Spaces:
Running
on
Zero
Running
on
Zero
update app [.]
Browse files
app.py
CHANGED
|
@@ -1,44 +1,45 @@
|
|
| 1 |
import os
|
| 2 |
-
import io
|
| 3 |
-
import cv2
|
| 4 |
-
import time
|
| 5 |
import shutil
|
| 6 |
-
import
|
| 7 |
import torch
|
| 8 |
import numpy as np
|
| 9 |
-
import tempfile
|
| 10 |
-
import gradio as gr
|
| 11 |
-
import spaces
|
| 12 |
-
from pathlib import Path
|
| 13 |
-
from typing import Tuple, List, Optional
|
| 14 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from datetime import datetime
|
| 16 |
-
from
|
| 17 |
|
| 18 |
-
# ---
|
| 19 |
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1'
|
| 20 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 21 |
os.environ["ATTN_BACKEND"] = "flash_attn_3"
|
| 22 |
-
#
|
| 23 |
os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'autotune_cache.json')
|
| 24 |
os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1'
|
| 25 |
|
| 26 |
-
# ---
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
from diffusers import ZImagePipeline
|
| 29 |
|
| 30 |
-
#
|
| 31 |
from trellis2.modules.sparse import SparseTensor
|
| 32 |
from trellis2.pipelines import Trellis2ImageTo3DPipeline
|
| 33 |
from trellis2.renderers import EnvMap
|
| 34 |
from trellis2.utils import render_utils
|
| 35 |
import o_voxel
|
| 36 |
|
| 37 |
-
#
|
|
|
|
|
|
|
|
|
|
| 38 |
MAX_SEED = np.iinfo(np.int32).max
|
| 39 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 40 |
|
| 41 |
-
#
|
| 42 |
MODES = [
|
| 43 |
{"name": "Normal", "icon": "assets/app/normal.png", "render_key": "normal"},
|
| 44 |
{"name": "Clay render", "icon": "assets/app/clay.png", "render_key": "clay"},
|
|
@@ -51,8 +52,12 @@ STEPS = 8
|
|
| 51 |
DEFAULT_MODE = 3
|
| 52 |
DEFAULT_STEP = 3
|
| 53 |
|
| 54 |
-
#
|
|
|
|
|
|
|
|
|
|
| 55 |
css = """
|
|
|
|
| 56 |
.stepper-wrapper { padding: 0; }
|
| 57 |
.stepper-container { padding: 0; align-items: center; }
|
| 58 |
.step-button { flex-direction: row; }
|
|
@@ -61,23 +66,38 @@ css = """
|
|
| 61 |
.step-label { position: relative; bottom: 0; }
|
| 62 |
.wrap.center.full { inset: 0; height: 100%; }
|
| 63 |
.wrap.center.full.translucent { background: var(--block-background-fill); }
|
| 64 |
-
.meta-text-center { display: block !important; position: absolute !important; bottom: 0 !important; right: 0 !important; transform: unset !important; }
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
.previewer-container .tips-icon { position: absolute; right: 10px; top: 10px; z-index: 10; border-radius: 10px; color: #fff; background-color: var(--color-accent); padding: 3px 6px; user-select: none; }
|
| 67 |
.previewer-container .tips-text { position: absolute; right: 10px; top: 50px; color: #fff; background-color: var(--color-accent); border-radius: 10px; padding: 6px; text-align: left; max-width: 300px; z-index: 10; transition: all 0.3s; opacity: 0%; user-select: none; }
|
|
|
|
| 68 |
.tips-icon:hover + .tips-text { display: block; opacity: 100%; }
|
|
|
|
|
|
|
| 69 |
.previewer-container .mode-row { width: 100%; display: flex; gap: 8px; justify-content: center; margin-bottom: 20px; flex-wrap: wrap; }
|
| 70 |
.previewer-container .mode-btn { width: 24px; height: 24px; border-radius: 50%; cursor: pointer; opacity: 0.5; transition: all 0.2s; border: 2px solid #ddd; object-fit: cover; }
|
| 71 |
.previewer-container .mode-btn:hover { opacity: 0.9; transform: scale(1.1); }
|
| 72 |
.previewer-container .mode-btn.active { opacity: 1; border-color: var(--color-accent); transform: scale(1.1); }
|
|
|
|
|
|
|
| 73 |
.previewer-container .display-row { margin-bottom: 20px; min-height: 400px; width: 100%; flex-grow: 1; display: flex; justify-content: center; align-items: center; }
|
| 74 |
.previewer-container .previewer-main-image { max-width: 100%; max-height: 100%; flex-grow: 1; object-fit: contain; display: none; }
|
| 75 |
.previewer-container .previewer-main-image.visible { display: block; }
|
|
|
|
|
|
|
| 76 |
.previewer-container .slider-row { width: 100%; display: flex; flex-direction: column; align-items: center; gap: 10px; padding: 0 10px; }
|
| 77 |
.previewer-container input[type=range] { -webkit-appearance: none; width: 100%; max-width: 400px; background: transparent; }
|
| 78 |
.previewer-container input[type=range]::-webkit-slider-runnable-track { width: 100%; height: 8px; cursor: pointer; background: #ddd; border-radius: 5px; }
|
| 79 |
.previewer-container input[type=range]::-webkit-slider-thumb { height: 20px; width: 20px; border-radius: 50%; background: var(--color-accent); cursor: pointer; -webkit-appearance: none; margin-top: -6px; box-shadow: 0 2px 5px rgba(0,0,0,0.2); transition: transform 0.1s; }
|
| 80 |
.previewer-container input[type=range]::-webkit-slider-thumb:hover { transform: scale(1.2); }
|
|
|
|
|
|
|
| 81 |
.gradio-container .padded:has(.previewer-container) { padding: 0 !important; }
|
| 82 |
.gradio-container:has(.previewer-container) [data-testid="block-label"] { position: absolute; top: 0; left: 0; }
|
| 83 |
"""
|
|
@@ -100,6 +120,7 @@ head = """
|
|
| 100 |
const targetId = 'view-m' + mode + '-s' + step;
|
| 101 |
const targetImg = document.getElementById(targetId);
|
| 102 |
if (targetImg) targetImg.classList.add('visible');
|
|
|
|
| 103 |
const allBtns = document.querySelectorAll('.mode-btn');
|
| 104 |
allBtns.forEach((btn, idx) => {
|
| 105 |
if (idx === mode) btn.classList.add('active');
|
|
@@ -111,58 +132,60 @@ head = """
|
|
| 111 |
</script>
|
| 112 |
"""
|
| 113 |
|
| 114 |
-
empty_html = """
|
| 115 |
<div class="previewer-container">
|
| 116 |
-
<
|
| 117 |
-
|
| 118 |
-
</div>
|
| 119 |
</div>
|
| 120 |
"""
|
| 121 |
|
| 122 |
-
#
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
#
|
| 126 |
print("Loading Z-Image-Turbo...")
