Dataset Viewer
Auto-converted to Parquet Duplicate
repo_name
stringclasses
400 values
branch_name
stringclasses
4 values
file_content
stringlengths
16
72.5k
language
stringclasses
1 value
num_lines
int64
1
1.66k
avg_line_length
float64
6
85
max_line_length
int64
9
949
path
stringlengths
5
103
alphanum_fraction
float64
0.29
0.89
alpha_fraction
float64
0.27
0.89
shuishen112/pairwise-rnn
refs/heads/master
import data_helper import time import datetime import os import tensorflow as tf import numpy as np import evaluation now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) timeDay = time.strftime("%Y%m%d", timeArray) print (timeStamp) def main(args): args._parse_flags() print("\nParameters:") for attr, value in sorted(args.__flags.items()): print(("{}={}".format(attr.upper(), value))) log_dir = 'log/'+ timeDay if not os.path.exists(log_dir): os.makedirs(log_dir) data_file = log_dir + '/test_' + args.data + timeStamp precision = data_file + 'precise' print('load data ...........') train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev]) print('the number of words',len(alphabet)) print('get embedding') if args.data=="quora": embedding = data_helper.get_embedding(alphabet,language="cn") else: embedding = data_helper.get_embedding(alphabet) with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model = QA_CNN_extend(max_input_left = q_max_sent_length, max_input_right = a_max_sent_length, batch_size = args.batch_size, vocab_size = len(alphabet), embedding_size = args.embedding_dim, filter_sizes = list(map(int, args.filter_sizes.split(","))), num_filters = args.num_filters, hidden_size = args.hidden_size, dropout_keep_prob = args.dropout_keep_prob, embeddings = embedding, l2_reg_lambda = args.l2_reg_lambda, trainable = args.trainable, pooling = args.pooling, conv = args.conv) model.build_graph() sess.run(tf.global_variables_initializer()) def train_step(model,sess,batch): for data in batch: feed_dict = { model.question:data[0], model.answer:data[1], model.answer_negative:data[2], model.q_mask:data[3], model.a_mask:data[4], model.a_neg_mask:data[5] } _, summary, step, loss, accuracy,score12, score13, see = sess.run( [model.train_op, model.merged,model.global_step,model.loss, model.accuracy,model.score12,model.score13, model.see], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) def predict(model,sess,batch,test): scores = [] for data in batch: feed_dict = { model.question:data[0], model.answer:data[1], model.q_mask:data[2], model.a_mask:data[3] } score = sess.run( model.score12, feed_dict) scores.extend(score) return np.array(scores[:len(test)]) for i in range(args.num_epoches): datas = data_helper.get_mini_batch(train,alphabet,args.batch_size) train_step(model,sess,datas) test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) predicted_test = predict(model,sess,test_datas,test) print(len(predicted_test)) print(len(test)) map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) print('map_mrr test',map_mrr_test)
Python
116
36.043102
159
/main.py
0.553088
0.546842
shuishen112/pairwise-rnn
refs/heads/master
class Singleton(object): __instance=None def __init__(self): pass def getInstance(self): if Singleton.__instance is None: # Singleton.__instance=object.__new__(cls,*args,**kwd) Singleton.__instance=self.get_test_flag() print("build FLAGS over") return Singleton.__instance def get_test_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 1, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 5e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "cnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_rnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 1, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 0.001, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "rnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") # flags.DEFINE_string('data','8008','data set') flags.DEFINE_string('data','trec','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',False,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_cnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 5e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "cnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_qcnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 0.001, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "qcnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','mean','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_8008_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",200, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 1e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "rnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 250, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','8008','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',False,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS if __name__=="__main__": args=Singleton().get_test_flag() for attr, value in sorted(args.__flags.items()): print(("{}={}".format(attr.upper(), value)))
Python
197
60.426395
121
/config.py
0.627396
0.597571
shuishen112/pairwise-rnn
refs/heads/master
from tensorflow import flags import tensorflow as tf from config import Singleton import data_helper import datetime,os import models import numpy as np import evaluation import sys import logging import time now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) log_filename = "log/" +time.strftime("%Y%m%d", timeArray) program = os.path.basename('program') logger = logging.getLogger(program) if not os.path.exists(log_filename): os.makedirs(log_filename) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s',datefmt='%a, %d %b %Y %H:%M:%S',filename=log_filename+'/qa.log',filemode='w') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) from data_helper import log_time_delta,getLogger logger=getLogger() args = Singleton().get_qcnn_flag() args._parse_flags() opts=dict() logger.info("\nParameters:") for attr, value in sorted(args.__flags.items()): logger.info(("{}={}".format(attr.upper(), value))) opts[attr]=value train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev],dataset=args.data ) logger.info('the number of words :%d '%len(alphabet)) if args.data=="quora" or args.data=="8008" : print("cn embedding") embedding = data_helper.get_embedding(alphabet,dim=200,language="cn",dataset=args.data ) train_data_loader = data_helper.getBatch48008 else: embedding = data_helper.get_embedding(alphabet,dim=300,dataset=args.data ) train_data_loader = data_helper.get_mini_batch opts["embeddings"] =embedding opts["vocab_size"]=len(alphabet) opts["max_input_right"]=a_max_sent_length opts["max_input_left"]=q_max_sent_length opts["filter_sizes"]=list(map(int, args.filter_sizes.split(","))) print("innitilize over") #with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): with tf.Graph().as_default(): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model=models.setup(opts) model.build_graph() saver = tf.train.Saver() # ckpt = tf.train.get_checkpoint_state("checkpoint") # if ckpt and ckpt.model_checkpoint_path: # # Restores from checkpoint # saver.restore(sess, ckpt.model_checkpoint_path) # if os.path.exists("model") : # import shutil # shutil.rmtree("model") # builder = tf.saved_model.builder.SavedModelBuilder("./model") # builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) # builder.save(True) # variable_averages = tf.train.ExponentialMovingAverage( model) # variables_to_restore = variable_averages.variables_to_restore() # saver = tf.train.Saver(variables_to_restore) # for name in variables_to_restore: # print(name) sess.run(tf.global_variables_initializer()) @log_time_delta def predict(model,sess,batch,test): scores = [] for data in batch: score = model.predict(sess,data) scores.extend(score) return np.array(scores[:len(test)]) best_p1=0 for i in range(args.num_epoches): for data in train_data_loader(train,alphabet,args.batch_size,model=model,sess=sess): # for data in data_helper.getBatch48008(train,alphabet,args.batch_size): _, summary, step, loss, accuracy,score12, score13, see = model.train(sess,data) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) logger.info("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) #<<<<<<< HEAD # # # if i>0 and i % 5 ==0: # test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) # # predicted_test = predict(model,sess,test_datas,test) # map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) # # logger.info('map_mrr test' +str(map_mrr_test)) # print('map_mrr test' +str(map_mrr_test)) # # test_datas = data_helper.get_mini_batch_test(dev,alphabet,args.batch_size) # predicted_test = predict(model,sess,test_datas,dev) # map_mrr_test = evaluation.evaluationBypandas(dev,predicted_test) # # logger.info('map_mrr dev' +str(map_mrr_test)) # print('map_mrr dev' +str(map_mrr_test)) # map,mrr,p1 = map_mrr_test # if p1>best_p1: # best_p1=p1 # filename= "checkpoint/"+args.data+"_"+str(p1)+".model" # save_path = saver.save(sess, filename) # # load_path = saver.restore(sess, model_path) # # import shutil # shutil.rmtree("model") # builder = tf.saved_model.builder.SavedModelBuilder("./model") # builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) # builder.save(True) # # #======= test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) predicted_test = predict(model,sess,test_datas,test) map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) logger.info('map_mrr test' +str(map_mrr_test)) print('epoch '+ str(i) + 'map_mrr test' +str(map_mrr_test))
Python
164
35.829269
161
/run.py
0.628704
0.62142
shuishen112/pairwise-rnn
refs/heads/master
#coding:utf-8 import tensorflow as tf import numpy as np from tensorflow.contrib import rnn import models.blocks as blocks # model_type :apn or qacnn class QA_CNN_extend(object): # def __init__(self,max_input_left,max_input_right,batch_size,vocab_size,embedding_size,filter_sizes,num_filters,hidden_size, # dropout_keep_prob = 1,learning_rate = 0.001,embeddings = None,l2_reg_lambda = 0.0,trainable = True,pooling = 'attentive',conv = 'narrow'): # # """ # QA_RNN model for question answering # # Args: # self.dropout_keep_prob: dropout rate # self.num_filters : number of filters # self.para : parameter list # self.extend_feature_dim : my extend feature dimension # self.max_input_left : the length of question # self.max_input_right : the length of answer # self.pooling : pooling strategy :max pooling or attentive pooling # # """ # self.dropout_keep_prob = tf.placeholder(tf.float32,name = 'dropout_keep_prob') # self.num_filters = num_filters # self.embeddings = embeddings # self.embedding_size = embedding_size # self.batch_size = batch_size # self.filter_sizes = filter_sizes # self.l2_reg_lambda = l2_reg_lambda # self.para = [] # # self.max_input_left = max_input_left # self.max_input_right = max_input_right # self.trainable = trainable # self.vocab_size = vocab_size # self.pooling = pooling # self.total_num_filter = len(self.filter_sizes) * self.num_filters # # self.conv = conv # self.pooling = 'traditional' # self.learning_rate = learning_rate # # self.hidden_size = hidden_size # # self.attention_size = 100 def __init__(self,opt): for key,value in opt.items(): self.__setattr__(key,value) self.attention_size = 100 self.pooling = 'mean' self.total_num_filter = len(self.filter_sizes) * self.num_filters self.para = [] self.dropout_keep_prob_holder = tf.placeholder(tf.float32,name = 'dropout_keep_prob') def create_placeholder(self): print(('Create placeholders')) # he length of the sentence is varied according to the batch,so the None,None self.question = tf.placeholder(tf.int32,[None,None],name = 'input_question') self.max_input_left = tf.shape(self.question)[1] self.batch_size = tf.shape(self.question)[0] self.answer = tf.placeholder(tf.int32,[None,None],name = 'input_answer') self.max_input_right = tf.shape(self.answer)[1] self.answer_negative = tf.placeholder(tf.int32,[None,None],name = 'input_right') # self.q_mask = tf.placeholder(tf.int32,[None,None],name = 'q_mask') # self.a_mask = tf.placeholder(tf.int32,[None,None],name = 'a_mask') # self.a_neg_mask = tf.placeholder(tf.int32,[None,None],name = 'a_neg_mask') def add_embeddings(self): print( 'add embeddings') if self.embeddings is not None: print( "load embedding") W = tf.Variable(np.array(self.embeddings),name = "W" ,dtype="float32",trainable = self.trainable) else: print( "random embedding") W = tf.Variable(tf.random_uniform([self.vocab_size, self.embedding_size], -1.0, 1.0),name="W",trainable = self.trainable) self.embedding_W = W # self.overlap_W = tf.Variable(a,name="W",trainable = True) self.para.append(self.embedding_W) self.q_embedding = tf.nn.embedding_lookup(self.embedding_W,self.question) self.a_embedding = tf.nn.embedding_lookup(self.embedding_W,self.answer) self.a_neg_embedding = tf.nn.embedding_lookup(self.embedding_W,self.answer_negative) #real length self.q_len,self.q_mask = blocks.length(self.question) self.a_len,self.a_mask = blocks.length(self.answer) self.a_neg_len,self.a_neg_mask = blocks.length(self.answer_negative) def convolution(self): print( 'convolution:wide_convolution') self.kernels = [] for i,filter_size in enumerate(self.filter_sizes): with tf.name_scope('conv-max-pool-%s' % filter_size): filter_shape = [filter_size,self.embedding_size,1,self.num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev = 0.1), name="W") b = tf.Variable(tf.constant(0.0, shape=[self.num_filters]), name="b") self.kernels.append((W,b)) self.para.append(W) self.para.append(b) embeddings = [self.q_embedding,self.a_embedding,self.a_neg_embedding] self.q_cnn,self.a_cnn,self.a_neg_cnn = [self.wide_convolution(tf.expand_dims(embedding,-1)) for embedding in embeddings] #convolution def pooling_graph(self): if self.pooling == 'mean': self.q_pos_cnn = self.mean_pooling(self.q_cnn,self.q_mask) self.q_neg_cnn = self.mean_pooling(self.q_cnn,self.q_mask) self.a_pos_cnn = self.mean_pooling(self.a_cnn,self.a_mask) self.a_neg_cnn = self.mean_pooling(self.a_neg_cnn,self.a_neg_mask) elif self.pooling == 'attentive': self.q_pos_cnn,self.a_pos_cnn = self.attentive_pooling(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.attentive_pooling(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) elif self.pooling == 'position': self.q_pos_cnn,self.a_pos_cnn = self.position_attention(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.position_attention(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) elif