Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
-
import cv2
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
from PIL import Image
|
| 7 |
-
import base64
|
| 8 |
-
import io
|
| 9 |
import tempfile
|
| 10 |
from typing import *
|
| 11 |
from datetime import datetime
|
|
@@ -26,121 +23,18 @@ import spaces
|
|
| 26 |
from diffusers import ZImagePipeline
|
| 27 |
|
| 28 |
# --- TRELLIS Specific Imports ---
|
| 29 |
-
from trellis2.modules.sparse import SparseTensor
|
| 30 |
from trellis2.pipelines import Trellis2ImageTo3DPipeline
|
| 31 |
-
from trellis2.renderers import EnvMap
|
| 32 |
-
from trellis2.utils import render_utils
|
| 33 |
import o_voxel
|
| 34 |
|
| 35 |
# ==========================================
|
| 36 |
-
# Global Configuration
|
| 37 |
# ==========================================
|
| 38 |
|
| 39 |
MAX_SEED = np.iinfo(np.int32).max
|
| 40 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 41 |
|
| 42 |
-
# TRELLIS Render Modes
|
| 43 |
-
MODES = [
|
| 44 |
-
{"name": "Normal", "icon": "assets/app/normal.png", "render_key": "normal"},
|
| 45 |
-
{"name": "Clay render", "icon": "assets/app/clay.png", "render_key": "clay"},
|
| 46 |
-
{"name": "Base color", "icon": "assets/app/basecolor.png", "render_key": "base_color"},
|
| 47 |
-
{"name": "HDRI forest", "icon": "assets/app/hdri_forest.png", "render_key": "shaded_forest"},
|
| 48 |
-
{"name": "HDRI sunset", "icon": "assets/app/hdri_sunset.png", "render_key": "shaded_sunset"},
|
| 49 |
-
{"name": "HDRI courtyard", "icon": "assets/app/hdri_courtyard.png", "render_key": "shaded_courtyard"},
|
| 50 |
-
]
|
| 51 |
-
STEPS = 8
|
| 52 |
-
DEFAULT_MODE = 3
|
| 53 |
-
DEFAULT_STEP = 3
|
| 54 |
-
|
| 55 |
# ==========================================
|
| 56 |
-
#
|
| 57 |
-
# ==========================================
|
| 58 |
-
|
| 59 |
-
css = """
|
| 60 |
-
/* Overwrite Gradio Default Style */
|
| 61 |
-
.stepper-wrapper { padding: 0; }
|
| 62 |
-
.stepper-container { padding: 0; align-items: center; }
|
| 63 |
-
.step-button { flex-direction: row; }
|
| 64 |
-
.step-connector { transform: none; }
|
| 65 |
-
.step-number { width: 16px; height: 16px; }
|
| 66 |
-
.step-label { position: relative; bottom: 0; }
|
| 67 |
-
.wrap.center.full { inset: 0; height: 100%; }
|
| 68 |
-
.wrap.center.full.translucent { background: var(--block-background-fill); }
|
| 69 |
-
.meta-text-center { display: block !important; position: absolute !important; top: unset !important; bottom: 0 !important; right: 0 !important; transform: unset !important; }
|
| 70 |
-
|
| 71 |
-
/* Previewer */
|
| 72 |
-
.previewer-container {
|
| 73 |
-
position: relative; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
|
| 74 |
-
width: 100%; height: 722px; margin: 0 auto; padding: 20px;
|
| 75 |
-
display: flex; flex-direction: column; align-items: center; justify-content: center;
|
| 76 |
-
}
|
| 77 |
-
.previewer-container .tips-icon { position: absolute; right: 10px; top: 10px; z-index: 10; border-radius: 10px; color: #fff; background-color: var(--color-accent); padding: 3px 6px; user-select: none; }
|
| 78 |
-
.previewer-container .tips-text { position: absolute; right: 10px; top: 50px; color: #fff; background-color: var(--color-accent); border-radius: 10px; padding: 6px; text-align: left; max-width: 300px; z-index: 10; transition: all 0.3s; opacity: 0%; user-select: none; }
|
| 79 |
-
.previewer-container .tips-text p { font-size: 14px; line-height: 1.2; }
|
| 80 |
-
.tips-icon:hover + .tips-text { display: block; opacity: 100%; }
|
| 81 |
-
|
| 82 |
-
/* Row 1: Display Modes */
|
| 83 |
-
.previewer-container .mode-row { width: 100%; display: flex; gap: 8px; justify-content: center; margin-bottom: 20px; flex-wrap: wrap; }
|
| 84 |
-
.previewer-container .mode-btn { width: 24px; height: 24px; border-radius: 50%; cursor: pointer; opacity: 0.5; transition: all 0.2s; border: 2px solid #ddd; object-fit: cover; }
|
| 85 |
-
.previewer-container .mode-btn:hover { opacity: 0.9; transform: scale(1.1); }
|
| 86 |
-
.previewer-container .mode-btn.active { opacity: 1; border-color: var(--color-accent); transform: scale(1.1); }