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
trellis_pipeline = Trellis2ImageTo3DPipeline.from_pretrained('microsoft/TRELLIS.2-4B')
|
| 138 |
-
trellis_pipeline.rembg_model = None
|
| 139 |
trellis_pipeline.low_vram = False
|
| 140 |
-
|
| 141 |
-
trellis_pipeline.cuda()
|
| 142 |
|
| 143 |
-
#
|
| 144 |
rmbg_client = Client("briaai/BRIA-RMBG-2.0")
|
| 145 |
|
| 146 |
-
#
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
return None # Should handle fallback
|
| 158 |
-
|
| 159 |
-
envmap = {
|
| 160 |
-
'forest': load_env_map('forest', 'forest.exr'),
|
| 161 |
-
'sunset': load_env_map('sunset', 'sunset.exr'),
|
| 162 |
-
'courtyard': load_env_map('courtyard', 'courtyard.exr'),
|
| 163 |
-
}
|
| 164 |
|
| 165 |
-
#
|
|
|
|
|
|
|
| 166 |
|
| 167 |
def image_to_base64(image):
|
| 168 |
buffered = io.BytesIO()
|
|
@@ -180,92 +203,89 @@ def end_session(req: gr.Request):
|
|
| 180 |
if os.path.exists(user_dir):
|
| 181 |
shutil.rmtree(user_dir)
|
| 182 |
|
| 183 |
-
def
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
'tex_slat_feats': tex_slat.feats.cpu().numpy(),
|
| 188 |
-
'coords': shape_slat.coords.cpu().numpy(),
|
| 189 |
-
'res': res,
|
| 190 |
-
}
|
| 191 |
-
|
| 192 |
-
def unpack_state(state: dict) -> Tuple[SparseTensor, SparseTensor, int]:
|
| 193 |
-
shape_slat = SparseTensor(
|
| 194 |
-
feats=torch.from_numpy(state['shape_slat_feats']).cuda(),
|
| 195 |
-
coords=torch.from_numpy(state['coords']).cuda(),
|
| 196 |
-
)
|
| 197 |
-
tex_slat = shape_slat.replace(torch.from_numpy(state['tex_slat_feats']).cuda())
|
| 198 |
-
return shape_slat, tex_slat, state['res']
|
| 199 |
-
|
| 200 |
-
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 201 |
-
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 202 |
-
|
| 203 |
-
def remove_background(input_img: Image.Image) -> Image.Image:
|
| 204 |
-
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as f:
|
| 205 |
-
input_img = input_img.convert('RGB')
|
| 206 |
-
input_img.save(f.name)
|
| 207 |
-
# Use gradio client to call remote or local rmbg
|
| 208 |
output = rmbg_client.predict(handle_file(f.name), api_name="/image")[0][0]
|
| 209 |
-
|
| 210 |
-
return
|
| 211 |
|
| 212 |
-
def preprocess_image(
|
| 213 |
-
|
| 214 |
-
# Check alpha
|
| 215 |
has_alpha = False
|
| 216 |
-
if
|
| 217 |
-
alpha = np.array(
|
| 218 |
if not np.all(alpha == 255):
|
| 219 |
has_alpha = True
|
| 220 |
-
|
| 221 |
-
# Resize logic
|
| 222 |
-
max_size = max(input_img.size)
|
| 223 |
scale = min(1, 1024 / max_size)
|
| 224 |
if scale < 1:
|
| 225 |
-
|
| 226 |
-
|
| 227 |
if has_alpha:
|
| 228 |
-
output =
|
| 229 |
else:
|
| 230 |
-
output = remove_background(
|
| 231 |
-
|
| 232 |
-
# Recenter and crop
|
| 233 |
output_np = np.array(output)
|
| 234 |
alpha = output_np[:, :, 3]
|
| 235 |
bbox = np.argwhere(alpha > 0.8 * 255)
|
| 236 |
-
if bbox.size == 0:
|
| 237 |
-
|
| 238 |
bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
|
| 239 |
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
|
| 240 |
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
|
| 241 |
-
size = int(size * 1)
|
| 242 |
bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2
|
| 243 |
output = output.crop(bbox)
|
| 244 |
-
|
| 245 |
-
# Premultiply alpha
|
| 246 |
output = np.array(output).astype(np.float32) / 255
|
| 247 |
output = output[:, :, :3] * output[:, :, 3:4]
|
| 248 |
output = Image.fromarray((output * 255).astype(np.uint8))
|
| 249 |
return output
|
| 250 |
|
| 251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
@spaces.GPU()
|
| 254 |
-
def
|
| 255 |
-
"""
|
|
|
|
|
|
|
| 256 |
if not prompt.strip():
|
| 257 |
raise gr.Error("Please enter a prompt.")