self.pooling == 'traditional': print( self.pooling) print(self.q_cnn) self.q_pos_cnn,self.a_pos_cnn = self.traditional_attention(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.traditional_attention(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) def para_initial(self): # print(("---------")) # self.W_qp = tf.Variable(tf.truncated_normal(shape = [self.hidden_size * 2,1],stddev = 0.01,name = 'W_qp')) self.U = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'U')) self.W_hm = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'W_hm')) self.W_qm = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'W_qm')) self.W_ms = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,1],stddev = 0.01,name = 'W_ms')) self.M_qi = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.embedding_size],stddev = 0.01,name = 'M_qi')) def mean_pooling(self,conv,mask): conv = tf.squeeze(conv,2) print( tf.expand_dims(tf.cast(mask,tf.float32),-1)) # conv_mask = tf.multiply(conv,tf.expand_dims(tf.cast(mask,tf.float32),-1)) # self.see = conv_mask # print( conv_mask) return tf.reduce_mean(conv,axis = 1); def attentive_pooling(self,input_left,input_right,q_mask,a_mask): Q = tf.squeeze(input_left,axis = 2) A = tf.squeeze(input_right,axis = 2) print( Q) print( A) # Q = tf.reshape(input_left,[-1,self.max_input_left,len(self.filter_sizes) * self.num_filters],name = 'Q') # A = tf.reshape(input_right,[-1,self.max_input_right,len(self.filter_sizes) * self.num_filters],name = 'A') # G = tf.tanh(tf.matmul(tf.matmul(Q,self.U),\ # A,transpose_b = True),name = 'G') first = tf.matmul(tf.reshape(Q,[-1,len(self.filter_sizes) * self.num_filters]),self.U) second_step = tf.reshape(first,[-1,self.max_input_left,len(self.filter_sizes) * self.num_filters]) result = tf.matmul(second_step,tf.transpose(A,perm = [0,2,1])) print( second_step) print( tf.transpose(A,perm = [0,2,1])) # print( 'result',result) G = tf.tanh(result) # G = result # column-wise pooling ,row-wise pooling row_pooling = tf.reduce_max(G,1,True,name = 'row_pooling') col_pooling = tf.reduce_max(G,2,True,name = 'col_pooling') self.attention_q = tf.nn.softmax(col_pooling,1,name = 'attention_q') self.attention_q_mask = tf.multiply(self.attention_q,tf.expand_dims(tf.cast(q_mask,tf.float32),-1)) self.attention_a = tf.nn.softmax(row_pooling,name = 'attention_a') self.attention_a_mask = tf.multiply(self.attention_a,tf.expand_dims(tf.cast(a_mask,tf.float32),1)) self.see = G R_q = tf.reshape(tf.matmul(Q,self.attention_q_mask,transpose_a = 1),[-1,self.num_filters * len(self.filter_sizes)],name = 'R_q') R_a = tf.reshape(tf.matmul(self.attention_a_mask,A),[-1,self.num_filters * len(self.filter_sizes)],name = 'R_a') return R_q,R_a def traditional_attention(self,input_left,input_right,q_mask,a_mask): input_left = tf.squeeze(input_left,axis = 2) input_right = tf.squeeze(input_right,axis = 2) input_left_mask = tf.multiply(input_left, tf.expand_dims(tf.cast(q_mask,tf.float32),2)) Q = tf.reduce_mean(input_left_mask,1) a_shape = tf.shape(input_right) A = tf.reshape(input_right,[-1,self.total_num_filter]) m_t = tf.nn.tanh(tf.reshape(tf.matmul(A,self.W_hm),[-1,a_shape[1],self.total_num_filter]) + tf.expand_dims(tf.matmul(Q,self.W_qm),1)) f_attention = tf.exp(tf.reshape(tf.matmul(tf.reshape(m_t,[-1,self.total_num_filter]),self.W_ms),[-1,a_shape[1],1])) self.f_attention_mask = tf.multiply(f_attention,tf.expand_dims(tf.cast(a_mask,tf.float32),2)) self.f_attention_norm = tf.divide(self.f_attention_mask,tf.reduce_sum(self.f_attention_mask,1,keep_dims = True)) self.see = self.f_attention_norm a_attention = tf.reduce_sum(tf.multiply(input_right,self.f_attention_norm),1) return Q,a_attention def position_attention(self,input_left,input_right,q_mask,a_mask): input_left = tf.squeeze(input_left,axis = 2) input_right = tf.squeeze(input_right,axis = 2) # Q = tf.reshape(input_left,[-1,self.max_input_left,self.hidden_size*2],name = 'Q') # A = tf.reshape(input_right,[-1,self.max_input_right,self.hidden_size*2],name = 'A') Q = tf.reduce_mean(tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)),1) QU = tf.matmul(Q,self.U) QUA = tf.multiply(tf.expand_dims(QU,1),input_right) self.attention_a = tf.cast(tf.argmax(QUA,2) ,tf.float32) # q_shape = tf.shape(input_left) # Q_1 = tf.reshape(input_left,[-1,self.total_num_filter]) # QU = tf.matmul(Q_1,self.U) # QU_1 = tf.reshape(QU,[-1,q_shape[1],self.total_num_filter]) # A_1 = tf.transpose(input_right,[0,2,1]) # QUA = tf.matmul(QU_1,A_1) # QUA = tf.nn.l2_normalize(QUA,1) # G = tf.tanh(QUA) # Q = tf.reduce_mean(tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)),1) # # self.Q_mask = tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)) # row_pooling = tf.reduce_max(G,1,name="row_pooling") # col_pooling = tf.reduce_max(G,2,name="col_pooling") # self.attention_a = tf.nn.softmax(row_pooling,1,name = "attention_a") self.attention_a_mask = tf.multiply(self.attention_a,tf.cast(a_mask,tf.float32)) self.see = self.attention_a self.attention_a_norm = tf.divide(self.attention_a_mask,tf.reduce_sum(self.attention_a_mask,1,keep_dims =True)) self.r_a = tf.reshape(tf.matmul(tf.transpose(input_right,[0,2,1]) ,tf.expand_dims(self.attention_a_norm,2)),[-1,self.total_num_filter]) return Q ,self.r_a def create_loss(self): with tf.name_scope('score'): self.score12 = self.getCosine(self.q_pos_cnn,self.a_pos_cnn) self.score13 = self.getCosine(self.q_neg_cnn,self.a_neg_cnn) l2_loss = tf.constant(0.0) for p in self.para: l2_loss += tf.nn.l2_loss(p) with tf.name_scope("loss"): self.losses = tf.maximum(0.0, tf.subtract(0.05, tf.subtract(self.score12, self.score13))) self.loss = tf.reduce_sum(self.losses) + self.l2_reg_lambda * l2_loss tf.summary.scalar('loss', self.loss) # Accuracy with tf.name_scope("accuracy"): self.correct = tf.equal(0.0, self.losses) self.accuracy = tf.reduce_mean(tf.cast(self.correct, "float"), name="accuracy") tf.summary.scalar('accuracy', self.accuracy) def create_op(self): self.global_step = tf.Variable(0, name = "global_step", trainable = False) self.optimizer = tf.train.AdamOptimizer(self.learning_rate) self.grads_and_vars = self.optimizer.compute_gradients(self.loss) self.train_op = self.optimizer.apply_gradients(self.grads_and_vars, global_step = self.global_step) def max_pooling(self,conv,input_length): pooled = tf.nn.max_pool( conv, ksize = [1, input_length, 1, 1], strides = [1, 1, 1, 1], padding = 'VALID', name="pool") return pooled def getCosine(self,q,a): pooled_flat_1 = tf.nn.dropout(q, self.dropout_keep_prob_holder) pooled_flat_2 = tf.nn.dropout(a, self.dropout_keep_prob_holder) pooled_len_1 = tf.sqrt(tf.reduce_sum(tf.multiply(pooled_flat_1, pooled_flat_1), 1)) pooled_len_2 = tf.sqrt(tf.reduce_sum(tf.multiply(pooled_flat_2, pooled_flat_2), 1)) pooled_mul_12 = tf.reduce_sum(tf.multiply(pooled_flat_1, pooled_flat_2), 1) score = tf.div(pooled_mul_12, tf.multiply(pooled_len_1, pooled_len_2), name="scores") return score def wide_convolution(self,embedding): cnn_outputs = [] for i,filter_size in enumerate(self.filter_sizes): conv = tf.nn.conv2d( embedding, self.kernels[i][0], strides=[1, 1, self.embedding_size, 1], padding='SAME', name="conv-1" ) h = tf.nn.relu(tf.nn.bias_add(conv, self.kernels[i][1]), name="relu-1") cnn_outputs.append(h) cnn_reshaped = tf.concat(cnn_outputs,3) return cnn_reshaped def variable_summaries(self,var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) def build_graph(self): self.create_placeholder() self.add_embeddings() self.para_initial() self.convolution() self.pooling_graph() self.create_loss() self.create_op() self.merged = tf.summary.merge_all() def train(self,sess,data): feed_dict = { self.question:data[0], self.answer:data[1], self.answer_negative:data[2], # self.q_mask:data[3], # self.a_mask:data[4], # self.a_neg_mask:data[5], self.dropout_keep_prob_holder:self.dropout_keep_prob } _, summary, step, loss, accuracy,score12, score13, see = sess.run( [self.train_op, self.merged,self.global_step,self.loss, self.accuracy,self.score12,self.score13, self.see], feed_dict) return _, summary, step, loss, accuracy,score12, score13, see def predict(self,sess,data): feed_dict = { self.question:data[0], self.answer:data[1], # self.q_mask:data[2], # self.a_mask:data[3], self.dropout_keep_prob_holder:1.0 } score = sess.run( self.score12, feed_dict) return score if __name__ == '__main__': cnn = QA_CNN_extend( max_input_left = 33, max_input_right = 40, batch_size = 3, vocab_size = 5000, embedding_size = 100, filter_sizes = [3,4,5], num_filters = 64, hidden_size = 100, dropout_keep_prob = 1.0, embeddings = None, l2_reg_lambda = 0.0, trainable = True, pooling = 'max', conv = 'wide') cnn.build_graph() input_x_1 = np.reshape(np.arange(3 * 33),[3,33]) input_x_2 = np.reshape(np.arange(3 * 40),[3,40]) input_x_3 = np.reshape(np.arange(3 * 40),[3,40]) q_mask = np.ones((3,33)) a_mask = np.ones((3,40)) a_neg_mask = np.ones((3,40)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) feed_dict = { cnn.question:input_x_1, cnn.answer:input_x_2, # cnn.answer_negative:input_x_3, cnn.q_mask:q_mask, cnn.a_mask:a_mask, cnn.dropout_keep_prob_holder:cnn.dropout_keep # cnn.a_neg_mask:a_neg_mask # cnn.q_pos_overlap:q_pos_embedding, # cnn.q_neg_overlap:q_neg_embedding, # cnn.a_pos_overlap:a_pos_embedding, # cnn.a_neg_overlap:a_neg_embedding, # cnn.q_position:q_position, # cnn.a_pos_position:a_pos_position, # cnn.a_neg_position:a_neg_position } question,answer,score = sess.run([cnn.question,cnn.answer,cnn.score12],feed_dict) print( question.shape,answer.shape) print( score)
Python
381
46.682415
147
/models/QA_CNN_pairwise.py
0.592162
0.5751
shuishen112/pairwise-rnn
refs/heads/master
from my.general import flatten, reconstruct, add_wd, exp_mask import numpy as np import tensorflow as tf _BIAS_VARIABLE_NAME = "bias" _WEIGHTS_VARIABLE_NAME = "kernel" def linear(args, output_size, bias, bias_start=0.0, scope=None, squeeze=False, wd=0.0, input_keep_prob=1.0, is_train=None):#, name_w='', name_b='' # if args is None or (nest.is_sequence(args) and not args): # raise ValueError("`args` must be specified") # if not nest.is_sequence(args): # args = [args] flat_args = [flatten(arg, 1) for arg in args]#[210,20] # if input_keep_prob < 1.0: # assert is_train is not None flat_args = [tf.nn.dropout(arg, input_keep_prob) for arg in flat_args] total_arg_size = 0#[60] shapes = [a.get_shape() for a in flat_args] for shape in shapes: if shape.ndims != 2: raise ValueError("linear is expecting 2D arguments: %s" % shapes) if shape[1].value is None: raise ValueError("linear expects shape[1] to be provided for shape %s, " "but saw %s" % (shape, shape[1])) else: total_arg_size += shape[1].value # print(total_arg_size) # exit() dtype = [a.dtype for a in flat_args][0] # scope = tf.get_variable_scope() with tf.variable_scope(scope) as outer_scope: weights = tf.get_variable(_WEIGHTS_VARIABLE_NAME, [total_arg_size, output_size], dtype=dtype) if len(flat_args) == 1: res = tf.matmul(flat_args[0], weights) else: res = tf.matmul(tf.concat(flat_args, 1), weights) if not bias: flat_out = res else: with tf.variable_scope(outer_scope) as inner_scope: inner_scope.set_partitioner(None) biases = tf.get_variable( _BIAS_VARIABLE_NAME, [output_size], dtype=dtype, initializer=tf.constant_initializer(bias_start, dtype=dtype)) flat_out = tf.nn.bias_add(res, biases) out = reconstruct(flat_out, args[0], 1) if squeeze: out = tf.squeeze(out, [len(args[0].get_shape().as_list())-1]) if wd: add_wd(wd) return out def softmax(logits, mask=None, scope=None): with tf.name_scope(scope or "Softmax"): if mask is not None: logits = exp_mask(logits, mask) flat_logits = flatten(logits, 1) flat_out = tf.nn.softmax(flat_logits) out = reconstruct(flat_out, logits, 1) return out def softsel(target, logits, mask=None, scope=None): """ :param target: [ ..., J, d] dtype=float :param logits: [ ..., J], dtype=float :param mask: [ ..., J], dtype=bool :param scope: :return: [..., d], dtype=float """ with tf.name_scope(scope or "Softsel"): a = softmax(logits, mask = mask) target_rank = len(target.get_shape().as_list()) out = tf.reduce_sum(tf.expand_dims(a, -1) * target, target_rank - 2) return out def highway_layer(arg, bias, bias_start=0.0, scope=None, wd=0.0, input_keep_prob=1.0): with tf.variable_scope(scope or "highway_layer"): d = arg.get_shape()[-1] trans = linear([arg], d, bias, bias_start=bias_start, scope='trans', wd=wd, input_keep_prob=input_keep_prob) trans = tf.nn.relu(trans) gate = linear([arg], d, bias, bias_start=bias_start, scope='gate', wd=wd, input_keep_prob=input_keep_prob) gate = tf.nn.sigmoid(gate) out = gate * trans + (1 - gate) * arg return out def highway_network(arg, num_layers, bias, bias_start=0.0, scope=None, wd=0.0, input_keep_prob=1.0): with tf.variable_scope(scope or "highway_network"): prev = arg cur = None for layer_idx in range(num_layers): cur = highway_layer(prev, bias, bias_start=bias_start, scope="layer_{}".format(layer_idx), wd=wd, input_keep_prob=input_keep_prob) prev = cur return cur def conv1d(in_, filter_size, height, padding, keep_prob=1.0, scope=None): with tf.variable_scope(scope or "conv1d"): num_channels = in_.get_shape()[-1] filter_ = tf.get_variable("filter", shape=[1, height, num_channels, filter_size], dtype='float') bias = tf.get_variable("bias", shape=[filter_size], dtype='float') strides = [1, 1, 1, 1] in_ = tf.nn.dropout(in_, keep_prob) xxc = tf.nn.conv2d(in_, filter_, strides, padding) + bias # [N*M, JX, W/filter_stride, d] out = tf.reduce_max(tf.nn.relu(xxc), 2) # [-1, JX, d] return out def multi_conv1d(in_, filter_sizes, heights, padding, keep_prob=1.0, scope=None): with tf.variable_scope(scope or "multi_conv1d"): assert len(filter_sizes) == len(heights) outs = [] for filter_size, height in zip(filter_sizes, heights): if filter_size == 0: continue out = conv1d(in_, filter_size, height, padding, keep_prob=keep_prob, scope="conv1d_{}".format(height)) outs.append(out) concat_out = tf.concat(outs, axis=2) return concat_out if __name__ == '__main__': a = tf.Variable(np.random.random(size=(2,2,4))) b = tf.Variable(np.random.random(size=(2,3,4))) c = tf.tile(tf.expand_dims(a, 2), [1, 1, 3, 1]) test = flatten(c,1) out = reconstruct(test, c, 1) d = tf.tile(tf.expand_dims(b, 1), [1, 2, 1, 1]) e = linear([c,d,c*d],1,bias = False,scope = "test",) # f = softsel(d, e) with tf.Session() as sess: tf.global_variables_initializer().run() print(sess.run(test)) print(sess.run(tf.shape(out))) exit() print(sess.run(tf.shape(a))) print(sess.run(a)) print(sess.run(tf.shape(b))) print(sess.run(b)) print(sess.run(tf.shape(c))) print(sess.run(c)) print(sess.run(tf.shape(d))) print(sess.run(d)) print(sess.run(tf.shape(e))) print(sess.run(e))