|
| 87 |
-
|
| 88 |
-
/* Row 2: Display Image */
|
| 89 |
-
.previewer-container .display-row { margin-bottom: 20px; min-height: 400px; width: 100%; flex-grow: 1; display: flex; justify-content: center; align-items: center; }
|
| 90 |
-
.previewer-container .previewer-main-image { max-width: 100%; max-height: 100%; flex-grow: 1; object-fit: contain; display: none; }
|
| 91 |
-
.previewer-container .previewer-main-image.visible { display: block; }
|
| 92 |
-
|
| 93 |
-
/* Row 3: Custom HTML Slider */
|
| 94 |
-
.previewer-container .slider-row { width: 100%; display: flex; flex-direction: column; align-items: center; gap: 10px; padding: 0 10px; }
|
| 95 |
-
.previewer-container input[type=range] { -webkit-appearance: none; width: 100%; max-width: 400px; background: transparent; }
|
| 96 |
-
.previewer-container input[type=range]::-webkit-slider-runnable-track { width: 100%; height: 8px; cursor: pointer; background: #ddd; border-radius: 5px; }
|
| 97 |
-
.previewer-container input[type=range]::-webkit-slider-thumb { height: 20px; width: 20px; border-radius: 50%; background: var(--color-accent); cursor: pointer; -webkit-appearance: none; margin-top: -6px; box-shadow: 0 2px 5px rgba(0,0,0,0.2); transition: transform 0.1s; }
|
| 98 |
-
.previewer-container input[type=range]::-webkit-slider-thumb:hover { transform: scale(1.2); }
|
| 99 |
-
|
| 100 |
-
/* Overwrite Previewer Block Style */
|
| 101 |
-
.gradio-container .padded:has(.previewer-container) { padding: 0 !important; }
|
| 102 |
-
.gradio-container:has(.previewer-container) [data-testid="block-label"] { position: absolute; top: 0; left: 0; }
|
| 103 |
-
"""
|
| 104 |
-
|
| 105 |
-
head = """
|
| 106 |
-
<script>
|
| 107 |
-
function refreshView(mode, step) {
|
| 108 |
-
const allImgs = document.querySelectorAll('.previewer-main-image');
|
| 109 |
-
for (let i = 0; i < allImgs.length; i++) {
|
| 110 |
-
const img = allImgs[i];
|
| 111 |
-
if (img.classList.contains('visible')) {
|
| 112 |
-
const id = img.id;
|
| 113 |
-
const [_, m, s] = id.split('-');
|
| 114 |
-
if (mode === -1) mode = parseInt(m.slice(1));
|
| 115 |
-
if (step === -1) step = parseInt(s.slice(1));
|
| 116 |
-
break;
|
| 117 |
-
}
|
| 118 |
-
}
|
| 119 |
-
allImgs.forEach(img => img.classList.remove('visible'));
|
| 120 |
-
const targetId = 'view-m' + mode + '-s' + step;
|
| 121 |
-
const targetImg = document.getElementById(targetId);
|
| 122 |
-
if (targetImg) targetImg.classList.add('visible');
|
| 123 |
-
|
| 124 |
-
const allBtns = document.querySelectorAll('.mode-btn');
|
| 125 |
-
allBtns.forEach((btn, idx) => {
|
| 126 |
-
if (idx === mode) btn.classList.add('active');
|
| 127 |
-
else btn.classList.remove('active');
|
| 128 |
-
});
|
| 129 |
-
}
|
| 130 |
-
function selectMode(mode) { refreshView(mode, -1); }
|
| 131 |
-
function onSliderChange(val) { refreshView(-1, parseInt(val)); }
|
| 132 |
-
</script>
|
| 133 |
-
"""
|
| 134 |
-
|
| 135 |
-
empty_html = f"""
|
| 136 |
-
<div class="previewer-container">
|
| 137 |
-
<svg style="opacity: .5; height: var(--size-5); color: var(--body-text-color);"
|
| 138 |
-
xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather feather-image"><rect x="3" y="3" width="18" height="18" rx="2" ry="2"></rect><circle cx="8.5" cy="8.5" r="1.5"></circle><polyline points="21 15 16 10 5 21"></polyline></svg>
|
| 139 |
-
</div>
|
| 140 |
-
"""
|
| 141 |
-
|
| 142 |
-
# ==========================================
|
| 143 |
-
# Model & Asset Loading
|
| 144 |
# ==========================================
|
| 145 |
|
| 146 |
print("Initializing models...")
|
|
@@ -162,49 +56,23 @@ except Exception as e:
|
|
| 162 |
|
| 163 |
# 2. TRELLIS.2 (Image to 3D)
|
| 164 |
print("Loading TRELLIS.2...")
|
| 165 |
-
|
| 166 |
-
trellis_pipeline
|
| 167 |
-
trellis_pipeline.
|
| 168 |
-
trellis_pipeline.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
# 3. Background Remover
|
| 171 |
rmbg_client = Client("briaai/BRIA-RMBG-2.0")
|
| 172 |
|
| 173 |
-
# 4. HDRI Maps (FIXED: Robust Fallback)
|
| 174 |
-
def load_envmap_safe(path):
|
| 175 |
-
"""Attempt to load an HDRI map, return a dummy white map if it fails."""