|
| 258 |
|
| 259 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 260 |
-
generator = torch.Generator(device).manual_seed(42) #
|
| 261 |
|
| 262 |
-
|
| 263 |
try:
|
| 264 |
result = z_pipe(
|
| 265 |
prompt=prompt,
|
|
|
|
| 266 |
height=1024,
|
| 267 |
width=1024,
|
| 268 |
-
num_inference_steps=9,
|
| 269 |
guidance_scale=0.0,
|
| 270 |
generator=generator,
|
| 271 |
)
|
|
@@ -273,70 +293,65 @@ def generate_text_to_image(prompt):
|
|
| 273 |
except Exception as e:
|
| 274 |
raise gr.Error(f"Z-Image Generation failed: {str(e)}")
|
| 275 |
|
| 276 |
-
@spaces.GPU(duration=
|
| 277 |
-
def
|
| 278 |
image: Image.Image,
|
| 279 |
seed: int,
|
| 280 |
resolution: str,
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
(sh_steps, sh_guidance, sh_rescale, sh_t) = shape_params
|
| 297 |
-
(tex_steps, tex_guidance, tex_rescale, tex_t) = tex_params
|
| 298 |
|
| 299 |
-
#
|
| 300 |
outputs, latents = trellis_pipeline.run(
|
| 301 |
-
|
| 302 |
seed=seed,
|
| 303 |
-
preprocess_image=False, # We
|
| 304 |
sparse_structure_sampler_params={
|
| 305 |
-
"steps":
|
| 306 |
-
"guidance_strength":
|
| 307 |
-
"guidance_rescale":
|
| 308 |
-
"rescale_t":
|
| 309 |
},
|
| 310 |
shape_slat_sampler_params={
|
| 311 |
-
"steps":
|
| 312 |
-
"guidance_strength":
|
| 313 |
-
"guidance_rescale":
|
| 314 |
-
"rescale_t":
|
| 315 |
},
|
| 316 |
tex_slat_sampler_params={
|
| 317 |
-
"steps":
|
| 318 |
-
"guidance_strength":
|
| 319 |
-
"guidance_rescale":
|
| 320 |
-
"rescale_t":
|
| 321 |
},
|
| 322 |
-
pipeline_type={
|
| 323 |
-
"512": "512",
|
| 324 |
-
"1024": "1024_cascade",
|
| 325 |
-
"1536": "1536_cascade",
|
| 326 |
-
}[resolution],
|
| 327 |
return_latent=True,
|
| 328 |
)
|
| 329 |
-
|
| 330 |
-
# 4. Render Preview
|
| 331 |
mesh = outputs[0]
|
| 332 |
-
mesh.simplify(16777216)
|
| 333 |
|
| 334 |
-
#
|
| 335 |
images = render_utils.render_snapshot(mesh, resolution=1024, r=2, fov=36, nviews=STEPS, envmap=envmap)
|
| 336 |
state = pack_state(latents)
|
| 337 |
torch.cuda.empty_cache()
|
| 338 |
-
|
| 339 |
-
#
|
| 340 |
images_html = ""
|
| 341 |
for m_idx, mode in enumerate(MODES):
|
| 342 |
for s_idx in range(STEPS):
|
|
@@ -344,18 +359,18 @@ def generate_3d_from_image(
|
|
| 344 |
is_visible = (m_idx == DEFAULT_MODE and s_idx == DEFAULT_STEP)
|
| 345 |
vis_class = "visible" if is_visible else ""
|
| 346 |
img_base64 = image_to_base64(Image.fromarray(images[mode['render_key']][s_idx]))
|
| 347 |
-
images_html += f
|
| 348 |
-
|
| 349 |
btns_html = ""
|
| 350 |
for idx, mode in enumerate(MODES):
|
| 351 |
active_class = "active" if idx == DEFAULT_MODE else ""
|
| 352 |
-
btns_html += f
|
| 353 |
-
|
| 354 |
full_html = f"""
|
| 355 |
<div class="previewer-container">
|
| 356 |
<div class="tips-wrapper">
|
| 357 |
<div class="tips-icon">💡Tips</div>
|
| 358 |
-
<div class="tips-text"><p>● <b>Render Mode</b> -
|
| 359 |
</div>
|
| 360 |
<div class="display-row">{images_html}</div>
|
| 361 |
<div class="mode-row" id="btn-group">{btns_html}</div>
|
|
@@ -364,14 +379,21 @@ def generate_3d_from_image(
|
|
| 364 |
</div>
|
| 365 |
</div>
|
| 366 |
"""
|
| 367 |
-
|
| 368 |
-
return state, full_html, processed_image
|
| 369 |
|
| 370 |
@spaces.GPU(duration=120)
|
| 371 |
-
def extract_glb(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 373 |
shape_slat, tex_slat, res = unpack_state(state)
|
| 374 |
-
|
| 375 |
mesh = trellis_pipeline.decode_latent(shape_slat, tex_slat, res)[0]
|
| 376 |
mesh.simplify(16777216)
|
| 377 |
|
|
@@ -390,150 +412,145 @@ def extract_glb(state: dict, decimation_target: int, texture_size: int, req: gr.
|
|
| 390 |
remesh_project=0,
|
| 391 |
use_tqdm=True,
|
| 392 |
)
|
| 393 |
-
|
| 394 |
now = datetime.now()
|
| 395 |
timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}"
|
| 396 |
os.makedirs(user_dir, exist_ok=True)
|
| 397 |
glb_path = os.path.join(user_dir, f'sample_{timestamp}.glb')
|
| 398 |
glb.export(glb_path, extension_webp=True)
|
| 399 |
torch.cuda.empty_cache()
|
| 400 |
-
|
| 401 |
return glb_path, glb_path
|
| 402 |
|
| 403 |
-
#
|
|
|
|
|
|
|
| 404 |
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
icon_path = MODES[i]['icon']
|
| 408 |
-
if os.path.exists(icon_path):
|
| 409 |
-
MODES[i]['icon_base64'] = image_to_base64(Image.open(icon_path))
|
| 410 |
-
else:
|
| 411 |
-
# Fallback empty image if asset missing
|
| 412 |
-
MODES[i]['icon_base64'] = ""
|
| 413 |
-
|
| 414 |
-
with gr.Blocks(css=css, title="TRELLIS.2-3D Turbo", delete_cache=(600, 600)) as demo:
|
| 415 |
|
| 416 |
-
#
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
#
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
with gr.Accordion("3D Settings", open=False):
|
| 438 |
-
resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="1024")
|
| 439 |
-
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 440 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 441 |
|
| 442 |
-
#
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
ss_t = gr.Slider(1.0, 6.0, value=5.0, label="Structure T")
|
| 448 |
|
| 449 |
-
#
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
sh_rescale = gr.Slider(0.0, 1.0, value=0.5, label="Shape Rescale")
|
| 453 |
-
sh_t = gr.Slider(1.0, 6.0, value=3.0, label="Shape T")
|
| 454 |
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