Python
160
36.712502
116
/models/my/nn.py
0.572754
0.558005
shuishen112/pairwise-rnn
refs/heads/master
from .QA_CNN_pairwise import QA_CNN_extend as CNN from .QA_RNN_pairwise import QA_RNN_extend as RNN from .QA_CNN_quantum_pairwise import QA_CNN_extend as QCNN def setup(opt): if opt["model_name"]=="cnn": model=CNN(opt) elif opt["model_name"]=="rnn": model=RNN(opt) elif opt['model_name']=='qcnn': model=QCNN(opt) else: print("no model") exit(0) return model
Python
14
25.642857
58
/models/__init__.py
0.691689
0.689008
shuishen112/pairwise-rnn
refs/heads/master
# -*- coding: utf-8 -*- from tensorflow import flags import tensorflow as tf from config import Singleton import data_helper import datetime import os import models import numpy as np import evaluation from data_helper import log_time_delta,getLogger logger=getLogger() args = Singleton().get_rnn_flag() #args = Singleton().get_8008_flag() args._parse_flags() opts=dict() logger.info("\nParameters:") for attr, value in sorted(args.__flags.items()): logger.info(("{}={}".format(attr.upper(), value))) opts[attr]=value train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev],dataset=args.data ) logger.info('the number of words :%d '%len(alphabet)) if args.data=="quora" or args.data=="8008" : print("cn embedding") embedding = data_helper.get_embedding(alphabet,dim=200,language="cn",dataset=args.data ) train_data_loader = data_helper.getBatch48008 else: embedding = data_helper.get_embedding(alphabet,dim=300,dataset=args.data ) train_data_loader = data_helper.get_mini_batch opts["embeddings"] =embedding opts["vocab_size"]=len(alphabet) opts["max_input_right"]=a_max_sent_length opts["max_input_left"]=q_max_sent_length opts["filter_sizes"]=list(map(int, args.filter_sizes.split(","))) print("innitilize over") #with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): with tf.Graph().as_default(): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model=models.setup(opts) model.build_graph() saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) # fun first than print or save ckpt = tf.train.get_checkpoint_state("checkpoint") if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) print(sess.run(model.position_embedding)[0]) if os.path.exists("model") : import shutil shutil.rmtree("model") builder = tf.saved_model.builder.SavedModelBuilder("./model") builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) builder.save(True) variable_averages = tf.train.ExponentialMovingAverage( model) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) for name in variables_to_restore: print(name) @log_time_delta def predict(model,sess,batch,test): scores = [] for data in batch: score = model.predict(sess,data) scores.extend(score) return np.array(scores[:len(test)]) text = "怎么 提取 公积金 ?" splited_text=data_helper.encode_to_split(text,alphabet) mb_q,mb_q_mask = data_helper.prepare_data([splited_text]) mb_a,mb_a_mask = data_helper.prepare_data([splited_text]) data = (mb_q,mb_a,mb_q_mask,mb_a_mask) score = model.predict(sess,data) print(score) feed_dict = { model.question:data[0], model.answer:data[1], model.q_mask:data[2], model.a_mask:data[3], model.dropout_keep_prob_holder:1.0 } sess.run(model.position_embedding,feed_dict=feed_dict)[0]
Python
114
31.622807
92
/test.py
0.651019
0.64324
shuishen112/pairwise-rnn
refs/heads/master
#-*- coding:utf-8 -*- import os import numpy as np import tensorflow as tf import string from collections import Counter import pandas as pd from tqdm import tqdm import random from functools import wraps import time import pickle def log_time_delta(func): @wraps(func) def _deco(*args, **kwargs): start = time.time() ret = func(*args, **kwargs) end = time.time() delta = end - start print( "%s runed %.2f seconds"% (func.__name__,delta)) return ret return _deco import tqdm from nltk.corpus import stopwords OVERLAP = 237 class Alphabet(dict): def __init__(self, start_feature_id = 1): self.fid = start_feature_id def add(self, item): idx = self.get(item, None) if idx is None: idx = self.fid self[item] = idx # self[idx] = item self.fid += 1 return idx def dump(self, fname): with open(fname, "w") as out: for k in sorted(self.keys()): out.write("{}\t{}\n".format(k, self[k])) def cut(sentence): tokens = sentence.lower().split() # tokens = [w for w in tokens if w not in stopwords.words('english')] return tokens @log_time_delta def load(dataset, filter = False): data_dir = "data/" + dataset datas = [] for data_name in ['train.txt','test.txt','dev.txt']: data_file = os.path.join(data_dir,data_name) data = pd.read_csv(data_file,header = None,sep="\t",names=["question","answer","flag"]).fillna('0') # data = pd.read_csv(data_file,header = None,sep="\t",names=["question","answer","flag"],quoting =3).fillna('0') if filter == True: datas.append(removeUnanswerdQuestion(data)) else: datas.append(data) # sub_file = os.path.join(data_dir,'submit.txt') # submit = pd.read_csv(sub_file,header = None,sep = "\t",names = ['question','answer'],quoting = 3) # datas.append(submit) return tuple(datas) @log_time_delta def removeUnanswerdQuestion(df): counter= df.groupby("question").apply(lambda group: sum(group["flag"])) questions_have_correct=counter[counter>0].index counter= df.groupby("question").apply(lambda group: sum(group["flag"]==0)) questions_have_uncorrect=counter[counter>0].index counter=df.groupby("question").apply(lambda group: len(group["flag"])) questions_multi=counter[counter>1].index return df[df["question"].isin(questions_have_correct) & df["question"].isin(questions_have_correct) & df["question"].isin(questions_have_uncorrect)].reset_index() @log_time_delta def get_alphabet(corpuses=None,dataset=""): pkl_name="temp/"+dataset+".alphabet.pkl" if os.path.exists(pkl_name): return pickle.load(open(pkl_name,"rb")) alphabet = Alphabet(start_feature_id = 0) alphabet.add('[UNK]') alphabet.add('END') count = 0 for corpus in corpuses: for texts in [corpus["question"].unique(),corpus["answer"]]: for sentence in texts: tokens = cut(sentence) for token in set(tokens): alphabet.add(token) print("alphabet size %d" % len(alphabet.keys()) ) if not os.path.exists("temp"): os.mkdir("temp") pickle.dump( alphabet,open(pkl_name,"wb")) return alphabet @log_time_delta def getSubVectorsFromDict(vectors,vocab,dim = 300): embedding = np.zeros((len(vocab),dim)) count = 1 for word in vocab: if word in vectors: count += 1 embedding[vocab[word]]= vectors[word] else: embedding[vocab[word]]= np.random.uniform(-0.5,+0.5,dim)#vectors['[UNKNOW]'] #.tolist() print( 'word in embedding',count) return embedding def encode_to_split(sentence,alphabet): indices = [] tokens = cut(sentence) seq = [alphabet[w] if w in alphabet else alphabet['[UNK]'] for w in tokens] return seq @log_time_delta def load_text_vec(alphabet,filename="",embedding_size = 100): vectors = {} with open(filename,encoding='utf-8') as f: i = 0 for line in f: i += 1 if i % 100000 == 0: print( 'epch %d' % i) items = line.strip().split(' ') if len(items) == 2: vocab_size, embedding_size= items[0],items[1] print( ( vocab_size, embedding_size)) else: word = items[0] if word in alphabet: vectors[word] = items[1:] print( 'embedding_size',embedding_size) print( 'done') print( 'words found in wor2vec embedding ',len(vectors.keys())) return vectors @log_time_delta def get_embedding(alphabet,dim = 300,language ="en",dataset=""): pkl_name="temp/"+dataset+".subembedding.pkl" if os.path.exists(pkl_name): return pickle.load(open(pkl_name,"rb")) if language=="en": fname = 'embedding/glove.6B/glove.6B.300d.txt' else: fname= "embedding/embedding.200.header_txt" embeddings = load_text_vec(alphabet,fname,embedding_size = dim) sub_embeddings = getSubVectorsFromDict(embeddings,alphabet,dim) pickle.dump( sub_embeddings,open(pkl_name,"wb")) return sub_embeddings @log_time_delta def get_mini_batch_test(df,alphabet,batch_size): q = [] a = [] pos_overlap = [] for index,row in df.iterrows(): question = encode_to_split(row["question"],alphabet) answer = encode_to_split(row["answer"],alphabet) overlap_pos = overlap_index(row['question'],row['answer']) q.append(question) a.append(answer) pos_overlap.append(overlap_pos) m = 0 n = len(q) idx_list = np.arange(m,n,batch_size) mini_batches = [] for idx in idx_list: mini_batches.append(np.arange(idx,min(idx + batch_size,n))) for mini_batch in mini_batches: mb_q = [ q[t] for t in mini_batch] mb_a = [ a[t] for t in mini_batch] mb_pos_overlap = [pos_overlap[t] for t in mini_batch] mb_q,mb_q_mask = prepare_data(mb_q) mb_a,mb_pos_overlaps = prepare_data(mb_a,mb_pos_overlap) yield(mb_q,mb_a) # calculate the overlap_index def overlap_index(question,answer,stopwords = []): ans_token = cut(answer) qset = set(cut(question)) aset = set(ans_token) a_len = len(ans_token) # q_index = np.arange(1,q_len) a_index = np.arange(1,a_len + 1) overlap = qset.intersection(aset) # for i,q in enumerate(cut(question)[:q_len]): # value = 1 # if q in overlap: # value = 2 # q_index[i] = value for i,a in enumerate(ans_token): if a in overlap: a_index[i] = OVERLAP return a_index def getBatch48008(df,alphabet,batch_size,sort_by_len = True,shuffle = False): q,a,neg_a=[],[],[] answers=df["answer"][:250] ground_truth=df.groupby("question").apply(lambda group: group[group.flag==1].index[0]%250 ).to_dict() for question in tqdm(df['question'].unique()): index= ground_truth[question] canindates = [i for i in range(250)] canindates.remove(index) a_neg_index = random.choice(canindates) seq_q = encode_to_split(question,alphabet) seq_a = encode_to_split(answers[index],alphabet) seq_neg_a = encode_to_split(answers[a_neg_index],alphabet) q.append(seq_q) a.append( seq_a) neg_a.append(seq_neg_a ) return iteration_batch(q,a,neg_a,batch_size,sort_by_len,shuffle) def iteration_batch(q,a,neg_a,batch_size,sort_by_len = True,shuffle = False): if sort_by_len: sorted_index = sorted(range(len(q)), key=lambda x: len(q[x]), reverse=True) q = [ q[i] for i in sorted_index] a = [a[i] for i in sorted_index] neg_a = [ neg_a[i] for i in sorted_index] pos_overlap = [pos_overlap[i] for i in sorted_index] neg_overlap = [neg_overlap[i] for i in sorted_index] #get batch m = 0 n = len(q) idx_list = np.arange(m,n,batch_size) if shuffle: np.random.shuffle(idx_list) mini_batches = [] for idx in idx_list: mini_batches.append(np.arange(idx,min(idx + batch_size,n))) for mini_batch in tqdm(mini_batches): mb_q = [ q[t] for t in mini_batch] mb_a = [ a[t] for t in mini_batch] mb_neg_a = [ neg_a[t] for t in mini_batch] mb_pos_overlap = [pos_overlap[t] for t in mini_batch] mb_neg_overlap = [neg_overlap[t] for t in mini_batch] mb_q,mb_q_mask = prepare_data(mb_q) mb_a,mb_pos_overlaps = prepare_data(mb_a,mb_pos_overlap) mb_neg_a,mb_neg_overlaps = prepare_data(mb_neg_a,mb_neg_overlap) # mb_a,mb_a_mask = prepare_data(mb_a,mb_pos_overlap) # mb_neg_a , mb_a_neg_mask = prepare_data(mb_neg_a) yield(mb_q,mb_a,mb_neg_a,mb_q_mask,mb_a_mask,mb_a_neg_mask) def get_mini_batch(df,alphabet,batch_size,sort_by_len = True,shuffle = False,model=None,sess=None): q = [] a = [] neg_a = [] for question in df['question'].unique(): # group = df[df["question"]==question] # pos_answers = group[df["flag"] == 1]["answer"] # neg_answers = group[df["flag"] == 0]["answer"].reset_index() group = df[df["question"]==question] pos_answers = group[group["flag"] == 1]["answer"] neg_answers = group[group["flag"] == 0]["answer"]#.reset_index() for pos in pos_answers: if model is not None and sess is not None: pos_sent= encode_to_split(pos,alphabet) q_sent,q_mask= prepare_data([pos_sent]) neg_sents = [encode_to_split(sent,alphabet) for sent in neg_answers] a_sent,a_mask= prepare_data(neg_sents) scores = model.predict(sess,(np.tile(q_sent,(len(neg_answers),1)),a_sent,np.tile(q_mask,(len(neg_answers),1)),a_mask)) neg_index = scores.argmax() else: if len(neg_answers.index) > 0: neg_index = np.random.choice(neg_answers.index) neg = neg_answers.reset_index().loc[neg_index,]["answer"] seq_q = encode_to_split(question,alphabet) seq_a = encode_to_split(pos,alphabet) seq_neg_a = encode_to_split(neg,alphabet) q.append(seq_q) a.append(seq_a) neg_a.append(seq_neg_a) return iteration_batch(q,a,neg_a,batch_size,sort_by_len,shuffle) def prepare_data(seqs,overlap = None): lengths = [len(seq) for seq in seqs] n_samples = len(seqs) max_len = np.max(lengths) x = np.zeros((n_samples,max_len)).astype('int32') if overlap is not None: overlap_position = np.zeros((n_samples,max_len)).astype('float') for idx ,seq in enumerate(seqs): x[idx,:lengths[idx]] = seq overlap_position[idx,:lengths[idx]] = overlap[idx] return x,overlap_position else: x_mask = np.zeros((n_samples, max_len)).astype('float') for idx, seq in enumerate(seqs): x[idx, :lengths[idx]] = seq x_mask[idx, :lengths[idx]] = 1.0 # print( x, x_mask) return x, x_mask # def prepare_data(seqs): # lengths = [len(seq) for seq in seqs] # n_samples = len(seqs) # max_len = np.max(lengths) # x = np.zeros((n_samples, max_len)).astype('int32') # x_mask = np.zeros((n_samples, max_len)).astype('float') # for idx, seq in enumerate(seqs): # x[idx, :lengths[idx]] = seq # x_mask[idx, :lengths[idx]] = 1.0 # # print( x, x_mask) # return x, x_mask def getLogger(): import sys import logging import os import time now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) log_filename = "log/" +time.strftime("%Y%m%d", timeArray) program = os.path.basename(sys.argv[0]) logger = logging.getLogger(program) if not os.path.exists(log_filename): os.mkdir(log_filename) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s',datefmt='%a, %d %b %Y %H:%M:%S',filename=log_filename+'/qa'+timeStamp+'.log',filemode='w') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) return logger
Python
363
33.487602
167
/data_helper.py
0.582389
0.574804
pablor0mero/Placester_Test_Pablo_Romero
refs/heads/master