|
| 176 |
-
try:
|
| 177 |
-
if not os.path.exists(path):
|
| 178 |
-
raise FileNotFoundError(f"{path} not found")
|
| 179 |
-
im = cv2.imread(path, cv2.IMREAD_UNCHANGED)
|
| 180 |
-
if im is None:
|
| 181 |
-
raise ValueError(f"OpenCV returned None for {path}")
|
| 182 |
-
rgb = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
| 183 |
-
return EnvMap(torch.tensor(rgb, dtype=torch.float32, device='cuda'))
|
| 184 |
-
except Exception as e:
|
| 185 |
-
print(f"Warning: Could not load HDRI from {path} ({e}). Using synthetic fallback.")
|
| 186 |
-
# Create a simple white environment map (16x32 resolution)
|
| 187 |
-
synthetic_env = torch.ones((16, 32, 3), dtype=torch.float32, device='cuda')
|
| 188 |
-
return EnvMap(synthetic_env)
|
| 189 |
-
|
| 190 |
-
# Always populate these keys, even if files are missing
|
| 191 |
-
envmap = {
|
| 192 |
-
'forest': load_envmap_safe('assets/hdri/forest.exr'),
|
| 193 |
-
'sunset': load_envmap_safe('assets/hdri/sunset.exr'),
|
| 194 |
-
'courtyard': load_envmap_safe('assets/hdri/courtyard.exr'),
|
| 195 |
-
}
|
| 196 |
-
|
| 197 |
# ==========================================
|
| 198 |
# Helper Functions
|
| 199 |
# ==========================================
|
| 200 |
|
| 201 |
-
def image_to_base64(image):
|
| 202 |
-
buffered = io.BytesIO()
|
| 203 |
-
image = image.convert("RGB")
|
| 204 |
-
image.save(buffered, format="jpeg", quality=85)
|
| 205 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 206 |
-
return f"data:image/jpeg;base64,{img_str}"
|
| 207 |
-
|
| 208 |
def start_session(req: gr.Request):
|
| 209 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 210 |
os.makedirs(user_dir, exist_ok=True)
|
|
@@ -257,23 +125,6 @@ def preprocess_image(input: Image.Image) -> Image.Image:
|
|
| 257 |
output = Image.fromarray((output * 255).astype(np.uint8))
|
| 258 |
return output
|
| 259 |
|
| 260 |
-
def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict:
|
| 261 |
-
shape_slat, tex_slat, res = latents
|
| 262 |
-
return {
|
| 263 |
-
'shape_slat_feats': shape_slat.feats.cpu().numpy(),
|
| 264 |
-
'tex_slat_feats': tex_slat.feats.cpu().numpy(),
|
| 265 |
-
'coords': shape_slat.coords.cpu().numpy(),
|
| 266 |
-
'res': res,
|
| 267 |
-
}
|
| 268 |
-
|
| 269 |
-
def unpack_state(state: dict) -> Tuple[SparseTensor, SparseTensor, int]:
|
| 270 |
-
shape_slat = SparseTensor(
|
| 271 |
-
feats=torch.from_numpy(state['shape_slat_feats']).cuda(),
|
| 272 |
-
coords=torch.from_numpy(state['coords']).cuda(),
|
| 273 |
-
)
|
| 274 |
-
tex_slat = shape_slat.replace(torch.from_numpy(state['tex_slat_feats']).cuda())
|
| 275 |
-
return shape_slat, tex_slat, state['res']
|
| 276 |
-
|
| 277 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 278 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 279 |
|
|
@@ -290,7 +141,7 @@ def generate_txt2img(prompt, progress=gr.Progress(track_tqdm=True)):
|
|
| 290 |
raise gr.Error("Please enter a prompt.")
|
| 291 |
|
| 292 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 293 |
-
generator = torch.Generator(device).manual_seed(42)
|
| 294 |
|
| 295 |
progress(0.1, desc="Generating Text-to-Image...")