# RIGHT COLUMN: OUTPUTS
|
| 462 |
-
with gr.Column(scale=2):
|
| 463 |
-
with gr.Tabs():
|
| 464 |
-
with gr.Tab("3D Preview"):
|
| 465 |
-
preview_html = gr.HTML(empty_html, label="3D Preview")
|
| 466 |
-
# Hidden state to store latent representation
|
| 467 |
-
trellis_state = gr.State()
|
| 468 |
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 485 |
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
args[0], args[1], args[2],
|
| 514 |
-
[args[3], args[4], args[5], args[6]], # SS params
|
| 515 |
-
[args[7], args[8], args[9], args[10]], # Shape params
|
| 516 |
-
[args[11], args[12], args[13], args[14]] # Tex params
|
| 517 |
-
),
|
| 518 |
-
inputs=[
|
| 519 |
-
generated_image, seed, resolution,
|
| 520 |
-
ss_steps, ss_str, ss_rescale, ss_t,
|
| 521 |
-
sh_steps, sh_str, sh_rescale, sh_t,
|
| 522 |
-
tex_steps, tex_str, tex_rescale, tex_t
|
| 523 |
-
],
|
| 524 |
-
outputs=[trellis_state, preview_html, generated_image]
|
| 525 |
-
)
|
| 526 |
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 533 |
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
| 2 |
import shutil
|
| 3 |
+
import cv2
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
+
import base64
|
| 8 |
+
import io
|
| 9 |
+
import tempfile
|
| 10 |
+
from typing import *
|
| 11 |
from datetime import datetime
|
| 12 |
+
from pathlib import Path
|
| 13 |
|
| 14 |
+
# --- Environment Setup (Must be before other imports) ---
|
| 15 |
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1'
|
| 16 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 17 |
os.environ["ATTN_BACKEND"] = "flash_attn_3"
|
| 18 |
+
# Set autotune cache relative to this file
|
| 19 |
os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'autotune_cache.json')
|
| 20 |
os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1'
|
| 21 |
|
| 22 |
+
# --- Third Party Imports ---
|
| 23 |
+
import gradio as gr
|
| 24 |
+
from gradio_client import Client, handle_file
|
| 25 |
+
import spaces
|
| 26 |
from diffusers import ZImagePipeline
|
| 27 |
|
| 28 |
+
# --- TRELLIS Specific Imports ---
|
| 29 |
from trellis2.modules.sparse import SparseTensor
|
| 30 |
from trellis2.pipelines import Trellis2ImageTo3DPipeline
|
| 31 |
from trellis2.renderers import EnvMap
|
| 32 |
from trellis2.utils import render_utils
|
| 33 |
import o_voxel
|
| 34 |
|
| 35 |
+
# ==========================================
|
| 36 |
+
# Global Configuration & Assets
|
| 37 |
+
# ==========================================
|
| 38 |
+
|
| 39 |
MAX_SEED = np.iinfo(np.int32).max
|
| 40 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 41 |
|
| 42 |
+
# TRELLIS Render Modes
|
| 43 |
MODES = [
|
| 44 |
{"name": "Normal", "icon": "assets/app/normal.png", "render_key": "normal"},
|
| 45 |
{"name": "Clay render", "icon": "assets/app/clay.png", "render_key": "clay"},
|
|
|
|
| 52 |
DEFAULT_MODE = 3
|
| 53 |
DEFAULT_STEP = 3
|
| 54 |
|
| 55 |
+
# ==========================================
|
| 56 |
+
# CSS & JavaScript (For Custom Previewer)
|
| 57 |
+
# ==========================================
|
| 58 |
+
|
| 59 |
css = """
|
| 60 |
+
/* Overwrite Gradio Default Style */
|
| 61 |
.stepper-wrapper { padding: 0; }
|
| 62 |
.stepper-container { padding: 0; align-items: center; }
|
| 63 |
.step-button { flex-direction: row; }
|
|
|
|
| 66 |
.step-label { position: relative; bottom: 0; }
|
| 67 |
.wrap.center.full { inset: 0; height: 100%; }
|
| 68 |
.wrap.center.full.translucent { background: var(--block-background-fill); }
|
| 69 |
+
.meta-text-center { display: block !important; position: absolute !important; top: unset !important; bottom: 0 !important; right: 0 !important; transform: unset !important; }
|
| 70 |
+
|
| 71 |
+
/* Previewer */
|
| 72 |
+
.previewer-container {
|
| 73 |
+
position: relative; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
|
| 74 |
+
width: 100%; height: 722px; margin: 0 auto; padding: 20px;
|
| 75 |
+
display: flex; flex-direction: column; align-items: center; justify-content: center;
|
| 76 |
+
}
|
| 77 |
.previewer-container .tips-icon { position: absolute; right: 10px; top: 10px; z-index: 10; border-radius: 10px; color: #fff; background-color: var(--color-accent); padding: 3px 6px; user-select: none; }
|
| 78 |
.previewer-container .tips-text { position: absolute; right: 10px; top: 50px; color: #fff; background-color: var(--color-accent); border-radius: 10px; padding: 6px; text-align: left; max-width: 300px; z-index: 10; transition: all 0.3s; opacity: 0%; user-select: none; }
|
| 79 |
+
.previewer-container .tips-text p { font-size: 14px; line-height: 1.2; }
|
| 80 |
.tips-icon:hover + .tips-text { display: block; opacity: 100%; }
|
| 81 |
+
|
| 82 |
+
/* Row 1: Display Modes */
|
| 83 |
.previewer-container .mode-row { width: 100%; display: flex; gap: 8px; justify-content: center; margin-bottom: 20px; flex-wrap: wrap; }
|
| 84 |
.previewer-container .mode-btn { width: 24px; height: 24px; border-radius: 50%; cursor: pointer; opacity: 0.5; transition: all 0.2s; border: 2px solid #ddd; object-fit: cover; }
|
| 85 |
.previewer-container .mode-btn:hover { opacity: 0.9; transform: scale(1.1); }
|
| 86 |
.previewer-container .mode-btn.active { opacity: 1; border-color: var(--color-accent); transform: scale(1.1); }
|
| 87 |
+
|
| 88 |
+