# For this solution I'm using TextBlob, using it's integration with WordNet. from textblob import TextBlob from textblob import Word from textblob.wordnet import VERB import nltk import os import sys import re import json results = { "results" : [] } #Override NLTK data path to use the one I uploaded in the folder dir_path = os.path.dirname(os.path.realpath(__file__)) nltk_path = dir_path + os.path.sep + "nltk_data" nltk.data.path= [nltk_path] #Text to analyze TEXT = """ Take this paragraph of text and return an alphabetized list of ALL unique words. A unique word is any form of a word often communicated with essentially the same meaning. For example, fish and fishes could be defined as a unique word by using their stem fish. For each unique word found in this entire paragraph, determine the how many times the word appears in total. Also, provide an analysis of what sentence index position or positions the word is found. The following words should not be included in your analysis or result set: "a", "the", "and", "of", "in", "be", "also" and "as". Your final result MUST be displayed in a readable console output in the same format as the JSON sample object shown below. """ TEXT = TEXT.lower() WORDS_NOT_TO_CONSIDER = ["a", "the", "and", "of", "in", "be", "also", "as"] nlpText= TextBlob(TEXT) def getSentenceIndexesForWord(word, sentences): sentenceIndexes = [] for index, sentence in enumerate(sentences): count = sum(1 for _ in re.finditer(r'\b%s\b' % re.escape(word.lower()), sentence)) if count > 0: sentenceIndexes.append(index) return sentenceIndexes #1: Get all words, excluding repetitions and all the sentences in the text nlpTextWords = sorted(set(nlpText.words)) nlpTextSentences = nlpText.raw_sentences #2 Get results synonymsList = [] allreadyReadWords = [] for word in nlpTextWords: if word not in WORDS_NOT_TO_CONSIDER and word not in allreadyReadWords: timesInText = nlpText.word_counts[word] #Get sentence indexes where the word can be found sentenceIndexes = getSentenceIndexesForWord(word, nlpTextSentences) #Check for synonyms for word2 in nlpTextWords: if word2 not in WORDS_NOT_TO_CONSIDER and ( word.lower() != word2.lower() and len(list(set(word.synsets) & set(word2.synsets))) > 0 ): #If I find a synonym of the word I add it to the list of words allready read and add the times that synonym appeared in the text to the total #count of the unique word and the corresponding sentence indexes allreadyReadWords.append(word2) timesInText = timesInText + nlpText.word_counts[word2] sentenceIndexes += getSentenceIndexesForWord(word2,nlpTextSentences) allreadyReadWords.append(word) results["results"].append({"word" : word.lemmatize(), #I return the lemma of the word because TextBlob's stems seem to be wrong for certain words "total-occurances": timesInText, "sentence-indexes": sorted(set(sentenceIndexes))}) print(json.dumps(results, indent=4))
Python
71
44.929577
157
/main.py
0.670813
0.666869
GabinCleaver/Auto_Discord_Bump
refs/heads/main
import requests import time token = "TOKEN" headers = { 'User-Agent' : 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7', 'Authorization' : token } id = input(f"[?] Salon ID: ") print("") while True: requests.post( f"https://discord.com/api/channels/{id}/messages", headers = headers, json = {"content" : "!d bump"} ) print("[+] Serveur Bumpé") time.sleep(121 * 60)
Python
21
20.809525
109
/autobump.py
0.561845
0.51153
altopalido/yelp_python
refs/heads/master
# Madis Settings MADIS_PATH='/Users/alexiatopalidou/Desktop/erg/madis/src' # Webserver Settings # IMPORTANT: The port must be available. web_port = 9090 # must be integer (this is wrong:'9090')
Python
6
31.666666
57
/yelp_python/settings.py
0.75
0.709184
altopalido/yelp_python
refs/heads/master
# ----- CONFIGURE YOUR EDITOR TO USE 4 SPACES PER TAB ----- # import settings import sys def connection(): ''' User this function to create your connections ''' import sys sys.path.append(settings.MADIS_PATH) import madis con = madis.functions.Connection('/Users/alexiatopalidou/Desktop/erg/yelp_python/yelp.db') return con def classify_review(reviewid): #check for compatible data type try: val=str(reviewid) except ValueError: return [("Error! Insert correct data type.")] # Create a new connection global con con=connection() # Create cursors on the connection #alternative: create the desired list after every textwindow, posterms, negterms query cur=con.cursor() cura=con.cursor() curb=con.cursor() cur1=con.cursor() cur2=con.cursor() #check for existance of given data inside the yelp.db curcheck=con.cursor() cur.execute("SELECT var('reviewid',?)",(reviewid,)) check=curcheck.execute("SELECT review_id from reviews where review_id=?",(val,)) try: ch=check.next() except StopIteration: return [("Error! Insert valid Review id.",)] #sql query with textwindow - one for each occasion (terms with 1, 2 or 3 words) res=cur.execute("SELECT textwindow(text,0,0,1) from reviews where review_id=var('reviewid');") resa=cura.execute("SELECT textwindow(text,0,0,2) from reviews where review_id=var('reviewid');") resb=curb.execute("SELECT textwindow(text,0,0,3) from reviews where review_id=var('reviewid');") #get positive/negative terms res1=cur1.execute("SELECT * from posterms;") res2=cur2.execute("SELECT * from negterms;") #create lists that store a)all reviews terms, b)positive terms and c)negative terms k=[] for n in res: k.append(n) for n in resa: k.append(n) for n in resb: k.append(n) m=[] for z in res1: m.append(z) o=[] for p in res2: o.append(p) #check if the review is positive or negative x=0 for i in k: for j in m: if i==j: x=x+1 y=0 for i in k: for j in o: if i==j: y=y+1 if x>y: rsl='positive' elif x<y: rsl='negative' else: rsl='neutral' #return a list with the results res=cur.execute("SELECT b.name, ? from business b, reviews r where r.business_id=b.business_id and r.review_id=?",(rsl, val,)) l=[("business_name","result")] for i in res: l.append(i) return l def classify_review_plain_sql(reviewid): # Create a new connection con=connection() # Create a cursor on the connection cur=con.cursor() return [("business_name","result")] def updatezipcode(business_id,zipcode): #check for compatible data type try: val=str(business_id) val2=int(zipcode) except ValueError: return [("Error! Insert correct data type.",)] # Create a new connection global con con=connection() # Create a cursor on the connection cur=con.cursor() #check for existance of given data inside the yelp.db or allowance of data value curcheck=con.cursor() cur.execute("select var('business_id',?)", (val,)) check=curcheck.execute("SELECT business_id from business where business_id=?;",(val,)) try: ch=check.next() except StopIteration: return [("Error! Insert valid Business Id.",)] if val2>99999999999999999999: #we do not actually need that return [("Error! Insert valid Zip code.",)] #execute main sql query res=cur.execute("UPDATE business set zip_code=? where business_id=?;",(val2,val,)) #return ok or comment that return and de-comment the bottom return for the business_id and the new zip_code return [('ok',)] #res=cur.execute("SELECT business_id, zip_code from business where business_id=?;",(val,)) #l=[("business_id", "zip_code"),] #for i in res: # l.append(i) #return l def selectTopNbusinesses(category_id,n): #check for compatible data type try: val=int(category_id) val2=int(n) except ValueError: return [("Error! Insert correct data type",)] # Create a new connection global con con=connection() # Create a cursor on the connection cur=con.cursor() #check for existance of given data inside the yelp.db curcheck=con.cursor() cur.execute("SELECT var('category_id',?)", (val,)) check=curcheck.execute("SELECT category_id from category where category_id=?;",(val,)) try: ch=check.next() except StopIteration: return [("Error! Insert valid Category Id.",)] if val2<0: return [("Error! Choose >=0 businesses to return.",)] #execute main sql query res=cur.execute("SELECT b.business_id, count(rpn.positive) from reviews_pos_neg rpn, reviews r, business b, business_category bc, category c where rpn.review_id=r.review_id and r.business_id=b.business_id and b.business_id=bc.business_id and bc.category_id=c.category_id and c.category_id=? group by b.business_id order by count(rpn.positive) desc;",(val,)) #return a list with the results l=[("business_id", "number_of_reviews",)] for i in res: l.append(i) return l[0:val2+1] def traceUserInfuence(userId,depth): # Create a new connection con=connection() # Create a cursor on the connection cur=con.cursor() return [("user_id",),]
Python
206
26.485437
361
/yelp_python/app.py
0.622395
0.612681
smellycats/SX-CarRecgServer
refs/heads/master
from car_recg import app from car_recg.recg_ser import RecgServer from ini_conf import MyIni if __name__ == '__main__': rs = RecgServer() rs.main() my_ini = MyIni() sys_ini = my_ini.get_sys_conf() app.config['THREADS'] = sys_ini['threads'] app.config['MAXSIZE'] = sys_ini['threads'] * 16 app.run(host='0.0.0.0', port=sys_ini['port'], threaded=True) del rs del my_ini
Python
14
27.857143
64
/run.py
0.613861
0.59901
smellycats/SX-CarRecgServer
refs/heads/master
# -*- coding: utf-8 -*- import Queue class Config(object): # 密码 string SECRET_KEY = 'hellokitty' # 服务器名称 string HEADER_SERVER = 'SX-CarRecgServer' # 加密次数 int ROUNDS = 123456 # token生存周期,默认1小时 int EXPIRES = 7200 # 数据库连接 string SQLALCHEMY_DATABASE_URI = 'mysql://root:[email protected]/hbc_store' # 数据库连接绑定 dict SQLALCHEMY_BINDS = {} # 用户权限范围 dict SCOPE_USER = {} # 白名单启用 bool WHITE_LIST_OPEN = True # 白名单列表 set WHITE_LIST = set() # 处理线程数 int THREADS = 4 # 允许最大数队列为线程数16倍 int MAXSIZE = THREADS * 16 # 图片下载文件夹 string IMG_PATH = 'img' # 图片截取文件夹 string CROP_PATH = 'crop' # 超时 int TIMEOUT = 5 # 识别优先队列 object RECGQUE = Queue.PriorityQueue() # 退出标记 bool IS_QUIT = False # 用户字典 dict USER = {} # 上传文件保存路径 string UPLOAD_PATH = 'upload' class Develop(Config): DEBUG = True class Production(Config): DEBUG = False class Testing(Config): TESTING = True
Python
53
17.905661
69
/car_recg/config.py
0.593812
0.56986
smellycats/SX-CarRecgServer
refs/heads/master
# -*- coding: utf-8 -*- import os import Queue import random from functools import wraps import arrow from flask import g, request from flask_restful import reqparse, Resource from passlib.hash import sha256_crypt from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from car_recg import app, db, api, auth, limiter, logger, access_logger from models import Users, Scope import helper def verify_addr(f): """IP地址白名单""" @wraps(f) def decorated_function(*args, **kwargs): if not app.config['WHITE_LIST_OPEN'] or request.remote_addr == '127.0.0.1' or request.remote_addr in app.config['WHITE_LIST']: pass else: return {'status': '403.6', 'message': u'禁止访问:客户端的 IP 地址被拒绝'}, 403 return f(*args, **kwargs) return decorated_function @auth.verify_password def verify_password(username, password): if username.lower() == 'admin': user = Users.query.filter_by(username='admin').first() else: return False if user: return sha256_crypt.verify(password, user.password) return False def verify_token(f): """token验证装饰器""" @wraps(f) def decorated_function(*args, **kwargs): if not request.headers.get('Access-Token'): return {'status': '401.6', 'message': 'missing token header'}, 401 token_result = verify_auth_token(request.headers['Access-Token'], app.config['SECRET_KEY']) if not token_result: return {'status': '401.7', 'message': 'invalid token'}, 401 elif token_result == 'expired': return {'status': '401.8', 'message': 'token expired'}, 401 g.uid = token_result['uid'] g.scope = set(token_result['scope']) return f(*args, **kwargs) return decorated_function def verify_scope(scope): def scope(f): """权限范围验证装饰器""" @wraps(f) def decorated_function(*args, **kwargs): if 'all' in g.scope or scope in g.scope: return f(*args, **kwargs) else: return {}, 405 return decorated_function return scope class Index(Resource): def get(self): return { 'user_url': '%suser{/user_id}' % (request.url_root), 'scope_url': '%suser/scope' % (request.url_root), 'token_url': '%stoken' % (request.url_root), 'recg_url': '%sv1/recg' % (request.url_root), 'uploadrecg_url': '%sv1/uploadrecg' % (request.url_root), 'state_url': '%sv1/state' % (request.url_root) }, 200, {'Cache-Control': 'public, max-age=60, s-maxage=60'} class RecgListApiV1(Resource): def post(self): parser = reqparse.RequestParser() parser.add_argument('imgurl', type=unicode, required=True, help='A jpg url is require', location='json') parser.add_argument('coord', type=list, required=True, help='A coordinates array is require', location='json') args = parser.parse_args() # 回调用的消息队列 que = Queue.Queue() if app.config['RECGQUE'].qsize() > app.config['MAXSIZE']: return {'message': 'Server Is Busy'}, 449 imgname = '%32x' % random.getrandbits(128) imgpath = os.path.join(app.config['IMG_PATH'], '%s.jpg' % imgname) try: helper.get_url_img(request.json['imgurl'], imgpath) except Exception as e: logger.error('Error url: %s' % request.json['imgurl']) return {'message': 'URL Error'}, 400 app.config['RECGQUE'].put((10, request.json, que, imgpath)) try: recginfo = que.get(timeout=15) os.remove(imgpath) except Queue.Empty: return {'message': 'Timeout'}, 408 except Exception as e: logger.error(e) else: return { 'imgurl': request.json['imgurl'], 'coord': request.json['coord'], 'recginfo': recginfo }, 201 class StateListApiV1(Resource): def get(self): return { 'threads': app.config['THREADS'], 'qsize': app.config['RECGQUE'].qsize() } class UploadRecgListApiV1(Resource): def post(self): # 文件夹路径 string filepath = os.path.join(app.config['UPLOAD_PATH'], arrow.now().format('YYYYMMDD')) if not os.path.exists(filepath): os.makedirs(filepath) try: # 上传文件命名 随机32位16进制字符 string imgname = '%32x' % random.getrandbits(128) # 文件绝对路径 string imgpath = os.path.join(filepath, '%s.jpg' % imgname) f = request.files['file'] f.save(imgpath) except Exception as e: logger.error(e) return {'message': 'File error'}, 400 # 回调用的消息队列 object que = Queue.Queue() # 识别参数字典 dict r = {'coord': []} app.config['RECGQUE'].put((9, r, que, imgpath)) try: recginfo = que.get(timeout=app.config['TIMEOUT']) except Queue.Empty: return {'message': 'Timeout'}, 408 except Exception as e: logger.error(e) else: return {'coord': r['coord'], 'recginfo': recginfo}, 201 api.add_resource(Index, '/') api.add_resource(RecgListApiV1, '/v1/recg') api.add_resource(StateListApiV1, '/v1/state') api.add_resource(UploadRecgListApiV1, '/v1/uploadrecg')
Python
176
30.78409
134
/car_recg/views.py
0.558634
0.540222
josemiche11/reversebycondition
refs/heads/master
''' Input- zoho123 Output- ohoz123 ''' char= input("Enter the string: ") char2= list(char) num= "1234567890" list1= [0]*len(char) list2=[] for i in range(len(char)): if char2[i] not in num: list2.append( char2.index( char2[i])) char2[i]= "*" list2.reverse() k=0 for j in range( len(char) ): if j in list2: list1[j]= char[list2[k]] k= k+1 else: list1[j]= char[j] ch="" for l in range(len(list1)): ch= ch+ list1[l] print(ch)