|
| 296 |
try:
|
|
@@ -307,131 +158,85 @@ def generate_txt2img(prompt, progress=gr.Progress(track_tqdm=True)):
|
|
| 307 |
except Exception as e:
|
| 308 |
raise gr.Error(f"Z-Image Generation failed: {str(e)}")
|
| 309 |
|
| 310 |
-
@spaces.GPU(duration=
|
| 311 |
-
def
|
| 312 |
image: Image.Image,
|
| 313 |
seed: int,
|
| 314 |
resolution: str,
|
|
|
|
|
|
|
| 315 |
ss_guidance_strength: float,
|
| 316 |
ss_guidance_rescale: float,
|
| 317 |
ss_sampling_steps: int,
|
| 318 |
ss_rescale_t: float,
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
req: gr.Request,
|
| 328 |
progress=gr.Progress(track_tqdm=True),
|
| 329 |
-
) -> str:
|
| 330 |
|
| 331 |
if image is None:
|
| 332 |
-
raise gr.Error("
|
| 333 |
-
|
| 334 |
-
# --- Sampling ---
|
| 335 |
-
outputs, latents = trellis_pipeline.run(
|
| 336 |
-
image,
|
| 337 |
-
seed=seed,
|
| 338 |
-
preprocess_image=False, # We pre-process in the upload handler or assume clean input
|
| 339 |
-
sparse_structure_sampler_params={
|
| 340 |
-
"steps": ss_sampling_steps,
|
| 341 |
-
"guidance_strength": ss_guidance_strength,
|
| 342 |
-
"guidance_rescale": ss_guidance_rescale,
|
| 343 |
-
"rescale_t": ss_rescale_t,
|
| 344 |
-
},
|
| 345 |
-
shape_slat_sampler_params={
|
| 346 |
-
"steps": shape_slat_sampling_steps,
|
| 347 |
-
"guidance_strength": shape_slat_guidance_strength,
|
| 348 |
-
"guidance_rescale": shape_slat_guidance_rescale,
|
| 349 |
-
"rescale_t": shape_slat_rescale_t,
|
| 350 |
-
},
|
| 351 |
-
tex_slat_sampler_params={
|
| 352 |
-
"steps": tex_slat_sampling_steps,
|
| 353 |
-
"guidance_strength": tex_slat_guidance_strength,
|
| 354 |
-
"guidance_rescale": tex_slat_guidance_rescale,
|
| 355 |
-
"rescale_t": tex_slat_rescale_t,
|
| 356 |
-
},
|
| 357 |
-
pipeline_type={"512": "512", "1024": "1024_cascade", "1536": "1536_cascade"}[resolution],
|
| 358 |
-
return_latent=True,
|
| 359 |
-
)
|
| 360 |
-
mesh = outputs[0]
|
| 361 |
-
mesh.simplify(16777216)
|
| 362 |
-
|
| 363 |
-
# Render Preview
|
| 364 |
-
images = render_utils.render_snapshot(mesh, resolution=1024, r=2, fov=36, nviews=STEPS, envmap=envmap)
|
| 365 |
-
state = pack_state(latents)
|
| 366 |
-
torch.cuda.empty_cache()
|
| 367 |
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
for s_idx in range(STEPS):
|
| 372 |
-
unique_id = f"view-m{m_idx}-s{s_idx}"
|
| 373 |
-
is_visible = (m_idx == DEFAULT_MODE and s_idx == DEFAULT_STEP)
|
| 374 |
-
vis_class = "visible" if is_visible else ""
|
| 375 |
-
|
| 376 |
-
render_key = mode['render_key']
|
| 377 |
-
if render_key in images:
|
| 378 |
-
img_data = images[render_key][s_idx]
|
| 379 |
-
img_base64 = image_to_base64(Image.fromarray(img_data))
|
| 380 |
-
images_html += f"""<img id="{unique_id}" class="previewer-main-image {vis_class}" src="{img_base64}" loading="eager">"""
|
| 381 |
-
else:
|
| 382 |
-
images_html += f"""<div id="{unique_id}" class="previewer-main-image {vis_class}" style="width:100%;height:100%;background:#333;color:white;display:flex;align-items:center;justify-content:center;">Render Error</div>"""
|
| 383 |
-
|
| 384 |
-
btns_html = ""
|
| 385 |
-
for idx, mode in enumerate(MODES):
|
| 386 |
-
active_class = "active" if idx == DEFAULT_MODE else ""
|
| 387 |
-
btns_html += f"""<img src="{mode['icon_base64']}" class="mode-btn {active_class}" onclick="selectMode({idx})" title="{mode['name']}">"""
|
| 388 |
-
|
| 389 |
-
full_html = f"""
|
| 390 |
-
<div class="previewer-container">
|
| 391 |
-
<div class="tips-wrapper">
|
| 392 |
-
<div class="tips-icon">💡Tips</div>
|
| 393 |
-
<div class="tips-text"><p>● <b>Render Mode</b> - Click buttons to switch modes.</p><p>● <b>View Angle</b> - Drag slider to rotate.</p></div>
|
| 394 |
-
</div>
|
| 395 |
-
<div class="display-row">{images_html}</div>
|
| 396 |
-
<div class="mode-row" id="btn-group">{btns_html}</div>
|
| 397 |
-
<div class="slider-row">
|
| 398 |
-
<input type="range" id="custom-slider" min="0" max="{STEPS - 1}" value="{DEFAULT_STEP}" step="1" oninput="onSliderChange(this.value)">
|
| 399 |
-
</div>
|
| 400 |
-
</div>
|
| 401 |
-
"""
|
| 402 |
-
return state, full_html
|
| 403 |
-
|
| 404 |
-
# Increased timeout to 300s (5mins) for robust extraction
|
| 405 |
-
@spaces.GPU(duration=300)
|
| 406 |
-
def extract_glb(
|
| 407 |
-
state: dict,
|
| 408 |
-
decimation_target: int,
|
| 409 |
-
texture_size: int,
|
| 410 |
-
req: gr.Request,
|
| 411 |
-
progress=gr.Progress(track_tqdm=True),
|
| 412 |
-
) -> Tuple[str, str]:
|
| 413 |
-
if state is None:
|
| 414 |
-
raise gr.Error("No 3D model generated yet.")