/* Row 2: Display Image */
|
| 89 |
.previewer-container .display-row { margin-bottom: 20px; min-height: 400px; width: 100%; flex-grow: 1; display: flex; justify-content: center; align-items: center; }
|
| 90 |
.previewer-container .previewer-main-image { max-width: 100%; max-height: 100%; flex-grow: 1; object-fit: contain; display: none; }
|
| 91 |
.previewer-container .previewer-main-image.visible { display: block; }
|
| 92 |
+
|
| 93 |
+
/* Row 3: Custom HTML Slider */
|
| 94 |
.previewer-container .slider-row { width: 100%; display: flex; flex-direction: column; align-items: center; gap: 10px; padding: 0 10px; }
|
| 95 |
.previewer-container input[type=range] { -webkit-appearance: none; width: 100%; max-width: 400px; background: transparent; }
|
| 96 |
.previewer-container input[type=range]::-webkit-slider-runnable-track { width: 100%; height: 8px; cursor: pointer; background: #ddd; border-radius: 5px; }
|
| 97 |
.previewer-container input[type=range]::-webkit-slider-thumb { height: 20px; width: 20px; border-radius: 50%; background: var(--color-accent); cursor: pointer; -webkit-appearance: none; margin-top: -6px; box-shadow: 0 2px 5px rgba(0,0,0,0.2); transition: transform 0.1s; }
|
| 98 |
.previewer-container input[type=range]::-webkit-slider-thumb:hover { transform: scale(1.2); }
|
| 99 |
+
|
| 100 |
+
/* Overwrite Previewer Block Style */
|
| 101 |
.gradio-container .padded:has(.previewer-container) { padding: 0 !important; }
|
| 102 |
.gradio-container:has(.previewer-container) [data-testid="block-label"] { position: absolute; top: 0; left: 0; }
|
| 103 |
"""
|
|
|
|
| 120 |
const targetId = 'view-m' + mode + '-s' + step;
|
| 121 |
const targetImg = document.getElementById(targetId);
|
| 122 |
if (targetImg) targetImg.classList.add('visible');
|
| 123 |
+
|
| 124 |
const allBtns = document.querySelectorAll('.mode-btn');
|
| 125 |
allBtns.forEach((btn, idx) => {
|
| 126 |
if (idx === mode) btn.classList.add('active');
|
|
|
|
| 132 |
</script>
|
| 133 |
"""
|
| 134 |
|
| 135 |
+
empty_html = f"""
|
| 136 |
<div class="previewer-container">
|
| 137 |
+
<svg style="opacity: .5; height: var(--size-5); color: var(--body-text-color);"
|
| 138 |
+
xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather feather-image"><rect x="3" y="3" width="18" height="18" rx="2" ry="2"></rect><circle cx="8.5" cy="8.5" r="1.5"></circle><polyline points="21 15 16 10 5 21"></polyline></svg>
|
|
|
|
| 139 |
</div>
|
| 140 |
"""
|
| 141 |
|
| 142 |
+
# ==========================================
|
| 143 |
+
# Model Loading
|
| 144 |
+
# ==========================================
|
| 145 |
+
|
| 146 |
+
print("Initializing models...")
|
| 147 |
|
| 148 |
+
# 1. Z-Image-Turbo (Text to Image)
|
| 149 |
print("Loading Z-Image-Turbo...")
|
| 150 |
+
try:
|
| 151 |
+
z_pipe = ZImagePipeline.from_pretrained(
|
| 152 |
+
"Tongyi-MAI/Z-Image-Turbo",
|
| 153 |
+
torch_dtype=torch.bfloat16,
|
| 154 |
+
low_cpu_mem_usage=False,
|
| 155 |
+
)
|
| 156 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 157 |
+
z_pipe.to(device)
|
| 158 |
+
print("Z-Image-Turbo loaded.")
|
| 159 |
+
except Exception as e:
|
| 160 |
+
print(f"Failed to load Z-Image-Turbo: {e}")
|
| 161 |
+
z_pipe = None
|
| 162 |
+
|
| 163 |
+
# 2. TRELLIS.2 (Image to 3D)
|
| 164 |
+
print("Loading TRELLIS.2...")
|
| 165 |
+
# Initialize on startup
|
| 166 |
trellis_pipeline = Trellis2ImageTo3DPipeline.from_pretrained('microsoft/TRELLIS.2-4B')
|
| 167 |
+
trellis_pipeline.rembg_model = None
|
| 168 |
trellis_pipeline.low_vram = False
|
| 169 |
+
trellis_pipeline.cuda()
|
|
|
|
| 170 |
|
| 171 |
+
# 3. Background Remover
|
| 172 |
rmbg_client = Client("briaai/BRIA-RMBG-2.0")
|
| 173 |
|
| 174 |
+
# 4. HDRI Maps for TRELLIS
|
| 175 |
+
envmap = {}
|
| 176 |
+
# Try to load assets, handle gracefully if running in a basic environment
|
| 177 |
+
try:
|
| 178 |
+
envmap = {
|
| 179 |
+
'forest': EnvMap(torch.tensor(cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda')),
|
| 180 |
+
'sunset': EnvMap(torch.tensor(cv2.cvtColor(cv2.imread('assets/hdri/sunset.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda')),
|
| 181 |
+
'courtyard': EnvMap(torch.tensor(cv2.cvtColor(cv2.imread('assets/hdri/courtyard.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda')),
|
| 182 |
+
}
|
| 183 |
+
except Exception as e:
|
| 184 |
+
print(f"Warning: Could not load HDRI assets. {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
+
# ==========================================
|
| 187 |
+
# Helper Functions
|
| 188 |
+
# ==========================================
|
| 189 |
|
| 190 |
def image_to_base64(image):
|
| 191 |
buffered = io.BytesIO()
|
|
|
|
| 203 |
if os.path.exists(user_dir):
|
| 204 |
shutil.rmtree(user_dir)
|
| 205 |
|
| 206 |
+
def remove_background(input: Image.Image) -> Image.Image:
|
| 207 |
+
with tempfile.NamedTemporaryFile(suffix='.png') as f:
|
| 208 |
+
input = input.convert('RGB')
|
| 209 |
+
input.save(f.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
output = rmbg_client.predict(handle_file(f.name), api_name="/image")[0][0]
|
| 211 |
+
output = Image.open(output)
|
| 212 |
+
return output
|
| 213 |
|
| 214 |
+
def preprocess_image(input: Image.Image) -> Image.Image:
|
| 215 |
+
"""Preprocess the input image: remove bg, crop, resize."""