Python
26
17.461538
45
/reversebycondition.py
0.539526
0.472332
Lasyin/batch-resize
refs/heads/master
import os import sys import argparse from PIL import Image # From Pillow (pip install Pillow) def resize_photos(dir, new_x, new_y, scale): if(not os.path.exists(dir)): # if not in full path format (/usrers/user/....) # check if path is in local format (folder is in current working directory) if(not os.path.exists(os.path.join(os.getcwd(), dir))): print(dir + " does not exist.") exit() else: # path is not a full path, but folder exists in current working directory # convert path to full path dir = os.path.join(os.getcwd(), dir) i = 1 # image counter for print statements for f in os.listdir(dir): if(not f.startswith('.') and '.' in f): # accepted image types. add more types if you need to support them! accepted_types = ["jpg", "png", "bmp"] if(f[-3:].lower() in accepted_types): # checks last 3 letters of file name to check file type (png, jpg, bmp...) # TODO: need to handle filetypes of more than 3 letters (for example, jpeg) path = os.path.join(dir, f) img = Image.open(path) if(scale > 0): w, h = img.size newIm = img.resize((w*scale, h*scale)) else: newIm = img.resize((new_x, new_y)) newIm.save(path) print("Image #" + str(i) + " finsihed resizing: " + path) i=i+1 else: print(f + " of type: " + f[-3:].lower() + " is not an accepted file type. Skipping.") print("ALL DONE :) Resized: " + str(i) + " photos") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-d", "-directory", help="(String) Specify the folder path of images to resize") parser.add_argument("-s", "-size", help="(Integer) New pixel value of both width and height. To specify width and height seperately, use -x and -y.") parser.add_argument("-x", "-width", help="(Integer) New pixel value of width") parser.add_argument("-y", "-height", help="(Integer) New pixel value of height") parser.add_argument("-t", "-scale", help="(Integer) Scales pixel sizes.") args = parser.parse_args() if(not args.d or ((not args.s) and (not args.x and not args.y) and (not args.t))): print("You have error(s)...\n") if(not args.d): print("+ DIRECTORY value missing Please provide a path to the folder of images using the argument '-d'\n") if((not args.s) and (not args.x or not args.y) and (not args.t)): print("+ SIZE value(s) missing! Please provide a new pixel size. Do this by specifying -s (width and height) OR -x (width) and -y (height) values OR -t (scale) value") exit() x = 0 y = 0 scale = 0 if(args.s): x = int(args.s) y = int(args.s) elif(args.x and args.y): x = int(args.x) y = int(args.y) elif(args.t): scale = int(args.t) print("Resizing all photos in: " + args.d + " to size: " + str(x)+"px,"+str(y)+"px") resize_photos(args.d, x, y, scale)
Python
73
43.109589
179
/batch_resize.py
0.554969
0.551863
snehG0205/Twitter_Mining
refs/heads/master
import tweepy import csv import pandas as pd from textblob import TextBlob import matplotlib.pyplot as plt ####input your credentials here consumer_key = 'FgCG8zcxF4oINeuAqUYzOw9xh' consumer_secret = 'SrSu7WhrYUpMZnHw7a5ui92rUA1n2jXNoZVb3nJ5wEsXC5xlN9' access_token = '975924102190874624-uk5zGlYRwItkj7pZO2m89NefRm5DFLg' access_token_secret = 'ChvmTjG8hl61xUrXkk3AdKcXMlvAKf4ise1kIQLKsnPu4' auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth,wait_on_rate_limit=True) # Open/Create a file to append data csvFile = open('tweets.csv', 'w+') # Use csv Writer csvWriter = csv.writer(csvFile) tag = "#DonaldTrump" limit = 0 res = "" positive = 0 negative = 0 neutral = 0 csvWriter.writerow(["ID", "Username", "Twitter @", "Tweet","Tweeted At", "Favourite Count", "Retweet Count", "Sentiment"]) csvWriter.writerow([]) for tweet in tweepy.Cursor(api.search,q=""+tag,count=350,lang="en",tweet_mode = "extended").items(): # print (tweet.created_at, tweet.text) temp = tweet.full_text if temp.startswith('RT @'): continue blob = TextBlob(tweet.full_text) if blob.sentiment.polarity > 0: res = "Positive" positive = positive+1 elif blob.sentiment.polarity == 0: res = "Neutral" neutral = neutral+1 else: res = "Negative" negative = negative+1 print ("ID:", tweet.id) print ("User ID:", tweet.user.id) print ("Name: ", tweet.user.name) print ("Twitter @:", tweet.user.screen_name) print ("Text:", tweet.full_text) print ("Tweet length:", len(tweet.full_text)) print ("Created:(UTC)", tweet.created_at) print ("Favorite Count:", tweet.favorite_count) print ("Retweet count:", tweet.retweet_count) print ("Sentiment:", res) # print ("Retweeted? :", tweet.retweeted) # print ("Truncated:", tweet.truncated) print ("\n\n") csvWriter.writerow([tweet.id, tweet.user.name, tweet.user.screen_name, tweet.full_text,tweet.created_at, tweet.favorite_count, tweet.retweet_count, res]) csvWriter.writerow([]) limit = limit + 1 if limit == 25: break print ("Done") print ("\n\n\n") total = positive+negative+neutral positivePercent = 100*(positive/total) negativePercent = 100*(negative/total) neutralPercent = 100*(neutral/total) print ("Positive tweets: {} %".format(positivePercent)) print ("Negative tweets: {} %".format(negativePercent)) print ("Neutral tweets: {} %".format(neutralPercent)) # infile = 'tweets.csv' # with open(infile, 'r') as csvfile: # rows = csv.reader(csvfile) # for row in rows: # sentence = row[3] # blob = TextBlob(sentence) # print (blob.sentiment) labels = 'Neutral', 'Positive', 'Negative' sizes = [] sizes.append(neutralPercent) sizes.append(positivePercent) sizes.append(negativePercent) colors = ['lightskyblue','yellowgreen', 'lightcoral'] explode = (0.0, 0, 0) # explode 1st slice # Plot plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=False, startangle=140) plt.suptitle("Sentiment Analysis of {} tweets related to {}".format(limit, tag)) plt.axis('equal') plt.show()
Python
104
28.73077
157
/tweepy_tester.py
0.66796
0.655674
snehG0205/Twitter_Mining
refs/heads/master
import tweepy import csv import pandas as pd # keys and tokens from the Twitter Dev Console consumer_key = 'FgCG8zcxF4oINeuAqUYzOw9xh' consumer_secret = 'SrSu7WhrYUpMZnHw7a5ui92rUA1n2jXNoZVb3nJ5wEsXC5xlN9' access_token = '975924102190874624-uk5zGlYRwItkj7pZO2m89NefRm5DFLg' access_token_secret = 'ChvmTjG8hl61xUrXkk3AdKcXMlvAKf4ise1kIQLKsnPu4' #Twitter only allows access to a users most recent 3240 tweets with this method #authorize twitter, initialize tweepy auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) #initialize a list to hold all the tweepy Tweets alltweets = [] #make initial request for most recent tweets (200 is the maximum allowed count) new_tweets = api.search(q="#DonaldTrump",count=200,tweet_mode="extended") #save most recent tweets alltweets.extend(new_tweets) #save the id of the oldest tweet less one # oldest = alltweets[-1].id - 1 #keep grabbing tweets until there are no tweets left to grab while len(new_tweets) > 0: # print "getting tweets before %s" % (oldest) #all subsiquent requests use the max_id param to prevent duplicates new_tweets = api.search(q="#DonaldTrump",count=200,tweet_mode="extended") #save most recent tweets alltweets.extend(new_tweets) #update the id of the oldest tweet less one oldest = alltweets[-1].id - 1 # print "...%s tweets downloaded so far" % (len(alltweets)) #transform the tweepy tweets into a 2D array that will populate the csv outtweets = [[tweet.id_str, tweet.created_at, tweet.full_tweet.encode("utf-8"), tweet.retweet_count, tweet.favorite_count] for tweet in alltweets] #write the csv with open('tweets.csv', 'w+') as f: writer = csv.writer(f) writer.writerow(["id","created_at","full_text","retweet_count","favorite_count"]) writer.writerows(outtweets)
Python
52
32.53846
146
/twitter1.py
0.729513
0.716332
snehG0205/Twitter_Mining
refs/heads/master
import csv csvFile = open('res.csv', 'w+')
Python
2
20.5
31
/tester.py
0.642857
0.642857
snehG0205/Twitter_Mining
refs/heads/master
from test import mining tag = "#WednesdayWisdom" limit = "10" sen_list = mining(tag,int(limit)) print(sen_list)
Python
5
21.4
33
/Twitter-Flask/untitled.py
0.72973
0.711712
snehG0205/Twitter_Mining
refs/heads/master
from flask import Flask, render_template, request from test import mining app = Flask(__name__) @app.route('/') def index(): return render_template('hello.html') @app.route('/', methods=['GET', 'POST']) def submit(): if request.method == 'POST': print (request.form) # debug line, see data printed below tag = request.form['tag'] limit = request.form['limit'] # msg = tag+" "+limit sen_list = mining(tag,limit) msg = "Positive Percent = "+sen_list[0]+"% <br>Negative Percent = "+sen_list[1]+"% <br>Neutral Percent = "+sen_list[2]+"%" return ""+msg if __name__ == '__main__': app.run(debug = True) print("This")
Python
24
25.416666
124
/Twitter-Flask/app.py
0.631912
0.627172
snehG0205/Twitter_Mining
refs/heads/master
#!/usr/bin/env python print ("some output") return "hello"
Python
4
14
21
/Twitter-Flask/hello.py
0.694915
0.694915
snehG0205/Twitter_Mining
refs/heads/master
import matplotlib.pyplot as plt # Data to plot labels = 'Neutral', 'Positive', 'Negative' sizes = [20, 40, 40] colors = ['lightskyblue','yellowgreen', 'lightcoral'] explode = (0.0, 0, 0) # explode 1st slice # Plot plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=140) plt.axis('equal') # plt.title('Sentiment analysis') plt.suptitle('Analysing n tweets related to #') plt.show()
Python
16
27.125
61
/piPlotter.py
0.685969
0.650334
nopple/ctf
refs/heads/master
#!/usr/bin/env python import socket, subprocess, sys from struct import pack, unpack global scenes global officers scenes = {} officers = {} remote = len(sys.argv) > 1 PORT = 8888 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if remote: HOST = "dosfun4u_5d712652e1d06a362f7fc6d12d66755b.2014.shallweplayaga.me" else: HOST = '127.0.0.1' def chksum(data): ret = 0 for d in data: ret += ord(d) return ret & 0xffff def add_officer(officer_id, status=0, x=0, y=0): global officers print 'update' if officers.has_key(officer_id) and officers[officer_id] else 'add', 'officer', hex(officer_id) officers[officer_id] = True payload = pack('H', 0x7d0) payload += pack('H', officer_id) payload += pack('H', status) payload += pack('H', x) payload += pack('H', y) payload += pack('H', 0x0) return payload def remove_officer(officer_id): global officers print 'remove officer', hex(officer_id), 'should work' if officers.has_key(officer_id) and officers[officer_id] else 'should fail' officers[officer_id] = False payload = pack('H', 0xbb8) payload += pack('H', officer_id) return payload def add_scene(scene_id, data2, data3, inline_data='', x=0, y=0): global scenes print 'update' if scenes.has_key(scene_id) and scenes[scene_id] else 'add', 'scene', hex(scene_id) scenes[scene_id] = True size1 = len(inline_data)/2 size2 = len(data2) size3 = len(data3) payload = pack('H', 0xfa0) payload += pack('H', scene_id) payload += pack('H', x) payload += pack('H', y) payload += pack('B', size1) payload += pack('B', size2) payload += pack('H', size3) payload += pack('H', 0) payload += inline_data[:size1*2] payload += data2 payload += data3 return payload def recv_all(s, size): ret = [] received = 0 while size > received: c = s.recv(size-received) if c == '': raise Exception('Connection closed') ret.append(c) received += len(c) return ''.join(ret) def recv_until(s, pattern): ret = '' while True: c = s.recv(1) if c == '': raise Exception("Connection closed") ret += c if ret.find(pattern) != -1: break return ret s.connect((HOST, PORT)) if remote: print s.recv(4096) buf = s.recv(4096) print buf data = buf.split(' ')[0] print 'challenge = {}'.format(data) print 'hashcatting...' p = subprocess.Popen(['./hashcat', data], stdout=subprocess.PIPE); result = p.communicate()[0].strip('\n\r\t ') print 'response = {}'.format(result) s.send(result) def send_cmd(s,payload,recvLen=0): payload += pack('H', chksum(payload)) s.send(payload) return recv_all(s, recvLen) shellcode = open('shellcode', 'rb').read() print 'Getting block into free-list' send_cmd(s,add_officer(1),5) send_cmd(s,remove_officer(1),5) print 'Adding officer to reuse block from free-list' send_cmd(s,add_officer(0xc),5) print 'Writing shellcode to 008f:0000' send_cmd(s,add_scene(1, pack("<HHHHHH", 0xc, 0, 0x4688, 0x8f, 0, 0), shellcode),5) print 'Modifying officer structure to include pointer to fake officer on stack' send_cmd(s,add_scene(2, pack("<HHHHHH", 1, 0, 0, 0, 0x47aa, 0x011f), "lolololol"),5) print 'Writing return to shellcode on stack' send_cmd(s,add_officer(0x945, 0x1d26, 0x10, 0x97),5) print 'Receiving response...' print 'Key 1:', recv_until(s,'\n').replace('\x00', '')[:-1] print 'Key 2:', recv_until(s,'\n')[:-1]
Python
124
25.620968
131
/dosfun4u/pwn.py
0.668585
0.624962
nopple/ctf
refs/heads/master
#!/usr/bin/env python import socket from struct import pack, unpack DEBUG = False server = "shitsco_c8b1aa31679e945ee64bde1bdb19d035.2014.shallweplayaga.me" server = "127.0.0.1" port = 31337 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((server, port)) s.settimeout(30) def recv_until(s, pattern): ret = '' while True: c = s.recv(1) if c == '': raise Exception("Connection closed") ret += c if ret.find(pattern) != -1: break return ret # trigger use-after-free by creating 2 items and then removing them in order print recv_until(s, "$ ") print "set 1 abcd" s.send("set 1 abcd\n") print recv_until(s, "$ ") print "set 2 abcd" s.send("set 2 abcd\n") print recv_until(s, "$ ") print "set 1" s.send("set 1\n") print recv_until(s, "$ ") print "set 2" s.send("set 2\n") print recv_until(s, "$ ") print "show <pointers>" # set use-after-free item via strdup of argument to 'show' command # first two items are the key,value pair followed by blink and flink # use a pointer to the string "password" in the code section for the key (0x80495d0) # use the location of the password in bss for the value (0x804c3a0) # use something to terminate the linked list for flink and blink # - can't use null directly here since the strdup allocation would be cut short (must be 16 bytes to re-use the free'd block) # - just use a pointer to some nulls in bss instead (0x804c390) s.send("show " + pack("<IIII", 0x80495d0, 0x804C3A0, 0x804C390, 0x0804C390) + "\n") print recv_until(s, "$ ") # now, this will simply dump the password for us print "show" s.send("show\n") a = recv_until(s, ': ') pw = recv_until(s, '\n')[:-1] b = recv_until(s, "$ ") print a + pw + '\n' + b print 'Enable password: "' + pw + '"' print "enable " + pw s.send('enable ' + pw + '\n') print recv_until(s, "# ") print "flag" s.send('flag\n') print recv_until(s, "# ") print "quit" s.send('quit\n')