|
| 415 |
-
|
| 416 |
-
# Clear cache before heavy operation
|
| 417 |
-
torch.cuda.empty_cache()
|
| 418 |
-
|
| 419 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 420 |
-
|
| 421 |
|
|
|
|
|
|
|
| 422 |
try:
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
|
| 427 |
-
# Convert to GLB
|
| 428 |
glb = o_voxel.postprocess.to_glb(
|
| 429 |
vertices=mesh.vertices,
|
| 430 |
faces=mesh.faces,
|
| 431 |
attr_volume=mesh.attrs,
|
| 432 |
coords=mesh.coords,
|
| 433 |
attr_layout=trellis_pipeline.pbr_attr_layout,
|
| 434 |
-
grid_size=
|
| 435 |
aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
|
| 436 |
decimation_target=decimation_target,
|
| 437 |
texture_size=texture_size,
|
|
@@ -441,19 +246,19 @@ def extract_glb(
|
|
| 441 |
use_tqdm=True,
|
| 442 |
)
|
| 443 |
|
| 444 |
-
# Export
|
| 445 |
now = datetime.now()
|
| 446 |
-
timestamp = now.strftime("%Y-%m-%dT%H%M%S")
|
| 447 |
-
os.
|
| 448 |
-
glb_path = os.path.join(user_dir, f'sample_{timestamp}.glb')
|
| 449 |
glb.export(glb_path, extension_webp=True)
|
| 450 |
|
| 451 |
-
|
| 452 |
torch.cuda.empty_cache()
|
| 453 |
-
|
| 454 |
|
| 455 |
-
|
| 456 |
-
|
|
|
|
|
|
|
| 457 |
|
| 458 |
# ==========================================
|
| 459 |
# Gradio UI Blocks
|
|
@@ -461,50 +266,46 @@ def extract_glb(
|
|
| 461 |
|
| 462 |
if __name__ == "__main__":
|
| 463 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 464 |
-
|
| 465 |
-
# Pre-process icon base64
|
| 466 |
-
for i in range(len(MODES)):
|
| 467 |
-
icon_path = MODES[i]['icon']
|
| 468 |
-
if os.path.exists(icon_path):
|
| 469 |
-
icon = Image.open(icon_path)
|
| 470 |
-
MODES[i]['icon_base64'] = image_to_base64(icon)
|
| 471 |
-
else:
|
| 472 |
-
MODES[i]['icon_base64'] = ""
|
| 473 |
|
| 474 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 475 |
gr.Markdown("""
|
| 476 |
-
# TRELLIS.2-3D
|
| 477 |
-
**Unified Text-to-3D Workflow**
|
| 478 |
|
| 479 |
-
|
| 480 |
-
|
|
|
|
| 481 |
""")
|
| 482 |
|
| 483 |
with gr.Row():
|
| 484 |
-
# --- Column 1: Inputs
|
| 485 |
with gr.Column(scale=1, min_width=360):
|
| 486 |
|
| 487 |
-
#
|
| 488 |
-
with gr.
|
| 489 |
-
gr.
|
| 490 |
-
|
| 491 |
-
|
|
|
|
|
|
|
| 492 |
|
| 493 |
-
#
|
| 494 |
-
gr.
|
| 495 |
-
image_prompt = gr.Image(label="Input Image (Generated or Uploaded)", format="png", image_mode="RGBA", type="pil", height=300)
|
| 496 |
|
| 497 |
-
|
| 498 |
-
|
|
|
|
|
|
|
| 499 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 500 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 501 |
-
|
| 502 |
-
|
|
|
|
| 503 |
texture_size = gr.Slider(512, 4096, label="Texture Size", value=1024, step=512)
|
| 504 |
|
| 505 |
-
btn_gen_3d = gr.Button("Generate 3D", variant="primary")
|
| 506 |
|
| 507 |
-
|
|
|
|
| 508 |
gr.Markdown("**Stage 1: Sparse Structure**")
|
| 509 |
ss_guidance_strength = gr.Slider(1.0, 10.0, value=7.5, label="Guidance")
|
| 510 |
ss_guidance_rescale = gr.Slider(0.0, 1.0, value=0.7, label="Rescale")
|
|
@@ -524,28 +325,25 @@ if __name__ == "__main__":
|
|
| 524 |
tex_rescale_t = gr.Slider(1.0, 6.0, value=3.0, label="Rescale T")
|
| 525 |
|
| 526 |
# --- Column 2: Outputs ---
|
| 527 |
-
with gr.Column(scale=
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
gr.Markdown("Note: Extraction may take 1-2 minutes. If browser slows down, reduce 'Decimation Target'.")
