tips-text">
|
| 469 |
+
<p>● <b>Render Mode</b> - Click buttons to switch render modes.</p>
|
| 470 |
+
<p>● <b>View Angle</b> - Drag slider to rotate.</p>
|
| 471 |
+
</div>
|
| 472 |
+
</div>
|
| 473 |
+
<div class="display-row">
|
| 474 |
+
{images_html}
|
| 475 |
+
</div>
|
| 476 |
+
<div class="mode-row" id="btn-group">
|
| 477 |
+
{btns_html}
|
| 478 |
</div>
|
|
|
|
|
|
|
| 479 |
<div class="slider-row">
|
| 480 |
<input type="range" id="custom-slider" min="0" max="{STEPS - 1}" value="{DEFAULT_STEP}" step="1" oninput="onSliderChange(this.value)">
|
| 481 |
</div>
|
| 482 |
</div>
|
| 483 |
"""
|
| 484 |
+
|
| 485 |
return state, full_html
|
| 486 |
|
| 487 |
@spaces.GPU(duration=120)
|
|
|
|
| 492 |
req: gr.Request,
|
| 493 |
progress=gr.Progress(track_tqdm=True),
|
| 494 |
) -> Tuple[str, str]:
|
| 495 |
+
|
|
|
|
|
|
|
| 496 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 497 |
shape_slat, tex_slat, res = unpack_state(state)
|
| 498 |
+
mesh = pipeline_trellis.decode_latent(shape_slat, tex_slat, res)[0]
|
| 499 |
mesh.simplify(16777216)
|
| 500 |
|
| 501 |
glb = o_voxel.postprocess.to_glb(
|
|
|
|
| 503 |
faces=mesh.faces,
|
| 504 |
attr_volume=mesh.attrs,
|
| 505 |
coords=mesh.coords,
|
| 506 |
+
attr_layout=pipeline_trellis.pbr_attr_layout,
|
| 507 |
grid_size=res,
|
| 508 |
aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
|
| 509 |
decimation_target=decimation_target,
|
|
|
|
| 513 |
remesh_project=0,
|
| 514 |
use_tqdm=True,
|
| 515 |
)
|
| 516 |
+
|
| 517 |
now = datetime.now()
|
| 518 |
timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}"
|
| 519 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
| 523 |
return glb_path, glb_path
|
| 524 |
|
| 525 |
# ==========================================
|
| 526 |
+
# Gradio Interface
|
| 527 |
# ==========================================
|
| 528 |
|
| 529 |
if __name__ == "__main__":
|
| 530 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 531 |
|
| 532 |
+
# Pre-calculate base64 for icons to avoid FS lag
|
| 533 |
for i in range(len(MODES)):
|
| 534 |
if os.path.exists(MODES[i]['icon']):
|
| 535 |
icon = Image.open(MODES[i]['icon'])
|
| 536 |
MODES[i]['icon_base64'] = image_to_base64(icon)
|
| 537 |
else:
|
| 538 |
+
MODES[i]['icon_base64'] = "" # Handle missing assets
|
| 539 |
|
| 540 |
+
with gr.Blocks(css=CSS, head=HEAD, delete_cache=(600, 600)) as demo:
|
| 541 |
gr.Markdown("""
|
| 542 |
# TRELLIS.2-3D
|
| 543 |
+
### Text-to-Image (Z-Image-Turbo) + Image-to-3D (TRELLIS.2) Pipeline
|
|
|
|
|
|
|
|
|
|
| 544 |
""")
|
| 545 |
|
| 546 |
with gr.Row():
|
| 547 |
+
# Left Column: Inputs & Text-to-Image
|
| 548 |
+
with gr.Column(scale=1):
|
| 549 |
+
gr.Markdown("### 1. Generate Image")
|
| 550 |
+
text_prompt = gr.Textbox(label="Text Prompt", placeholder="A 3D rendering of a cute isometric house...")
|
| 551 |
+
gen_image_btn = gr.Button("Generate Image from Text", variant="secondary")
|
|
|
|
|
|
|
|
|
|
| 552 |
|
| 553 |
+
gr.Markdown("### 2. Prepare for 3D")