|
|
|
|
| 216 |
has_alpha = False
|
| 217 |
+
if input.mode == 'RGBA':
|
| 218 |
+
alpha = np.array(input)[:, :, 3]
|
| 219 |
if not np.all(alpha == 255):
|
| 220 |
has_alpha = True
|
| 221 |
+
max_size = max(input.size)
|
|
|
|
|
|
|
| 222 |
scale = min(1, 1024 / max_size)
|
| 223 |
if scale < 1:
|
| 224 |
+
input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
|
|
|
|
| 225 |
if has_alpha:
|
| 226 |
+
output = input
|
| 227 |
else:
|
| 228 |
+
output = remove_background(input)
|
| 229 |
+
|
|
|
|
| 230 |
output_np = np.array(output)
|
| 231 |
alpha = output_np[:, :, 3]
|
| 232 |
bbox = np.argwhere(alpha > 0.8 * 255)
|
| 233 |
+
if bbox.size == 0:
|
| 234 |
+
return output # Return original if empty
|
| 235 |
bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
|
| 236 |
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
|
| 237 |
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
|
| 238 |
+
size = int(size * 1)
|
| 239 |
bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2
|
| 240 |
output = output.crop(bbox)
|
|
|
|
|
|
|
| 241 |
output = np.array(output).astype(np.float32) / 255
|
| 242 |
output = output[:, :, :3] * output[:, :, 3:4]
|
| 243 |
output = Image.fromarray((output * 255).astype(np.uint8))
|
| 244 |
return output
|
| 245 |
|
| 246 |
+
def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict:
|
| 247 |
+
shape_slat, tex_slat, res = latents
|
| 248 |
+
return {
|
| 249 |
+
'shape_slat_feats': shape_slat.feats.cpu().numpy(),
|
| 250 |
+
'tex_slat_feats': tex_slat.feats.cpu().numpy(),
|
| 251 |
+
'coords': shape_slat.coords.cpu().numpy(),
|
| 252 |
+
'res': res,
|
| 253 |
+
}
|
| 254 |
+
|
| 255 |
+
def unpack_state(state: dict) -> Tuple[SparseTensor, SparseTensor, int]:
|
| 256 |
+
shape_slat = SparseTensor(
|
| 257 |
+
feats=torch.from_numpy(state['shape_slat_feats']).cuda(),
|
| 258 |
+
coords=torch.from_numpy(state['coords']).cuda(),
|
| 259 |
+
)
|
| 260 |
+
tex_slat = shape_slat.replace(torch.from_numpy(state['tex_slat_feats']).cuda())
|
| 261 |
+
return shape_slat, tex_slat, state['res']
|
| 262 |
+
|
| 263 |
+
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 264 |
+
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 265 |
+
|
| 266 |
+
# ==========================================
|
| 267 |
+
# Inference Logic
|
| 268 |
+
# ==========================================
|
| 269 |
|
| 270 |
@spaces.GPU()
|
| 271 |
+
def generate_txt2img(prompt, progress=gr.Progress(track_tqdm=True)):
|
| 272 |
+
"""Generate Image using Z-Image Turbo"""
|
| 273 |
+
if z_pipe is None:
|
| 274 |
+
raise gr.Error("Z-Image-Turbo model failed to load.")
|
| 275 |
if not prompt.strip():
|
| 276 |
raise gr.Error("Please enter a prompt.")
|
| 277 |
|
| 278 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 279 |
+
generator = torch.Generator(device).manual_seed(42) # Or random
|
| 280 |
|
| 281 |
+
progress(0.1, desc="Generating Text-to-Image...")
|
| 282 |
try:
|
| 283 |
result = z_pipe(
|
| 284 |
prompt=prompt,
|
| 285 |
+
negative_prompt=None,
|
| 286 |
height=1024,
|
| 287 |
width=1024,
|
| 288 |
+
num_inference_steps=9,
|
| 289 |
guidance_scale=0.0,
|
| 290 |
generator=generator,
|
| 291 |
)
|
|
|
|
| 293 |
except Exception as e:
|
| 294 |
raise gr.Error(f"Z-Image Generation failed: {str(e)}")
|
| 295 |
|
| 296 |
+
@spaces.GPU(duration=120)
|
| 297 |
+
def image_to_3d(
|
| 298 |
image: Image.Image,
|
| 299 |
seed: int,
|
| 300 |
resolution: str,
|
| 301 |
+
ss_guidance_strength: float,
|
| 302 |
+
ss_guidance_rescale: float,
|
| 303 |
+
ss_sampling_steps: int,
|
| 304 |
+
ss_rescale_t: float,
|
| 305 |
+
shape_slat_guidance_strength: float,
|
| 306 |
+
shape_slat_guidance_rescale: float,
|
| 307 |
+
shape_slat_sampling_steps: int,
|
| 308 |
+
shape_slat_rescale_t: float,
|
| 309 |
+
tex_slat_guidance_strength: float,
|
| 310 |
+
tex_slat_guidance_rescale: float,
|
| 311 |
+
tex_slat_sampling_steps: int,
|
| 312 |
+
tex_slat_rescale_t: float,
|
| 313 |
+
req: gr.Request,
|
| 314 |
+
progress=gr.Progress(track_tqdm=True),
|
| 315 |
+
) -> str:
|
| 316 |
|
| 317 |
+
if image is None:
|
| 318 |
+
raise gr.Error("Input image is missing.")