Python
71
25.830986
127
/shitsco/pwn.py
0.669816
0.618898
phu-bui/Nhan_dien_bien_bao_giao_thong
refs/heads/master
import tkinter as tk from tkinter import filedialog from tkinter import * from PIL import Image, ImageTk import numpy from keras.models import load_model model = load_model('BienBao.h5') class_name = { 1:'Speed limit (20km/h)', 2:'Speed limit (30km/h)', 3:'Speed limit (50km/h)', 4:'Speed limit (60km/h)', 5:'Speed limit (70km/h)', 6:'Speed limit (80km/h)', 7:'End of speed limit (80km/h)', 8:'Speed limit (100km/h)', 9:'Speed limit (120km/h)', 10:'No passing', 11:'No passing veh over 3.5 tons', 12:'Right-of-way at intersection', 13:'Priority road', 14:'Yield', 15:'Stop', 16:'No vehicles', 17:'Veh > 3.5 tons prohibited', 18:'No entry', 19:'General caution', 20:'Dangerous curve left', 21:'Dangerous curve right', 22:'Double curve', 23:'Bumpy road', 24:'Slippery road', 25:'Road narrows on the right', 26:'Road work', 27:'Traffic signals', 28:'Pedestrians', 29:'Children crossing', 30:'Bicycles crossing', 31:'Beware of ice/snow', 32:'Wild animals crossing', 33:'End speed + passing limits', 34:'Turn right ahead', 35:'Turn left ahead', 36:'Ahead only', 37:'Go straight or right', 38:'Go straight or left', 39:'Keep right', 40:'Keep left', 41:'Roundabout mandatory', 42:'End of no passing', 43:'End no passing veh > 3.5 tons' } top=tk.Tk() top.geometry('800x600') top.title('Phan loai bien bao giao thong') top.configure(background='#CDCDCD') label = Label(top, background = '#CDCDCD', font=('arial',15,'bold')) label.place(x=0, y=0, relwidth = 1, relheight = 1) sign_image = Label(top) def classify(file_path): global label_packed image = Image.open(file_path) image = image.resize((30, 30)) image = numpy.expand_dims(image, axis=0) image = numpy.array(image) print(image.shape) pred = model.predict_classes([image])[0] sign = class_name[pred+1] print(sign) label.configure(foreground = '#011638', text = sign) def show_classify_button(file_path): classify_button = Button(top,text='Phan loai', command = lambda : classify(file_path), padx=10, pady=5) classify_button.configure(background='GREEN', foreground = 'white', font = ('arial', 10, 'bold')) classify_button.place(relx = 0.79, rely = 0.46) def upload_image(): try: file_path = filedialog.askopenfilename() uploaded = Image.open(file_path) uploaded.thumbnail(((top.winfo_width()/2.25), (top.winfo_height()/2.25))) im = ImageTk.PhotoImage(uploaded) sign_image.configure(image= im) sign_image.image = im label.configure(text='') show_classify_button(file_path) except: pass upload = Button(top, text='Upload an image', command=upload_image, padx = 10, pady = 5) upload.configure(background='#364156', foreground = 'white', font = ('arial', 10, 'bold')) upload.pack(side = BOTTOM, pady = 50) sign_image.pack(side=BOTTOM, expand = True) label.pack(side = BOTTOM, expand = True) heading = Label(top, text = 'Bien bao giao thong cua ban', pady = 20, font = ('arial', 20, 'bold')) heading.configure(background = '#CDCDCD', foreground = '#364156') heading.pack() top.mainloop()
Python
103
30.747572
107
/main.py
0.631386
0.579688
Jerin-Alisha/Python-Code-Assessment
refs/heads/master
def returnSum(dict): sum=0 for i in dict: sum=sum+dict[i] return sum dict={'Rick':85,'Amit':42,'George':53,'Tanya':60,'Linda':35} print 'sum:', returnSum(dict)
Python
7
24.714285
60
/Dictionary with function.py
0.582888
0.524064
Jerin-Alisha/Python-Code-Assessment
refs/heads/master
n=int(input("enter the numbers u want to print:")) for i in range(1,n+1): if(i%3==0): print ('Fizz') continue elif(i%5==0): print ('Buzz') continue print i
Python
9
21.222221
50
/FizzBuzz.py
0.46789
0.440367
Jerin-Alisha/Python-Code-Assessment
refs/heads/master
def switch(on_strike): players = {1,2} return list(players.difference(set([on_strike])))[0] def get_player(previous_score, previous_player, previous_bowl_number): if previous_score%2 == 0 and (previous_bowl_number%6 !=0 or previous_bowl_number ==0): player = previous_player elif previous_score%2 != 0 and previous_bowl_number % 6 == 0: player = previous_player else: player = switch(previous_player) return player a = [1, 2, 0, 0, 4, 1, 6, 2, 1, 3] player_turns = [] player_score_chart = {1:0, 2:0} total_score = 0 previous_score=0 previous_player=1 previous_bowl_number=0 for runs in a: player_turns.append(get_player(previous_score, previous_player, previous_bowl_number)) previous_bowl_number+=1 previous_score=runs previous_player=player_turns[-1] player_score_chart[previous_player] += previous_score total_score += previous_score print 'Total Score : ', total_score print 'Batsman 1 Score : ', player_score_chart[1] print 'Batsman 2 Score : ', player_score_chart[2]
Python
36
28.611111
90
/Cricket Match Player Score.py
0.646098
0.61343
Jerin-Alisha/Python-Code-Assessment
refs/heads/master
arr=[1,2,3,5,8,4,7,9,1,4,12,5,6,5,2,1,0,8,1] a = [None] * len(arr); visited = 0; for i in range(0, len(arr)): count = 1; for j in range(i+1, len(arr)): if(arr[i] == arr[j]): count = count + 1; a[j] = visited; if(a[i] != visited): a[i] = count; for i in range(0, len(a)): if(a[i] != visited): print(" "+ str(arr[i]) +" has occured "+ str(a[i])+" times");
Python
14
31.285715
69
/repeat.py
0.408511
0.353191
TheDinner22/lightning-sim
refs/heads/main
# represent the "board" in code # dependencies import random class Board: def __init__(self, width=10): self.width = width self.height = width * 2 self.WALL_CHANCE = .25 self.FLOOR_CHANCE = .15 # create the grid self.create_random_grid() def create_random_grid(self): # reset old grid self.grid = [] # generate cells for new grid for i in range(self.width * self.height): # is the cell at the left, right, top, or bottom? is_left = True if i % self.width == 0 else False is_right = True if i % self.width == self.width-1 else False is_top = True if i < self.width else False is_bottom = True if i > (self.width * self.height - self.width) else False # create the cell cell = { "left" : is_left, "right" : is_right, "roof" : is_top, "floor" : is_bottom, "ID" : i } # append to grid self.grid.append(cell) # randomly generate walls total = self.width * self.height horizontal_amount = int(total * self.FLOOR_CHANCE) verticle_amount = int(total * self.WALL_CHANCE) # generate the walls for _i in range(verticle_amount): random_index = random.randrange(0, total) adding_num = -1 if random_index == total - 1 else 1 first = "right" if adding_num == 1 else "left" second = "right" if first == "left" else "left" self.grid[random_index][first] = True self.grid[random_index + adding_num][second] = True # generate the floors for _i in range(horizontal_amount): random_index = random.randrange(0, total) adding_num = self.width * -1 if random_index > (total - self.width) else self.width first = "floor" if adding_num == self.width else "roof" second = "floor" if first == "roof" else "roof" self.grid[random_index][first] = True self.grid[random_index + adding_num - 1][second] = True def can_move_from(self, cell_index): # TODO this works but its a lot of repeated code. Can it be made better? # can you move left can_move_left = False is_left = True if cell_index % self.width == 0 else False if not is_left and self.grid[cell_index]["left"] == False: left_cell = self.grid[cell_index - 1] is_wall_left = True if left_cell["right"] == True else False can_move_left = True if not is_wall_left else False # can you move right can_move_right = False is_right = True if cell_index % self.width == self.width-1 else False if not is_right and self.grid[cell_index]["right"] == False: right_cell = self.grid[cell_index + 1] is_wall_right = True if right_cell["left"] == True else False can_move_right = True if not is_wall_right else False # can you move up can_move_up = False is_top = True if cell_index < self.width else False if not is_top and self.grid[cell_index]["roof"] == False: top_cell = self.grid[cell_index - self.width] is_wall_top = True if top_cell["floor"] == True else False can_move_up = True if not is_wall_top else False # can you move down can_move_down = False is_bottom = True if cell_index > (self.width * self.height - self.width) else False if not is_bottom and self.grid[cell_index]["floor"] == False: bottom_cell = self.grid[cell_index + self.width] is_wall_bottom = True if bottom_cell["roof"] == True else False can_move_down = True if not is_wall_bottom else False # return the results return can_move_left, can_move_right, can_move_up, can_move_down def BFS(self): """breadth first search to find the quickest way to the bottom""" start_i = random.randrange(0,self.width) paths = [ [start_i] ] solved = False dead_ends = [] while not solved: for path in paths: # find all possibles moves from path if len(dead_ends) >= len(paths) or len(paths) > 10000: # TODO this solution sucks return False, False # NOTE order is left right up down if path[-1] >= (self.width * self.height - self.width): solved = True return paths, paths.index(path) possible_moves = self.can_move_from(path[-1]) if True in possible_moves: move_order = [-1, 1, (self.width) * -1, self.width] first_append_flag = False origonal_path = path.copy() for i in range(4): possible_move = possible_moves[i] if possible_move: move = move_order[i] next_index = origonal_path[-1] + move if not next_index in origonal_path: if not first_append_flag: path.append(next_index) first_append_flag = True else: new_path = origonal_path.copy() new_path.append(next_index) paths.append(new_path) if not first_append_flag: dead_ends.append(paths.index(path)) else: dead_ends.append(paths.index(path)) def pretty_print_BFS(self, path): for i in range(self.width * self.height): cell = self.grid[i] in_path = True if cell["ID"] in path else False number_str = str(i) if len(number_str) == 1: number_str += " " elif len(number_str) == 2: number_str += " " end_str = "\n" if i % self.width == self.width-1 else " " if in_path: print('\033[92m' + number_str + '\033[0m', end=end_str) else: print(number_str, end=end_str) print(path) if __name__ == "__main__": b = Board(10) paths, index = b.BFS() if paths and index: b.pretty_print_BFS(paths[index]) else: print('ljfdsakfdl') # can_move_left, can_move_right, can_move_up, can_move_down = b.can_move_from(0) # print("can_move_left ", can_move_left) # print("can_move_right ", can_move_right) # print("can_move_up ", can_move_up) # print("can_move_down ", can_move_down)
Python
191
35.329842
97
/lib/board.py
0.51333
0.506269
TheDinner22/lightning-sim
refs/heads/main
# use pygame to show the board on a window # dependencies import pygame, random class Window: def __init__(self, board): # init py game pygame.init() # width height self.WIDTH = 600 self.HEIGHT = 600 # diffenet display modes self.display_one = False self.display_all = False # place holder self.solution = [] self.display_all_c = 0 # the board to display on the window self.board = board # define the dimensions of the cells of the board self.cell_width = self.WIDTH // self.board.width # define the left padding for the grid total_width = self.cell_width * self.board.width self.left_padding = (self.WIDTH - total_width) // 2 # colors self.COLORS = { "BLACK" : (255, 255, 255), "GREY" : (230, 230, 230), "BLUE" : (0, 0, 255), "RED" : (255, 0, 0), "YELLOW" : (212, 175, 55) } def create_random_color(self): return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) def create_window(self): # define window self.WIN = pygame.display.set_mode( (self.WIDTH, self.HEIGHT) ) # name window pygame.display.set_caption("LIGHT NING") # logo/icon for window logo = pygame.image.load("images/logo.png") pygame.display.set_icon(logo) def get_BFS(self): solved = False while not solved: self.board.create_random_grid() paths, index = self.board.BFS() if paths != False and index != False: self.solution = paths[index] solved = True self.paths = paths self.solution_i = index def draw_grid_solution(self): fflag = True for i in range(self.board.width * self.board.height): if not i in self.solution: continue # might not work col_num = i % self.board.width row_num = i // self.board.width x_pos = self.left_padding + (col_num * self.cell_width) y_pos = row_num * self.cell_width # define rect r = pygame.Rect(x_pos, y_pos, self.cell_width, self.cell_width) # draw the rectangle pygame.draw.rect(self.WIN, self.COLORS["YELLOW"], r) def draw_BFS(self): if self.display_all_c >= len(self.paths): self.display_all_c = 0 # generate a color for each path path_colors = [] for path in self.paths: path_colors.append(self.create_random_color()) path_colors[-1] = (0, 0 ,0) temp = self.paths.pop(self.display_all_c) self.paths.append(temp) for path in self.paths: for i in path: # might not work col_num = i % self.board.width row_num = i // self.board.width x_pos = self.left_padding + (col_num * self.cell_width) y_pos = row_num * self.cell_width # define rect r = pygame.Rect(x_pos, y_pos, self.cell_width, self.cell_width) # draw the rectangle pygame.draw.rect(self.WIN, path_colors[self.paths.index(path)], r) self.display_all_c += 1 def draw_window(self): self.WIN.fill(self.COLORS["GREY"]) if self.display_one: self.draw_grid_solution() elif self.display_all: self.draw_BFS() pygame.display.update() def main(self): # create window self.create_window() self.running = True while self.running: for event in pygame.event.get(): if event.type == pygame.QUIT: self.running = False elif event.type == pygame.KEYDOWN: if event.key == pygame.K_0: self.get_BFS() elif event.key == pygame.K_1: # toggle display one self.display_one = not self.display_one if self.display_one: self.display_all = False elif event.key == pygame.K_2: # toggle display all self.display_all = not self.display_all if self.display_all: self.display_all_c = 0 self.display_one = False self.draw_window() if __name__ == "__main__": win = Window() win.main()
Python
159
28.754717
87
/lib/window.py
0.501057
0.487104
TheDinner22/lightning-sim
refs/heads/main
# this could and will be better i just needed to make it here as a # proof of concept but it will be online and better later import os, sys BASE_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # adds project dir to places it looks for the modules sys.path.append(BASE_PATH) from lib.board import Board from lib.window import Window b = Board() win = Window(b) win.main()
Python