|
| 554 |
+
# This Image component acts as the bridge.
|
| 555 |
+
# It accepts output from T2I OR user upload.
|
| 556 |
+
image_input = gr.Image(label="Input Image (Auto-Preprocessed)", type="pil", image_mode="RGBA", height=300)
|
| 557 |
|
| 558 |
+
with gr.Accordion("Image-to-3D Settings", open=True):
|
| 559 |
resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="1024")
|
| 560 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 561 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
|
| 563 |
+
with gr.Accordion("Advanced Parameters", open=False):
|
| 564 |
+
gr.Markdown("**Stage 1: Sparse Structure**")
|
| 565 |
+
ss_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance", value=7.5, step=0.1)
|
| 566 |
+
ss_guidance_rescale = gr.Slider(0.0, 1.0, label="Rescale", value=0.7, step=0.01)
|
| 567 |
+
ss_sampling_steps = gr.Slider(1, 50, label="Steps", value=12, step=1)
|
| 568 |
+
ss_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=5.0, step=0.1)
|
| 569 |
+
|
| 570 |
+
gr.Markdown("**Stage 2: Shape**")
|
| 571 |
+
shape_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance", value=7.5, step=0.1)
|
| 572 |
+
shape_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Rescale", value=0.5, step=0.01)
|
| 573 |
+
shape_slat_sampling_steps = gr.Slider(1, 50, label="Steps", value=12, step=1)
|
| 574 |
+
shape_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1)
|
| 575 |
+
|
| 576 |
+
gr.Markdown("**Stage 3: Texture**")
|
| 577 |
+
tex_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance", value=1.0, step=0.1)
|
| 578 |
+
tex_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Rescale", value=0.0, step=0.01)
|
| 579 |
+
tex_slat_sampling_steps = gr.Slider(1, 50, label="Steps", value=12, step=1)
|
| 580 |
+
tex_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1)
|
| 581 |
+
|
| 582 |
+
gen_3d_btn = gr.Button("Generate 3D Model", variant="primary")
|
| 583 |
+
|
| 584 |
+
# Right Column: 3D Preview & Export
|
| 585 |
+
with gr.Column(scale=2):
|
| 586 |
+
gr.Markdown("### 3. 3D Preview")
|
| 587 |
+
# We use a Walkthrough to switch between Preview HTML and GLB Viewer
|
| 588 |
with gr.Walkthrough(selected=0) as walkthrough:
|
| 589 |
with gr.Step("Preview", id=0):
|
| 590 |
+
preview_output = gr.HTML(EMPTY_HTML, label="3D Preview", container=True)
|
| 591 |
+
gr.Markdown("*(If the preview is black, verify 'assets/hdri' files exist)*")
|
| 592 |
+
|
| 593 |
+
with gr.Row():
|
| 594 |
+
decimation_target = gr.Slider(100000, 500000, label="Mesh Decimation", value=300000, step=10000)
|
| 595 |
+
texture_size = gr.Slider(1024, 4096, label="Texture Size", value=2048, step=1024)
|
| 596 |
+
extract_btn = gr.Button("Extract & Download GLB")
|
| 597 |
+
|
| 598 |
+
with gr.Step("Result", id=1):
|
| 599 |
+
glb_output = gr.Model3D(label="Extracted GLB", height=600, display_mode="solid", clear_color=(0.2, 0.2, 0.2, 1.0))
|
| 600 |
+
download_btn = gr.DownloadButton(label="Download .glb File")
|
| 601 |
+
back_btn = gr.Button("Back to Preview")
|
| 602 |
+
|
| 603 |
+
# Hidden State to store TRELLIS latent representation
|
| 604 |
+
output_state = gr.State()
|
| 605 |
+
|
| 606 |
+
# ====================
|
| 607 |
+
# Event Handling
|
| 608 |
+
# ====================
|
| 609 |
|
|
|
|
|
|
|
|
|
|
| 610 |
demo.load(start_session)
|
| 611 |
demo.unload(end_session)
|
| 612 |
|
| 613 |
+
# 1. Text to Image
|
| 614 |
+
gen_image_btn.click(
|
| 615 |
+
generate_text_to_image,
|
| 616 |
+
inputs=[text_prompt],
|
| 617 |
+
outputs=[image_input]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 618 |
)
|
| 619 |
|
| 620 |
+
# 2. Image Preprocessing (Auto-trigger when image changes)
|
| 621 |
+
image_input.change(
|
| 622 |
preprocess_image,
|
| 623 |
+
inputs=[image_input],
|
| 624 |
+
outputs=[image_input]
|
| 625 |
)
|
| 626 |
|
| 627 |
+
# 3. Image to 3D Generation
|
| 628 |
+
gen_3d_btn.click(
|
| 629 |
get_seed,
|
| 630 |
inputs=[randomize_seed, seed],
|
| 631 |
outputs=[seed],
|
|
|
|
| 634 |
).then(
|
| 635 |
image_to_3d,
|
| 636 |
inputs=[
|
| 637 |
+
image_input, seed, resolution,
|
| 638 |
ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t,
|
| 639 |
+
shape_slat_guidance_strength, shape_slat_guidance_rescale, shape_slat_sampling_steps, shape_slat_rescale_t,
|
| 640 |
+
tex_slat_guidance_strength, tex_slat_guidance_rescale, tex_slat_sampling_steps, tex_slat_rescale_t,
|
| 641 |
],
|
| 642 |
+
outputs=[output_state, preview_output],
|
| 643 |
)
|
| 644 |
|
| 645 |
+
# 4. Extract GLB
|
| 646 |
extract_btn.click(
|
| 647 |
lambda: gr.Walkthrough(selected=1), outputs=walkthrough
|
| 648 |
).then(
|
| 649 |
extract_glb,
|
| 650 |
+
inputs=[output_state, decimation_target, texture_size],
|
| 651 |
outputs=[glb_output, download_btn],
|
| 652 |
)
|
| 653 |
+
|
| 654 |
+
# 5. Back button
|
| 655 |
+
back_btn.click(lambda: gr.Walkthrough(selected=0), outputs=walkthrough)
|
| 656 |
|
| 657 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|