|
|
|
|
|
|
|
| 319 |
|
| 320 |
+
# --- Sampling ---
|
| 321 |
outputs, latents = trellis_pipeline.run(
|
| 322 |
+
image,
|
| 323 |
seed=seed,
|
| 324 |
+
preprocess_image=False, # We pre-process in the upload handler or assume clean input
|
| 325 |
sparse_structure_sampler_params={
|
| 326 |
+
"steps": ss_sampling_steps,
|
| 327 |
+
"guidance_strength": ss_guidance_strength,
|
| 328 |
+
"guidance_rescale": ss_guidance_rescale,
|
| 329 |
+
"rescale_t": ss_rescale_t,
|
| 330 |
},
|
| 331 |
shape_slat_sampler_params={
|
| 332 |
+
"steps": shape_slat_sampling_steps,
|
| 333 |
+
"guidance_strength": shape_slat_guidance_strength,
|
| 334 |
+
"guidance_rescale": shape_slat_guidance_rescale,
|
| 335 |
+
"rescale_t": shape_slat_rescale_t,
|
| 336 |
},
|
| 337 |
tex_slat_sampler_params={
|
| 338 |
+
"steps": tex_slat_sampling_steps,
|
| 339 |
+
"guidance_strength": tex_slat_guidance_strength,
|
| 340 |
+
"guidance_rescale": tex_slat_guidance_rescale,
|
| 341 |
+
"rescale_t": tex_slat_rescale_t,
|
| 342 |
},
|
| 343 |
+
pipeline_type={"512": "512", "1024": "1024_cascade", "1536": "1536_cascade"}[resolution],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
return_latent=True,
|
| 345 |
)
|
|
|
|
|
|
|
| 346 |
mesh = outputs[0]
|
| 347 |
+
mesh.simplify(16777216)
|
| 348 |
|
| 349 |
+
# Render Preview
|
| 350 |
images = render_utils.render_snapshot(mesh, resolution=1024, r=2, fov=36, nviews=STEPS, envmap=envmap)
|
| 351 |
state = pack_state(latents)
|
| 352 |
torch.cuda.empty_cache()
|
| 353 |
+
|
| 354 |
+
# --- HTML Construction ---
|
| 355 |
images_html = ""
|
| 356 |
for m_idx, mode in enumerate(MODES):
|
| 357 |
for s_idx in range(STEPS):
|
|
|
|
| 359 |
is_visible = (m_idx == DEFAULT_MODE and s_idx == DEFAULT_STEP)
|
| 360 |
vis_class = "visible" if is_visible else ""
|
| 361 |
img_base64 = image_to_base64(Image.fromarray(images[mode['render_key']][s_idx]))
|
| 362 |
+
images_html += f"""<img id="{unique_id}" class="previewer-main-image {vis_class}" src="{img_base64}" loading="eager">"""
|
| 363 |
+
|
| 364 |
btns_html = ""
|
| 365 |
for idx, mode in enumerate(MODES):
|
| 366 |
active_class = "active" if idx == DEFAULT_MODE else ""
|
| 367 |
+
btns_html += f"""<img src="{mode['icon_base64']}" class="mode-btn {active_class}" onclick="selectMode({idx})" title="{mode['name']}">"""
|
| 368 |
+
|
| 369 |
full_html = f"""
|
| 370 |
<div class="previewer-container">
|
| 371 |
<div class="tips-wrapper">
|
| 372 |
<div class="tips-icon">💡Tips</div>
|
| 373 |
+
<div class="tips-text"><p>● <b>Render Mode</b> - Click buttons to switch modes.</p><p>● <b>View Angle</b> - Drag slider to rotate.</p></div>
|
| 374 |
</div>
|
| 375 |
<div class="display-row">{images_html}</div>
|
| 376 |
<div class="mode-row" id="btn-group">{btns_html}</div>
|
|
|
|
| 379 |
</div>
|
| 380 |
</div>
|
| 381 |
"""
|
| 382 |
+
return state, full_html
|
|
|
|
| 383 |
|
| 384 |
@spaces.GPU(duration=120)
|
| 385 |
+
def extract_glb(
|
| 386 |
+
state: dict,
|
| 387 |
+
decimation_target: int,
|
| 388 |
+
texture_size: int,
|
| 389 |
+
req: gr.Request,
|
| 390 |
+
progress=gr.Progress(track_tqdm=True),
|
| 391 |
+
) -> Tuple[str, str]:
|
| 392 |
+
if state is None:
|
| 393 |
+
raise gr.Error("No 3D model generated yet.")
|
| 394 |
+
|
| 395 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 396 |
shape_slat, tex_slat, res = unpack_state(state)
|
|
|
|
| 397 |
mesh = trellis_pipeline.decode_latent(shape_slat, tex_slat, res)[0]
|
| 398 |
mesh.simplify(16777216)
|
| 399 |
|
|
|
|
| 412 |
remesh_project=0,
|
| 413 |
use_tqdm=True,
|
| 414 |
)
|
|
|
|
| 415 |
now = datetime.now()
|
| 416 |
timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}"
|
| 417 |
os.makedirs(user_dir, exist_ok=True)
|
| 418 |
glb_path = os.path.join(user_dir, f'sample_{timestamp}.glb')
|
| 419 |
glb.export(glb_path, extension_webp=True)
|
| 420 |
torch.cuda.empty_cache()
|
|
|
|
| 421 |
return glb_path, glb_path
|
| 422 |
|
| 423 |
+
# ==========================================
|
| 424 |
+
# Gradio UI Blocks
|
| 425 |
+
# ==========================================
|
| 426 |
|
| 427 |
+
if __name__ == "__main__":
|
| 428 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
|
| 430 |
+
# Pre-process icon base64
|
| 431 |
+
for i in range(len(MODES)):
|
| 432 |
+
if os.path.exists(MODES[i]['icon']):
|
| 433 |
+
icon = Image.open(MODES[i]['icon'])
|
| 434 |
+
MODES[i]['icon_base64'] = image_to_base64(icon)
|
| 435 |
+
else:
|
| 436 |
+
MODES[i]['icon_base64'] = "" # Fallback
|
| 437 |
+
|
| 438 |
+
with gr.Blocks(css=css, head=head, delete_cache=(600, 600)) as demo:
|
| 439 |
+
gr.Markdown("""
|
| 440 |
+
# TRELLIS.2-3D
|
| 441 |
+
**Unified Text-to-3D Workflow**
|
| 442 |
+
|
| 443 |
+
1. **Text to Image**: Generate a base image using Z-Image-Turbo.
|
| 444 |
+
2. **Image to 3D**: Convert that image into a high-quality 3D asset using TRELLIS.2.