|
| 538 |
|
| 539 |
# ==========================================
|
| 540 |
# Wiring Events
|
| 541 |
# ==========================================
|
| 542 |
-
|
| 543 |
-
output_buf = gr.State()
|
| 544 |
|
| 545 |
demo.load(start_session)
|
| 546 |
demo.unload(end_session)
|
| 547 |
|
| 548 |
-
# 1. Text to Image
|
| 549 |
btn_gen_img.click(
|
| 550 |
generate_txt2img,
|
| 551 |
inputs=[txt_prompt],
|
|
@@ -556,38 +354,28 @@ if __name__ == "__main__":
|
|
| 556 |
outputs=[image_prompt]
|
| 557 |
)
|
| 558 |
|
| 559 |
-
# 2.
|
| 560 |
image_prompt.upload(
|
| 561 |
preprocess_image,
|
| 562 |
inputs=[image_prompt],
|
| 563 |
outputs=[image_prompt],
|
| 564 |
)
|
| 565 |
|
| 566 |
-
# 3.
|
| 567 |
btn_gen_3d.click(
|
| 568 |
get_seed,
|
| 569 |
inputs=[randomize_seed, seed],
|
| 570 |
outputs=[seed],
|
| 571 |
).then(
|
| 572 |
-
|
| 573 |
-
).then(
|
| 574 |
-
image_to_3d,
|
| 575 |
inputs=[
|
| 576 |
-
image_prompt, seed, resolution,
|
|
|
|
| 577 |
ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t,
|
| 578 |
shape_guidance, shape_rescale, shape_steps, shape_rescale_t,
|
| 579 |
tex_guidance, tex_rescale, tex_steps, tex_rescale_t,
|
| 580 |
],
|
| 581 |
-
outputs=[output_buf, preview_output],
|
| 582 |
-
)
|
| 583 |
-
|
| 584 |
-
# 4. Extraction Event
|
| 585 |
-
extract_btn.click(
|
| 586 |
-
lambda: gr.Walkthrough(selected=1), outputs=walkthrough
|
| 587 |
-
).then(
|
| 588 |
-
extract_glb,
|
| 589 |
-
inputs=[output_buf, decimation_target, texture_size],
|
| 590 |
outputs=[glb_output, download_btn],
|
| 591 |
)
|
| 592 |
|
| 593 |
-
demo.launch(
|
|
|
|
| 1 |
import os
|
| 2 |
import shutil
|
|
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
|
|
|
|
|
|
| 6 |
import tempfile
|
| 7 |
from typing import *
|
| 8 |
from datetime import datetime
|
|
|
|
| 23 |
from diffusers import ZImagePipeline
|
| 24 |
|
| 25 |
# --- TRELLIS Specific Imports ---
|
|
|
|
| 26 |
from trellis2.pipelines import Trellis2ImageTo3DPipeline
|
|
|
|
|
|
|
| 27 |
import o_voxel
|
| 28 |
|
| 29 |
# ==========================================
|
| 30 |
+
# Global Configuration
|
| 31 |
# ==========================================
|
| 32 |
|
| 33 |
MAX_SEED = np.iinfo(np.int32).max
|
| 34 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
# ==========================================
|
| 37 |
+
# Model Loading
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# ==========================================
|
| 39 |
|
| 40 |
print("Initializing models...")
|
|
|
|
| 56 |
|
| 57 |
# 2. TRELLIS.2 (Image to 3D)
|
| 58 |
print("Loading TRELLIS.2...")
|
| 59 |
+
try:
|
| 60 |
+
trellis_pipeline = Trellis2ImageTo3DPipeline.from_pretrained('microsoft/TRELLIS.2-4B')
|
| 61 |
+
trellis_pipeline.rembg_model = None
|
| 62 |
+
trellis_pipeline.low_vram = False
|
| 63 |
+
trellis_pipeline.cuda()
|
| 64 |
+
print("TRELLIS.2 loaded.")
|
| 65 |
+
except Exception as e:
|
| 66 |
+
print(f"Failed to load TRELLIS.2: {e}")
|
| 67 |
+
trellis_pipeline = None
|
| 68 |
|
| 69 |
# 3. Background Remover
|
| 70 |
rmbg_client = Client("briaai/BRIA-RMBG-2.0")
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
# ==========================================
|
| 73 |
# Helper Functions
|
| 74 |
# ==========================================
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
def start_session(req: gr.Request):
|
| 77 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 78 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
| 125 |
output = Image.fromarray((output * 255).astype(np.uint8))
|
| 126 |
return output
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 129 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 130 |
|
|
|
|
| 141 |
raise gr.Error("Please enter a prompt.")
|
| 142 |
|
| 143 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 144 |
+
generator = torch.Generator(device).manual_seed(42)
|
| 145 |
|
| 146 |
progress(0.1, desc="Generating Text-to-Image...")