15
25.4
125
/main.py
0.736709
0.736709
JoeChan/openbgp
refs/heads/master
# Copyright 2015 Cisco Systems, Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ All BGP constant values """ # some handy things to know BGP_MAX_PACKET_SIZE = 4096 BGP_MARKER_SIZE = 16 # size of BGP marker BGP_HEADER_SIZE = 19 # size of BGP header, including marker BGP_MIN_OPEN_MSG_SIZE = 29 BGP_MIN_UPDATE_MSG_SIZE = 23 BGP_MIN_NOTIFICATION_MSG_SIZE = 21 BGP_MIN_KEEPALVE_MSG_SIZE = BGP_HEADER_SIZE BGP_TCP_PORT = 179 BGP_ROUTE_DISTINGUISHER_SIZE = 8 # BGP message types BGP_OPEN = 1 BGP_UPDATE = 2 BGP_NOTIFICATION = 3 BGP_KEEPALIVE = 4 BGP_ROUTE_REFRESH = 5 BGP_CAPABILITY = 6 BGP_ROUTE_REFRESH_CISCO = 0x80 BGP_SIZE_OF_PATH_ATTRIBUTE = 2 # attribute flags, from RFC1771 BGP_ATTR_FLAG_OPTIONAL = 0x80 BGP_ATTR_FLAG_TRANSITIVE = 0x40 BGP_ATTR_FLAG_PARTIAL = 0x20 BGP_ATTR_FLAG_EXTENDED_LENGTH = 0x10 # SSA flags BGP_SSA_TRANSITIVE = 0x8000 BGP_SSA_TYPE = 0x7FFF # SSA Types BGP_SSA_L2TPv3 = 1 BGP_SSA_mGRE = 2 BGP_SSA_IPSec = 3 BGP_SSA_MPLS = 4 BGP_SSA_L2TPv3_IN_IPSec = 5 BGP_SSA_mGRE_IN_IPSec = 6 # AS_PATH segment types AS_SET = 1 # RFC1771 AS_SEQUENCE = 2 # RFC1771 AS_CONFED_SET = 4 # RFC1965 has the wrong values, corrected in AS_CONFED_SEQUENCE = 3 # draft-ietf-idr-bgp-confed-rfc1965bis-01.txt # OPEN message Optional Parameter types BGP_OPTION_AUTHENTICATION = 1 # RFC1771 BGP_OPTION_CAPABILITY = 2 # RFC2842 # attribute types BGPTYPE_ORIGIN = 1 # RFC1771 BGPTYPE_AS_PATH = 2 # RFC1771 BGPTYPE_NEXT_HOP = 3 # RFC1771 BGPTYPE_MULTI_EXIT_DISC = 4 # RFC1771 BGPTYPE_LOCAL_PREF = 5 # RFC1771 BGPTYPE_ATOMIC_AGGREGATE = 6 # RFC1771 BGPTYPE_AGGREGATOR = 7 # RFC1771 BGPTYPE_COMMUNITIES = 8 # RFC1997 BGPTYPE_ORIGINATOR_ID = 9 # RFC2796 BGPTYPE_CLUSTER_LIST = 10 # RFC2796 BGPTYPE_DPA = 11 # work in progress BGPTYPE_ADVERTISER = 12 # RFC1863 BGPTYPE_RCID_PATH = 13 # RFC1863 BGPTYPE_MP_REACH_NLRI = 14 # RFC2858 BGPTYPE_MP_UNREACH_NLRI = 15 # RFC2858 BGPTYPE_EXTENDED_COMMUNITY = 16 # Draft Ramachandra BGPTYPE_NEW_AS_PATH = 17 # draft-ietf-idr-as4bytes BGPTYPE_NEW_AGGREGATOR = 18 # draft-ietf-idr-as4bytes BGPTYPE_SAFI_SPECIFIC_ATTR = 19 # draft-kapoor-nalawade-idr-bgp-ssa-00.txt BGPTYPE_TUNNEL_ENCAPS_ATTR = 23 # RFC5512 BGPTYPE_LINK_STATE = 99 BGPTYPE_ATTRIBUTE_SET = 128 # VPN Route Target # BGP_EXT_COM_RT_0 = 0x0002 # Route Target,Format AS(2bytes):AN(4bytes) BGP_EXT_COM_RT_1 = 0x0102 # Route Target,Format IPv4 address(4bytes):AN(2bytes) BGP_EXT_COM_RT_2 = 0x0202 # Route Target,Format AS(4bytes):AN(2bytes) # Route Origin (SOO site of Origin) BGP_EXT_COM_RO_0 = 0x0003 # Route Origin,Format AS(2bytes):AN(4bytes) BGP_EXT_COM_RO_1 = 0x0103 # Route Origin,Format IP address:AN(2bytes) BGP_EXT_COM_RO_2 = 0x0203 # Route Origin,Format AS(2bytes):AN(4bytes) # BGP Flow Spec BGP_EXT_TRA_RATE = 0x8006 # traffic-rate 2-byte as#, 4-byte float BGP_EXT_TRA_ACTION = 0x8007 # traffic-action bitmask BGP_EXT_REDIRECT = 0x8008 # redirect 6-byte Route Target BGP_EXT_TRA_MARK = 0x8009 # traffic-marking DSCP value # BGP cost cummunity BGP_EXT_COM_COST = 0x4301 # BGP link bandwith BGP_EXT_COM_LINK_BW = 0x4004 # NLRI type as define in BGP flow spec RFC BGPNLRI_FSPEC_DST_PFIX = 1 # RFC 5575 BGPNLRI_FSPEC_SRC_PFIX = 2 # RFC 5575 BGPNLRI_FSPEC_IP_PROTO = 3 # RFC 5575 BGPNLRI_FSPEC_PORT = 4 # RFC 5575 BGPNLRI_FSPEC_DST_PORT = 5 # RFC 5575 BGPNLRI_FSPEC_SRC_PORT = 6 # RFC 5575 BGPNLRI_FSPEC_ICMP_TP = 7 # RFC 5575 BGPNLRI_FSPEC_ICMP_CD = 8 # RFC 5575 BGPNLRI_FSPEC_TCP_FLAGS = 9 # RFC 5575 BGPNLRI_FSPEC_PCK_LEN = 10 # RFC 5575 BGPNLRI_FSPEC_DSCP = 11 # RFC 5575 BGPNLRI_FSPEC_FRAGMENT = 12 # RFC 5575 # BGP message Constants VERSION = 4 PORT = 179 HDR_LEN = 19 MAX_LEN = 4096 # BGP messages type MSG_OPEN = 1 MSG_UPDATE = 2 MSG_NOTIFICATION = 3 MSG_KEEPALIVE = 4 MSG_ROUTEREFRESH = 5 MSG_CISCOROUTEREFRESH = 128 # BGP Capabilities Support SUPPORT_4AS = False CISCO_ROUTE_REFRESH = False NEW_ROUTE_REFRESH = False GRACEFUL_RESTART = False # AFI_SAFI mapping AFI_SAFI_DICT = { (1, 1): 'ipv4', (1, 4): 'label_ipv4', (1, 128): 'vpnv4', (2, 1): 'ipv6', (2, 4): 'label_ipv6', (2, 128): 'vpnv6' } AFI_SAFI_STR_DICT = { 'ipv4': (1, 1), 'ipv6': (1, 2) } # BGP FSM State ST_IDLE = 1 ST_CONNECT = 2 ST_ACTIVE = 3 ST_OPENSENT = 4 ST_OPENCONFIRM = 5 ST_ESTABLISHED = 6 # BGP Timer (seconds) DELAY_OPEN_TIME = 10 ROUTE_REFRESH_TIME = 10 LARGER_HOLD_TIME = 4 * 60 CONNECT_RETRY_TIME = 30 IDLEHOLD_TIME = 30 HOLD_TIME = 120 stateDescr = { ST_IDLE: "IDLE", ST_CONNECT: "CONNECT", ST_ACTIVE: "ACTIVE", ST_OPENSENT: "OPENSENT", ST_OPENCONFIRM: "OPENCONFIRM", ST_ESTABLISHED: "ESTABLISHED" } # Notification error codes ERR_MSG_HDR = 1 ERR_MSG_OPEN = 2 ERR_MSG_UPDATE = 3 ERR_HOLD_TIMER_EXPIRED = 4 ERR_FSM = 5 ERR_CEASE = 6 # Notification suberror codes ERR_MSG_HDR_CONN_NOT_SYNC = 1 ERR_MSG_HDR_BAD_MSG_LEN = 2 ERR_MSG_HDR_BAD_MSG_TYPE = 3 ERR_MSG_OPEN_UNSUP_VERSION = 1 ERR_MSG_OPEN_BAD_PEER_AS = 2 ERR_MSG_OPEN_BAD_BGP_ID = 3 ERR_MSG_OPEN_UNSUP_OPT_PARAM = 4 ERR_MSG_OPEN_UNACCPT_HOLD_TIME = 6 ERR_MSG_OPEN_UNSUP_CAPA = 7 # RFC 5492 ERR_MSG_OPEN_UNKNO = 8 ERR_MSG_UPDATE_MALFORMED_ATTR_LIST = 1 ERR_MSG_UPDATE_UNRECOGNIZED_WELLKNOWN_ATTR = 2 ERR_MSG_UPDATE_MISSING_WELLKNOWN_ATTR = 3 ERR_MSG_UPDATE_ATTR_FLAGS = 4 ERR_MSG_UPDATE_ATTR_LEN = 5 ERR_MSG_UPDATE_INVALID_ORIGIN = 6 ERR_MSG_UPDATE_INVALID_NEXTHOP = 8 ERR_MSG_UPDATE_OPTIONAL_ATTR = 9 ERR_MSG_UPDATE_INVALID_NETWORK_FIELD = 10 ERR_MSG_UPDATE_MALFORMED_ASPATH = 11 ERR_MSG_UPDATE_UNKOWN_ATTR = 12 AttributeID_dict = { 1: 'ORIGIN', 2: 'AS_PATH', 3: 'NEXT_HOP', 4: 'MULTI_EXIT_DISC', 5: 'LOCAL_PREF', 6: 'ATOMIC_AGGREGATE', 7: 'AGGREGATOR', 8: 'COMMUNITY', 9: 'ORIGINATOR_ID', 10: 'CLUSTER_LIST', 14: 'MP_REACH_NLRI', 15: 'MP_UNREACH_NLRI', 16: 'EXTENDED_COMMUNITY', 17: 'AS4_PATH', 18: 'AS4_AGGREGATOR' } ATTRSTR_DICT = { 'AGGREGATOR': 7, 'AS4_AGGREGATOR': 18, 'AS4_PATH': 17, 'AS_PATH': 2, 'ATOMIC_AGGREGATE': 6, 'CLUSTER_LIST': 10, 'COMMUNITY': 8, 'EXTENDED_COMMUNITY': 16, 'LOCAL_PREFERENCE': 5, 'MP_REACH_NLRI': 14, 'MP_UNREACH_NLRI': 15, 'MULTI_EXIT_DISC': 4, 'NEXT_HOP': 3, 'ORIGIN': 1, 'ORIGINATOR_ID': 9} TCP_MD5SIG_MAXKEYLEN = 80 SS_PADSIZE_IPV4 = 120 TCP_MD5SIG = 14 SS_PADSIZE_IPV6 = 100 SIN6_FLOWINFO = 0 SIN6_SCOPE_ID = 0 COMMUNITY_DICT = False
Python
267
24.932585
80
/openbgp/common/constants.py
0.69103
0.617362
Glitchfix/TransposeMatrixIndorse
refs/heads/master
from flask import Flask, render_template, request, jsonify from flask_cors import CORS import json import numpy as np app = Flask(__name__) CORS(app) @app.route('/transpose', methods=["POST"]) def homepage(): data = request.json result = None error = "" try: mat = data["matrix"] mat = np.array(mat) result = mat.T.tolist() error = "" except KeyError as e: error = "Key %s not found" % (str(e)) pass except Exception as e: error = str(e) pass return jsonify({"result": result, "error": error}) app.run()
Python
29
19.724138
58
/server.py
0.579035
0.579035
shlsheth263/malware-detection-using-ANN
refs/heads/master
from tkinter import * from tkinter import ttk from tkinter import filedialog import test_python3 class Root(Tk): def __init__(self): super(Root, self).__init__() self.title("Malware Detection") self.minsize(500, 300) self.labelFrame = ttk.LabelFrame(self, text = " Open File") self.labelFrame.grid(column = 0, row = 1, padx = 200, pady = 20) self.button() def button(self): self.button = ttk.Button(self.labelFrame, text = "Browse A File",command = self.fileDialog) self.button.grid(column = 1, row = 1) def fileDialog(self): self.filename = filedialog.askopenfilename(initialdir = "/", title = "Select A File") self.label = ttk.Label(self.labelFrame, text = "") self.label.grid(column = 1, row = 2) self.label.configure(text = self.filename) root = Root() root.mainloop()
Python
35
24.685715
99
/python/gui.py
0.620267
0.600223
shlsheth263/malware-detection-using-ANN
refs/heads/master
#!/usr/bin/env python import sys import time import pandas as pd import pepy import binascii import numpy as np from hashlib import md5 import sklearn from tkinter import * from tkinter import ttk from tkinter import filedialog from tensorflow.keras.models import load_model def test(p): exe = {} print("Signature: %s" % int(p.signature)) exe['Signature'] = int(p.signature) exe['Magic'] = int(p.magic) print("Machine: %s (%s)" % (int(p.machine), p.get_machine_as_str())) exe['Machine'] = int(p.machine), p.get_machine_as_str() print("Number of sections: %s" % p.numberofsections) exe['Number of Sections'] = p.numberofsections print("Number of symbols: %s" % p.numberofsymbols) exe['Number of symbols'] = p.numberofsymbols print("Characteristics: %s" % int(p.characteristics)) exe['characteristics'] = int(p.characteristics) exe['timestamp'] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(p.timedatestamp)) print("Timedatestamp: %s" % time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(p.timedatestamp))) exe['CodeSize'] = int(p.codesize) print("Size of code: %s" % int(p.codesize)) exe['SizeofInitial'] = int(p.initdatasize) print("Size of initialized data: %s" % int(p.initdatasize)) exe['UninitSize'] = int(p.uninitdatasize) print("Size of uninitialized data: %s" % int(p.uninitdatasize)) exe['Baseofcode'] = int(p.baseofcode) print("Base address of code: %s" % int(p.baseofcode)) try: exe['baseaddr'] = int(p.baseofdata) print("Base address of data: %s" % int(p.baseofdata)) except: # Not available on PE32+, ignore it. pass exe['imagebase'] = int(p.imagebase) print("Image base address: %s" % int(p.imagebase)) exe['sectionalign'] = int(p.sectionalignement) print("Section alignment: %s" % int(p.sectionalignement)) exe['filealign'] = int(p.filealignment) print("File alignment: %s" % int(p.filealignment)) exe['imagesize'] = int(p.imagesize) print("Size of image: %s" % int(p.imagesize)) exe['headersize'] = int(p.headersize) print("Size of headers: %s" % int(p.headersize)) exe['checksum'] = int(p.checksum) print("Checksum: %s" % int(p.checksum)) exe['dllchar'] = int(p.dllcharacteristics) print("DLL characteristics: %s" % int(p.dllcharacteristics)) exe['stacksize'] = int(p.stackreservesize) print("Size of stack reserve: %s" % int(p.stackreservesize)) exe['stackcommit'] = int(p.stackcommitsize) print("Size of stack commit: %s" % int(p.stackcommitsize)) exe['heapsize'] = int(p.heapreservesize) print("Size of heap reserve: %s" % int(p.heapreservesize)) exe['heapcommit'] = int(p.heapcommitsize) print("Size of heap commit: %s" % int(p.heapcommitsize)) exe['rva'] = int(p.rvasandsize) print("Number of RVA and sizes: %s" % int(p.rvasandsize)) ep = p.get_entry_point() byts = p.get_bytes(ep, 8) print("Bytes at %s: %s" % (int(ep), ' '.join(['%#2x' % b for b in byts]))) sections = p.get_sections() print("Sections: (%i)" % len(sections)) for sect in sections: print("[+] %s" % sect.name) print("\tBase: %s" % int(sect.base)) print("\tLength: %s" % sect.length) print("\tVirtual address: %s" % int(sect.virtaddr)) print("\tVirtual size: %i" % sect.virtsize) print("\tNumber of Relocations: %i" % sect.numrelocs) print("\tNumber of Line Numbers: %i" % sect.numlinenums) print("\tCharacteristics: %s" % int(sect.characteristics)) if sect.length: print("\tFirst 10 bytes: 0x%s" % binascii.hexlify(sect.data[:10])) print("\tMD5: %s" % md5(sect.data).hexdigest()) imports = p.get_imports() print("Imports: (%i)" % len(imports)) l = [] for imp in imports: l.append((imp.sym, imp.name, int(imp.addr))) # exe['symbol'] = imp.sym,imp.name,int(imp.addr) print("[+] Symbol: %s (%s %s)" % (imp.sym, imp.name, int(imp.addr))) exe['symbol'] = l exports = p.get_exports() print("Exports: (%i)" % len(exports)) for exp in exports: exe['module'] = exp.mod, exp.func, int(exp.addr) print("[+] Module: %s (%s %s)" % (exp.mod, exp.func, int(exp.addr))) relocations = p.get_relocations() print("Relocations: (%i)" % len(relocations)) for reloc in relocations: print("[+] Type: %s (%s)" % (reloc.type, int(reloc.addr))) resources = p.get_resources() print("Resources: (%i)" % len(resources)) for resource in resources: print("[+] MD5: (%i) %s" % (len(resource.data), md5(resource.data).hexdigest())) if resource.type_str: print("\tType string: %s" % resource.type_str) else: print("\tType: %s (%s)" % (int(resource.type), resource.type_as_str())) if resource.name_str: print("\tName string: %s" % resource.name_str) else: print("\tName: %s" % int(resource.name)) if resource.lang_str: print("\tLang string: %s" % resource.lang_str) else: print("\tLang: %s" % int(resource.lang)) print("\tCodepage: %s" % int(resource.codepage)) print("\tRVA: %s" % int(resource.RVA)) print("\tSize: %s" % int(resource.size)) return exe class Root(Tk): def __init__(self): super(Root, self).