|
| 445 |
+
""")
|
| 446 |
+
|
| 447 |
+
with gr.Row():
|
| 448 |
+
# --- Column 1: Inputs & Config ---
|
| 449 |
+
with gr.Column(scale=1, min_width=360):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
|
| 451 |
+
# --- Step 1: Text to Image ---
|
| 452 |
+
with gr.Group():
|
| 453 |
+
gr.Markdown("### Step 1: Generate Image")
|
| 454 |
+
txt_prompt = gr.Textbox(label="Prompt", placeholder="A sci-fi helmet, high quality, white background")
|
| 455 |
+
btn_gen_img = gr.Button("Generate Image", variant="secondary")
|
|
|
|
| 456 |
|
| 457 |
+
# --- Step 2: Image to 3D Input ---
|
| 458 |
+
gr.Markdown("### Step 2: Configure & Convert")
|
| 459 |
+
image_prompt = gr.Image(label="Input Image (Generated or Uploaded)", format="png", image_mode="RGBA", type="pil", height=300)
|
|
|
|
|
|
|
| 460 |
|
| 461 |
+
with gr.Accordion("3D Generation Settings", open=True):
|
| 462 |
+
resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="1024")
|
| 463 |
+
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 464 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 465 |
+
decimation_target = gr.Slider(100000, 500000, label="Decimation Target (For GLB)", value=300000, step=10000)
|
| 466 |
+
texture_size = gr.Slider(1024, 4096, label="Texture Size (For GLB)", value=2048, step=1024)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
|
| 468 |
+
btn_gen_3d = gr.Button("Generate 3D", variant="primary")
|
| 469 |
+
|
| 470 |
+
with gr.Accordion(label="Advanced Sampling Settings", open=False):
|
| 471 |
+
gr.Markdown("**Stage 1: Sparse Structure**")
|
| 472 |
+
ss_guidance_strength = gr.Slider(1.0, 10.0, value=7.5, label="Guidance")
|
| 473 |
+
ss_guidance_rescale = gr.Slider(0.0, 1.0, value=0.7, label="Rescale")
|
| 474 |
+
ss_sampling_steps = gr.Slider(1, 50, value=12, label="Steps")
|
| 475 |
+
ss_rescale_t = gr.Slider(1.0, 6.0, value=5.0, label="Rescale T")
|
| 476 |
+
|
| 477 |
+
gr.Markdown("**Stage 2: Shape**")
|
| 478 |
+
shape_guidance = gr.Slider(1.0, 10.0, value=7.5, label="Guidance")
|
| 479 |
+
shape_rescale = gr.Slider(0.0, 1.0, value=0.5, label="Rescale")
|
| 480 |
+
shape_steps = gr.Slider(1, 50, value=12, label="Steps")
|
| 481 |
+
shape_rescale_t = gr.Slider(1.0, 6.0, value=3.0, label="Rescale T")
|
| 482 |
+
|
| 483 |
+
gr.Markdown("**Stage 3: Material**")
|
| 484 |
+
tex_guidance = gr.Slider(1.0, 10.0, value=1.0, label="Guidance")
|
| 485 |
+
tex_rescale = gr.Slider(0.0, 1.0, value=0.0, label="Rescale")
|
| 486 |
+
tex_steps = gr.Slider(1, 50, value=12, label="Steps")
|
| 487 |
+
tex_rescale_t = gr.Slider(1.0, 6.0, value=3.0, label="Rescale T")
|
| 488 |
+
|
| 489 |
+
# --- Column 2: Outputs ---
|
| 490 |
+
with gr.Column(scale=10):
|
| 491 |
+
with gr.Walkthrough(selected=0) as walkthrough:
|
| 492 |
+
with gr.Step("Preview", id=0):
|
| 493 |
+
preview_output = gr.HTML(empty_html, label="3D Asset Preview", show_label=True, container=True)
|
| 494 |
+
extract_btn = gr.Button("Extract GLB")
|
| 495 |
+
with gr.Step("Extract", id=1):
|
| 496 |
+
glb_output = gr.Model3D(label="Extracted GLB", height=724, show_label=True, display_mode="solid", clear_color=(0.25, 0.25, 0.25, 1.0))
|
| 497 |
+
download_btn = gr.DownloadButton(label="Download GLB")
|
| 498 |
+
|
| 499 |
+
gr.Markdown("Note: GLB extraction might take ~30s.")
|
| 500 |
|
| 501 |
+
# ==========================================
|
| 502 |
+
# Wiring Events
|
| 503 |
+
# ==========================================
|
| 504 |
+
|
| 505 |
+
# State to hold the latent 3D representation
|
| 506 |
+
output_buf = gr.State()
|
| 507 |
+
|
| 508 |
+
demo.load(start_session)
|
| 509 |
+
demo.unload(end_session)
|
| 510 |
+
|
| 511 |
+
# 1. Text to Image Event
|
| 512 |
+
btn_gen_img.click(
|
| 513 |
+
generate_txt2img,
|
| 514 |
+
inputs=[txt_prompt],
|
| 515 |
+
outputs=[image_prompt]
|
| 516 |
+
).then(
|
| 517 |
+
preprocess_image, # Auto preprocess the generated image (rmbg)
|
| 518 |
+
inputs=[image_prompt],
|
| 519 |
+
outputs=[image_prompt]
|
| 520 |
+
)
|
| 521 |
|
| 522 |
+
# 2. Upload Image Event (Preprocess)
|
| 523 |
+
image_prompt.upload(
|
| 524 |
+
preprocess_image,
|
| 525 |
+
inputs=[image_prompt],
|
| 526 |
+
outputs=[image_prompt],
|
| 527 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
|
| 529 |
+
# 3. Image to 3D Event
|
| 530 |
+
btn_gen_3d.click(
|
| 531 |
+
get_seed,
|
| 532 |
+
inputs=[randomize_seed, seed],
|
| 533 |
+
outputs=[seed],
|
| 534 |
+
).then(
|
| 535 |
+
lambda: gr.Walkthrough(selected=0), outputs=walkthrough
|
| 536 |
+
).then(
|
| 537 |
+
image_to_3d,
|
| 538 |
+
inputs=[
|
| 539 |
+
image_prompt, seed, resolution,
|
| 540 |
+
ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t,
|
| 541 |
+
shape_guidance, shape_rescale, shape_steps, shape_rescale_t,
|
| 542 |
+
tex_guidance, tex_rescale, tex_steps, tex_rescale_t,
|
| 543 |
+
],
|
| 544 |
+
outputs=[output_buf, preview_output],
|
| 545 |
+
)
|
| 546 |
|
| 547 |
+
# 4. Extraction Event
|
| 548 |
+
extract_btn.click(
|
| 549 |
+
lambda: gr.Walkthrough(selected=1), outputs=walkthrough
|
| 550 |
+
).then(
|
| 551 |
+
extract_glb,
|
| 552 |
+
inputs=[output_buf, decimation_target, texture_size],
|
| 553 |
+
outputs=[glb_output, download_btn],
|
| 554 |
+
)
|
| 555 |
+
|
| 556 |
+
demo.launch()
|