|
| 147 |
try:
|
|
|
|
| 158 |
except Exception as e:
|
| 159 |
raise gr.Error(f"Z-Image Generation failed: {str(e)}")
|
| 160 |
|
| 161 |
+
@spaces.GPU(duration=300)
|
| 162 |
+
def generate_3d(
|
| 163 |
image: Image.Image,
|
| 164 |
seed: int,
|
| 165 |
resolution: str,
|
| 166 |
+
decimation_target: int,
|
| 167 |
+
texture_size: int,
|
| 168 |
ss_guidance_strength: float,
|
| 169 |
ss_guidance_rescale: float,
|
| 170 |
ss_sampling_steps: int,
|
| 171 |
ss_rescale_t: float,
|
| 172 |
+
shape_guidance: float,
|
| 173 |
+
shape_rescale: float,
|
| 174 |
+
shape_steps: int,
|
| 175 |
+
shape_rescale_t: float,
|
| 176 |
+
tex_guidance: float,
|
| 177 |
+
tex_rescale: float,
|
| 178 |
+
tex_steps: int,
|
| 179 |
+
tex_rescale_t: float,
|
| 180 |
req: gr.Request,
|
| 181 |
progress=gr.Progress(track_tqdm=True),
|
| 182 |
+
) -> Tuple[str, str]:
|
| 183 |
|
| 184 |
if image is None:
|
| 185 |
+
raise gr.Error("Please provide an input image.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
+
if trellis_pipeline is None:
|
| 188 |
+
raise gr.Error("TRELLIS model is not loaded.")
|
| 189 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 191 |
+
os.makedirs(user_dir, exist_ok=True)
|
| 192 |
|
| 193 |
+
# 1. Run Pipeline
|
| 194 |
+
progress(0.1, desc="Generating 3D Geometry...")
|
| 195 |
try:
|
| 196 |
+
outputs, latents = trellis_pipeline.run(
|
| 197 |
+
image,
|
| 198 |
+
seed=seed,
|
| 199 |
+
preprocess_image=False, # Assumed already preprocessed by UI handler
|
| 200 |
+
sparse_structure_sampler_params={
|
| 201 |
+
"steps": ss_sampling_steps,
|
| 202 |
+
"guidance_strength": ss_guidance_strength,
|
| 203 |
+
"guidance_rescale": ss_guidance_rescale,
|
| 204 |
+
"rescale_t": ss_rescale_t,
|
| 205 |
+
},
|
| 206 |
+
shape_slat_sampler_params={
|
| 207 |
+
"steps": shape_steps,
|
| 208 |
+
"guidance_strength": shape_guidance,
|
| 209 |
+
"guidance_rescale": shape_rescale,
|
| 210 |
+
"rescale_t": shape_rescale_t,
|
| 211 |
+
},
|
| 212 |
+
tex_slat_sampler_params={
|
| 213 |
+
"steps": tex_steps,
|
| 214 |
+
"guidance_strength": tex_guidance,
|
| 215 |
+
"guidance_rescale": tex_rescale,
|
| 216 |
+
"rescale_t": tex_rescale_t,
|
| 217 |
+
},
|
| 218 |
+
pipeline_type={"512": "512", "1024": "1024_cascade", "1536": "1536_cascade"}[resolution],
|
| 219 |
+
return_latent=True,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# 2. Process Mesh
|
| 223 |
+
progress(0.7, desc="Processing Mesh...")
|
| 224 |
+
mesh = outputs[0]
|
| 225 |
+
mesh.simplify(16777216) # Simplify for processing limits
|
| 226 |
+
|
| 227 |
+
# 3. Export to GLB
|
| 228 |
+
progress(0.9, desc="Baking Texture & Exporting GLB...")
|
| 229 |
+
|
| 230 |
+
# Note: We use the latent grid resolution from the pipeline output
|
| 231 |
+
grid_size = latents[2]
|
| 232 |
|
|
|
|
| 233 |
glb = o_voxel.postprocess.to_glb(
|
| 234 |
vertices=mesh.vertices,
|
| 235 |
faces=mesh.faces,
|
| 236 |
attr_volume=mesh.attrs,
|
| 237 |
coords=mesh.coords,
|
| 238 |
attr_layout=trellis_pipeline.pbr_attr_layout,
|
| 239 |
+
grid_size=grid_size,
|
| 240 |
aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
|
| 241 |
decimation_target=decimation_target,
|
| 242 |
texture_size=texture_size,
|
|
|
|
| 246 |
use_tqdm=True,
|
| 247 |
)
|
| 248 |
|
|
|
|
| 249 |
now = datetime.now()
|
| 250 |
+
timestamp = now.strftime("%Y-%m-%dT%H%M%S")
|
| 251 |
+
glb_path = os.path.join(user_dir, f'trellis_output_{timestamp}.glb')
|
|
|
|
| 252 |
glb.export(glb_path, extension_webp=True)
|
| 253 |
|
| 254 |
+
# Clean up
|
| 255 |
torch.cuda.empty_cache()
|
| 256 |
+
return glb_path, glb_path
|
| 257 |
|
| 258 |
+
except Exception as e:
|
| 259 |
+
torch.cuda.empty_cache()
|
| 260 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
| 261 |
+
|
| 262 |
|
| 263 |
# ==========================================
|
| 264 |
# Gradio UI Blocks
|
|
|
|
| 266 |
|
| 267 |
if __name__ == "__main__":
|
| 268 |
os.makedirs(TMP_DIR, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 271 |
gr.Markdown("""
|
| 272 |
+
# TRELLIS.2-3D (Direct Export)
|
|
|
|
| 273 |
|
| 274 |
+
**Workflow:**
|
| 275 |
+
1. **Generate Image** (Text-to-Image) or **Upload Image**.
|
| 276 |
+
2. Click **Generate 3D** to create the GLB asset directly.
|
| 277 |
""")
|
| 278 |
|
| 279 |
with gr.Row():
|
| 280 |
+
# --- Column 1: Inputs ---
|
| 281 |
with gr.Column(scale=1, min_width=360):
|
| 282 |
|
| 283 |
+
# Input Source
|
| 284 |
+
with gr.Tabs():
|
| 285 |
+
with gr.Tab("Text to Image"):
|
| 286 |
+
txt_prompt = gr.Textbox(label="Prompt", placeholder="A treasure chest, isometric style, white background", lines=3)
|
| 287 |
+
btn_gen_img = gr.Button("Generate Image", variant="secondary")
|
| 288 |
+
with gr.Tab("Upload"):
|
| 289 |
+
gr.Markdown("Upload an image directly if you have one.")
|
| 290 |
|
| 291 |
+
# Image Display
|
| 292 |
+
image_prompt = gr.Image(label="Input Image", format="png", image_mode="RGBA", type="pil", height=300)
|
|
|
|
| 293 |
|
| 294 |
+
# 3D Settings
|
| 295 |
+
gr.Markdown("### 3D Settings")
|
| 296 |
+
with gr.Group():
|
| 297 |
+
resolution = gr.Radio(["512", "1024", "1536"], label="Generation Resolution", value="1024")
|
| 298 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 299 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 300 |
+
|
| 301 |
+
gr.Markdown(" **Export Settings**")
|
| 302 |
+
decimation_target = gr.Slider(50000, 500000, label="Target Faces", value=150000, step=10000)
|
| 303 |
texture_size = gr.Slider(512, 4096, label="Texture Size", value=1024, step=512)
|
| 304 |
|
| 305 |
+
btn_gen_3d = gr.Button("Generate 3D Asset", variant="primary", scale=2)
|
| 306 |
|
| 307 |
+
# Advanced Settings
|
| 308 |
+
with gr.Accordion(label="Advanced Sampler Settings", open=False):
|
| 309 |
gr.Markdown("**Stage 1: Sparse Structure**")
|
| 310 |
ss_guidance_strength = gr.Slider(1.0, 10.0, value=7.5, label="Guidance")
|
| 311 |
ss_guidance_rescale = gr.Slider(0.0, 1.0, value=0.7, label="Rescale")
|
|
|
|
| 325 |
tex_rescale_t = gr.Slider(1.0, 6.0, value=3.0, label="Rescale T")
|
| 326 |
|
| 327 |
# --- Column 2: Outputs ---
|
| 328 |
+
with gr.Column(scale=2):
|
| 329 |
+
gr.Markdown("### 3D Output")
|
| 330 |
+
glb_output = gr.Model3D(
|
| 331 |
+
label="Generated GLB",
|
| 332 |
+
display_mode="solid",
|
| 333 |
+
clear_color=(0.2, 0.2, 0.2, 1.0),
|
| 334 |
+
height=600,
|
| 335 |
+
interactive=True
|
| 336 |
+
)
|
| 337 |
+
download_btn = gr.DownloadButton(label="Download GLB File")
|
|
|
|
| 338 |
|
| 339 |
# ==========================================
|
| 340 |
# Wiring Events
|
| 341 |
# ==========================================
|
|
|
|
|
|
|
| 342 |
|
| 343 |
demo.load(start_session)
|
| 344 |
demo.unload(end_session)
|
| 345 |
|
| 346 |
+
# 1. Text to Image
|
| 347 |
btn_gen_img.click(
|
| 348 |
generate_txt2img,
|
| 349 |
inputs=[txt_prompt],
|
|
|
|
| 354 |
outputs=[image_prompt]
|
| 355 |
)
|
| 356 |
|
| 357 |
+
# 2. Auto-preprocess uploaded images
|
| 358 |
image_prompt.upload(
|
| 359 |
preprocess_image,
|
| 360 |
inputs=[image_prompt],
|
| 361 |
outputs=[image_prompt],
|
| 362 |
)
|
| 363 |
|
| 364 |
+
# 3. Generate 3D
|
| 365 |
btn_gen_3d.click(
|
| 366 |
get_seed,
|
| 367 |
inputs=[randomize_seed, seed],
|
| 368 |
outputs=[seed],
|
| 369 |
).then(
|
| 370 |
+
generate_3d,
|
|
|
|
|
|
|
| 371 |
inputs=[
|
| 372 |
+
image_prompt, seed, resolution,
|
| 373 |
+
decimation_target, texture_size,
|
| 374 |
ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t,
|
| 375 |
shape_guidance, shape_rescale, shape_steps, shape_rescale_t,
|
| 376 |
tex_guidance, tex_rescale, tex_steps, tex_rescale_t,
|
| 377 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
outputs=[glb_output, download_btn],
|
| 379 |
)
|
| 380 |
|
| 381 |
+
demo.launch()
|