__init__() self.mean_entropy = 6.69 self.mean_size = 6.895724 * 10 ** 6 self.mean_pointer = 5.513845 * 10 ** 5 self.mean_petype = 267 self.mean_optionalHeader = 224 self.mean_timestamp = 1.223333 * 10 ** 9 self.var = [2.45814868e+00, 5.78522477e+05, 4.59263747e-02, 3.94699109e+00 , 5.56093128e+05, 4.23275300e-02, 4.28793369e+00, 5.09558456e+05 , 4.26259209e-02, 4.52582805e+00, 5.00721420e+05, 4.38214743e-02 , 4.80847515e+00, 3.36937892e+05, 3.42121736e-02, 5.08079739e+00 , 2.82976405e+05, 3.27880482e-02, 5.19862150e+00, 2.51661820e+05 , 3.03001968e-02, 5.49108651e+00, 2.74803628e+05, 2.34008748e-02 , 5.65433567e+00, 2.61551950e+05, 2.20549168e-02, 5.82167673e+00 , 2.75945872e+05, 1.92542233e-02, 5.39081620e+00, 2.43941220e+05 , 1.66215197e-02, 5.25240971e+00, 2.13100610e+05, 1.38812852e-02 , 4.97209114e+00, 1.79580514e+05, 1.12734193e-02, 4.91835550e+00 , 1.81600442e+05, 9.08298818e-03, 4.67832320e+00, 1.75802757e+05 , 7.47834940e-03, 4.43536234e+00, 1.83062732e+05, 5.76560040e-03 , 3.36212748e+00, 1.05659050e+05, 4.12555574e-03, 3.44924796e+00 , 1.24784300e+05, 3.04785086e-03, 2.55147211e+00, 1.04770043e+05 , 2.20631168e-03, 2.63965525e+00, 1.31953132e+05, 1.50017798e-03 , 1.35032309e+13, 5.91049166e+13, 2.74411618e+08, 2.27146205e+08 , 1.30716250e+00, 1.02203650e+06, 1.64823331e+17, 9.70130473e+00 , 0.00000000e+00, 6.95117702e+14, 6.26391725e+00, 6.32965418e+14 , 0.00000000e+00, 1.39712067e+15, 3.09269595e+15, 2.53964553e+12 , 1.60595659e+06, 2.89297402e+14, 2.38878188e+15, 0.00000000e+00 , 1.35741026e+13, 8.21475966e+16, 8.55336176e-02, 1.57953396e-02 , 1.06058200e-02, 8.71010278e-03, 7.42508784e-03, 6.52156777e-03 , 5.72855385e-03, 4.99552441e-03, 4.36254449e-03, 3.93076962e-03 , 3.63767050e-03, 3.37999893e-03, 3.20280197e-03, 3.04227928e-03 , 2.93082120e-03, 2.85412932e-03, 2.79797761e-03, 2.71092621e-03 , 2.61535713e-03, 2.55340228e-03, 2.48501139e-03, 2.42902100e-03 , 2.36850195e-03, 2.29861381e-03, 2.23819994e-03, 2.17795827e-03 , 2.11676028e-03, 2.06515542e-03, 2.01478973e-03, 1.96564128e-03 , 1.91556309e-03, 1.86943149e-03, 1.83240435e-03, 1.79120738e-03 , 1.75672559e-03, 1.71652747e-03, 1.68120594e-03, 1.65315473e-03 , 1.62036128e-03, 1.59368312e-03, 1.56195259e-03, 1.53480747e-03 , 1.50568561e-03, 1.48263107e-03, 1.46131105e-03, 1.43606408e-03 , 1.41276985e-03, 1.39413270e-03, 1.37646323e-03, 1.35706705e-03] self.mean = [3.38644034e+00, 7.43425464e+02, 6.40294006e-01, 3.41446464e+00 , 7.43311042e+02, 3.93069798e-01, 3.44198895e+00, 7.65279393e+02 , 3.30402571e-01, 3.37149071e+00, 7.42151971e+02, 2.99447860e-01 , 3.17242069e+00, 5.44187845e+02, 2.54659310e-01, 3.13009675e+00 , 4.84051874e+02, 2.31965387e-01, 3.03159921e+00, 4.77210895e+02 , 2.11030105e-01, 2.91210220e+00, 4.75812355e+02, 1.79221157e-01 , 2.48661283e+00, 4.07247419e+02, 1.46988188e-01, 2.35089123e+00 , 4.09849329e+02, 1.27373824e-01, 2.05407365e+00, 3.31339017e+02 , 1.09869680e-01, 1.83130422e+00, 2.84458239e+02, 9.13302463e-02 , 1.65633359e+00, 2.43290193e+02, 7.70382677e-02, 1.53908652e+00 , 2.37653259e+02, 6.49126524e-02, 1.40798980e+00, 2.15514487e+02 , 5.50734013e-02, 1.27721807e+00, 2.05804280e+02, 4.48429695e-02 , 9.54851129e-01, 1.16369741e+02, 3.33964758e-02, 9.08127297e-01 , 1.24898928e+02, 2.66482729e-02, 6.62233444e-01, 1.04622009e+02 , 1.90757276e-02, 6.01659959e-01, 1.28183120e+02, 1.37406010e-02 , 1.70803755e+05, 8.91260553e+05, 1.89259938e+04, 1.02192320e+04 , 6.69685927e+00, 8.22232244e+02, 1.63555414e+08, 3.32080948e+02 , 2.67000000e+02, 5.19991299e+05, 5.71698208e+00, 2.24746765e+05 , 2.67000000e+02, 6.57049714e+05, 6.93815969e+06, 6.83251704e+05 , 1.59274898e+03, 2.44727973e+06, 1.63751281e+06, 2.24000000e+02 , 1.71372990e+05, 1.22412702e+09, 3.23793663e-01, 1.76607058e-01 , 1.55393276e-01, 1.45630353e-01, 1.37842988e-01, 1.31876001e-01 , 1.25851666e-01, 1.20359017e-01, 1.15054661e-01, 1.10336582e-01 , 1.05885689e-01, 1.01550953e-01, 9.65836144e-02, 9.22891413e-02 , 8.80601110e-02, 8.45020529e-02, 8.11572167e-02, 7.87433791e-02 , 7.69100818e-02, 7.45285251e-02, 7.27705280e-02, 7.10439361e-02 , 6.96190823e-02, 6.82907176e-02, 6.71648772e-02, 6.60168642e-02 , 6.49738245e-02, 6.39356689e-02, 6.31187099e-02, 6.23316077e-02 , 6.14790592e-02, 6.07008932e-02, 5.98904188e-02, 5.90441028e-02 , 5.82944078e-02, 5.76313235e-02, 5.69379230e-02, 5.60963207e-02 , 5.53104343e-02, 5.47383798e-02, 5.40714718e-02, 5.34539907e-02 , 5.28624994e-02, 5.23242945e-02, 5.18031428e-02, 5.11818326e-02 , 5.05779398e-02, 4.99491364e-02, 4.95038547e-02, 4.90042634e-02] self.mean=np.array(self.mean) self.var=np.array(self.var) def fileDialog(self): x = test(pepy.parse(self.filename)) importedDLL = set() importedSymbols = set() for row in x['symbol']: importedSymbols.add(row[0]) importedDLL.add(row[1]) self.x_list = [x['Baseofcode'], x['baseaddr'], x['characteristics'], x['dllchar'], self.mean_entropy, x['filealign'], x['imagebase'], list(importedDLL), list(importedSymbols), x['Machine'][0], x['Magic'], x['rva'], x['Number of Sections'], x['Number of symbols'], self.mean_petype, self.mean_pointer, self.mean_size, x['CodeSize'], x['headersize'], x['imagesize'], x['SizeofInitial'], self.mean_optionalHeader, x['UninitSize'], self.mean_timestamp] y = "" z = "" m = np.array(self.x_list) imported_dlls = m[7] imported_syms = m[8] m = np.delete(m, 7) m = np.delete(m, 7) m = np.reshape(m, (1, m.shape[0])) print("m:", m) x_test = m n_x_test = np.zeros(shape=(x_test.shape[0], 132)) for i in range(0, x_test.shape[0]): if i % 1000 == 0: print(i) row = df.iloc[i + 40001, :] row_dlls = imported_dlls row_syms = imported_syms row_dlss_str="" row_syms_str="" for ele in row_dlls: row_dlss_str += ele.lower() +" " for ele in row_syms: row_syms_str += ele.lower() +" " print(row_dlss_str) print(row_syms_str) dll_tfidfs = dll_vec.transform([row_dlss_str, ]).toarray()[0] dll_tfidf_pairs = [] for num, dll in enumerate(row_dlss_str.split()): if num == 20: break dll_tfidf = dll_tfidfs[list(dll_vec.get_feature_names()).index(dll)] dll_tfidf_pairs.append([dll_tfidf, list(dll_vec.get_feature_names()).index(dll)]) dll_tfidf_pairs = np.array(dll_tfidf_pairs) # print(dll_tfidf_pairs) dll_tfidf_pairs = dll_tfidf_pairs[dll_tfidf_pairs[:, 0].argsort()[::-1]] for j, pair in enumerate(dll_tfidf_pairs): name = dll_vec.get_feature_names()[int(pair[1])] if name in scrape_dict: n_x_test[i, 3 * j] = scrape_dict[name][0] n_x_test[i, 3 * j + 1] = scrape_dict[name][1] n_x_test[i, 3 * j + 2] = pair[0] else: n_x_test[i, 3 * j] = 1 n_x_test[i, 3 * j + 1] = 4 n_x_test[i, 3 * j + 2] = pair[0] # print(ip1_train) sym_tfidf = sym_vec.transform([row_syms_str, ]).toarray()[0] sym_tfidf = sorted(sym_tfidf, reverse=True)[:50] ip2_train = np.append(x_test[i], sym_tfidf) n_x_test[i, 60:] = ip2_train num = model.predict((n_x_test - self.mean) / (self.var ** 0.5 + 0.069)) print("NUM" + str(num)) if num >= 0 and num <= 0.3: y = "Low" z = "Good to use" elif num > 0.3 and num <= 0.6: y = "Medium" z = "Can be used" elif num > 0.6 and num <= 1: y = "High" z = "Avoid Using" else: y = "Out of range" z = "Cant determine" self.label.config(text="Recommendation : " + y) self.label = ttk.Label(self.labelFrame, text="") self.label.grid(column=1, row=3) self.label.config(text=z) df = pd.read_csv("brazilian-malware.csv") df = df.drop(columns=["Identify", "SHA1", "FirstSeenDate"]) idll = df.loc[:, "ImportedDlls"] idll = set(idll) dlls = set() for row in idll: for dll in row.split(): dlls.add(dll) isyms = df.loc[:, "ImportedSymbols"] isyms = set(isyms) syms = set() for row in isyms: for dll in row.split(): syms.add(dll) df_temp = df.drop(columns=["ImportedDlls", "ImportedSymbols"]) x_train = np.array(df_temp.drop(columns=["Label"]).iloc[:40001, :]) y_train = np.array(df_temp.iloc[:40001, :].loc[:, "Label"]) x_test = np.array(df_temp.drop(columns=["Label"]).iloc[40001:, :]) y_test = np.array(df_temp.iloc[40001:, :].loc[:, "Label"]) from sklearn.feature_extraction.text import TfidfVectorizer dll_vec = TfidfVectorizer(smooth_idf=False, analyzer="word", tokenizer=lambda x: x.split()) x = dll_vec.fit_transform(list(df.loc[:, "ImportedDlls"])) sym_vec = TfidfVectorizer(smooth_idf=False, analyzer="word", tokenizer=lambda x: x.split()) x = sym_vec.fit_transform(list(df.loc[:, "ImportedSymbols"])) df_scrape = pd.read_csv("spithack1.csv").drop(['Description'], axis=1) np_scrape = df_scrape.values scrape_dict = {} for i, row in enumerate(np_scrape): if not row[1] == "-1": name = row[0].replace("_dll", ".dll") pop = -1 if "Very Low" in row[1]: pop = 1 if "Low" in row[1]: pop = 2 if "Medium" in row[1]: pop = 3 if "High" in row[1]: pop = 4 if "Very High" in row[1]: pop = 5 if pop == -1: print("err", row[1]) exp = row[2].replace(",", "") scrape_dict[name] = [pop, int(exp)] model = load_model('acc_97_44.h5')
Python
386
35.992229
107
/python/test_python3_cli.py~
0.655182
0.439846
Sssssbo/SDCNet
refs/heads/master
import numpy as np import os import torch import torch.nn.functional as F from PIL import Image from torch.autograd import Variable from torchvision import transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import pandas as pd from tqdm import tqdm from misc import check_mkdir, AvgMeter, cal_precision_recall_mae, cal_fmeasure, cal_sizec, cal_sc from datasets import TestFolder_joint import joint_transforms from model import R3Net, SDCNet torch.manual_seed(2021) # set which gpu to use torch.cuda.set_device(6) # the following two args specify the location of the file of trained model (pth extension) # you should have the pth file in the folder './$ckpt_path$/$exp_name$' ckpt_path = './ckpt' exp_name = 'SDCNet' msra10k_path = './SOD_label/label_msra10k.csv' ecssd_path = './SOD_label/label_ECSSD.csv' dutomrom_path = './SOD_label/label_DUT-OMROM.csv' dutste_path = './SOD_label/label_DUTS-TE.csv' hkuis_path = './SOD_label/label_HKU-IS.csv' pascals_path = './SOD_label/label_PASCAL-S.csv' sed2_path = './SOD_label/label_SED2.csv' socval_path = './SOD_label/label_SOC-Val.csv' sod_path = './SOD_label/label_SOD.csv' thur15k_path = './SOD_label/label_THUR-15K.csv' args = { 'snapshot': '30000', # your snapshot filename (exclude extension name) 'save_results': True, # whether to save the resulting masks 'test_mode': 1 } joint_transform = joint_transforms.Compose([ #joint_transforms.RandomCrop(300), #joint_transforms.RandomHorizontallyFlip(), #joint_transforms.RandomRotate(10) ]) img_transform = transforms.Compose([ transforms.Resize((300, 300)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) target_transform = transforms.ToTensor() to_pil = transforms.ToPILImage() to_test ={'ECSSD': ecssd_path,'SOD': sod_path, 'DUTS-TE': dutste_path} #{'DUTS-TE': dutste_path,'ECSSD': ecssd_path,'SOD': sod_path, 'SED2': sed2_path, 'PASCAL-S': pascals_path, 'HKU-IS': hkuis_path, 'DUT-OMROM': dutomrom_path} def main(): net = SDCNet(num_classes = 5).cuda() print('load snapshot \'%s\' for testing, mode:\'%s\'' % (args['snapshot'], args['test_mode'])) print(exp_name) net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth'))) net.eval() results = {} with torch.no_grad(): for name, root in to_test.items(): print('load snapshot \'%s\' for testing %s' %(args['snapshot'], name)) test_data = pd.read_csv(root) test_set = TestFolder_joint(test_data, joint_transform, img_transform, target_transform) test_loader = DataLoader(test_set, batch_size=1, num_workers=0, shuffle=False) precision0_record, recall0_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision1_record, recall1_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision2_record, recall2_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision3_record, recall3_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision4_record, recall4_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision5_record, recall5_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision6_record, recall6_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] mae0_record = AvgMeter() mae1_record = AvgMeter() mae2_record = AvgMeter() mae3_record = AvgMeter() mae4_record = AvgMeter() mae5_record = AvgMeter() mae6_record = AvgMeter() n0, n1, n2, n3, n4, n5 = 0, 0, 0, 0, 0, 0 if args['save_results']: check_mkdir(os.path.join(ckpt_path, exp_name, '%s_%s' % (name, args['snapshot']))) for i, (inputs, gt, labels, img_path) in enumerate(tqdm(test_loader)): shape = gt.size()[2:] img_var = Variable(inputs).cuda() img = np.array(to_pil(img_var.data.squeeze(0).cpu())) gt = np.array(to_pil(gt.data.squeeze(0).cpu())) sizec = labels.numpy() pred2021 = net(img_var, sizec) pred2021 = F.interpolate(pred2021, size=shape, mode='bilinear', align_corners=True) pred2021 = np.array(to_pil(pred2021.data.squeeze(0).cpu())) if labels == 0: precision1, recall1, mae1 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision1, recall1)): p, r = pdata precision1_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall1_record[pidx].update(r) mae1_record.update(mae1) n1 += 1 elif labels == 1: precision2, recall2, mae2 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision2, recall2)): p, r = pdata precision2_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall2_record[pidx].update(r) mae2_record.update(mae2) n2 += 1 elif labels == 2: precision3, recall3, mae3 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision3, recall3)): p, r = pdata precision3_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall3_record[pidx].update(r) mae3_record.update(mae3) n3 += 1 elif labels == 3: precision4, recall4, mae4 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision4, recall4)): p, r = pdata precision4_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall4_record[pidx].update(r) mae4_record.update(mae4) n4 += 1 elif labels == 4: precision5, recall5, mae5 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision5, recall5)): p, r = pdata precision5_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall5_record[pidx].update(r) mae5_record.update(mae5) n5 += 1 precision6, recall6, mae6 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision6, recall6)): p, r = pdata precision6_record[pidx].update(p) recall6_record[pidx].update(r) mae6_record.update(mae6) img_name = os.path.split(str(img_path))[1] img_name = os.path.splitext(img_name)[0] n0 += 1 if args['save_results']: Image.fromarray(pred2021).save(os.path.join(ckpt_path, exp_name, '%s_%s' % ( name, args['snapshot']), img_name + '_2021.png')) fmeasure1 = cal_fmeasure([precord.avg for precord in precision1_record], [rrecord.avg for rrecord in recall1_record]) fmeasure2 = cal_fmeasure([precord.avg for precord in precision2_record], [rrecord.avg for rrecord in recall2_record]) fmeasure3 = cal_fmeasure([precord.avg for precord in precision3_record], [rrecord.avg for rrecord in recall3_record]) fmeasure4 = cal_fmeasure([precord.avg for precord in precision4_record], [rrecord.avg for rrecord in recall4_record]) fmeasure5 = cal_fmeasure([precord.avg for precord in precision5_record], [rrecord.avg for rrecord in recall5_record]) fmeasure6 = cal_fmeasure([precord.avg for precord in precision6_record], [rrecord.avg for rrecord in recall6_record]) results[name] = {'fmeasure1': fmeasure1, 'mae1': mae1_record.avg,'fmeasure2': fmeasure2, 'mae2': mae2_record.avg, 'fmeasure3': fmeasure3, 'mae3': mae3_record.avg, 'fmeasure4': fmeasure4, 'mae4': mae4_record.avg, 'fmeasure5': fmeasure5, 'mae5': mae5_record.avg, 'fmeasure6': fmeasure6, 'mae6': mae6_record.avg} print('test results:') print('[fmeasure1 %.3f], [mae1 %.4f], [class1 %.0f]\n'\ '[fmeasure2 %.3f], [mae2 %.4f], [class2 %.0f]\n'\ '[fmeasure3 %.3f], [mae3 %.4f], [class3 %.0f]\n'\ '[fmeasure4 %.3f], [mae4 %.4f], [class4 %.0f]\n'\ '[fmeasure5 %.3f], [mae5 %.4f], [class5 %.0f]\n'\ '[fmeasure6 %.3f], [mae6 %.4f], [all %.0f]\n'%\ (fmeasure1, mae1_record.avg, n1, fmeasure2, mae2_record.avg, n2, fmeasure3, mae3_record.avg, n3, fmeasure4, mae4_record.avg, n4, fmeasure5, mae5_record.avg, n5, fmeasure6, mae6_record.avg, n0)) def accuracy(y_pred, y_actual, topk=(1,)): """Computes the precision@k for the specified values of k""" final_acc = 0 maxk = max(topk) # for prob_threshold in np.arange(0, 1, 0.01): PRED_COUNT = y_actual.size(0) PRED_CORRECT_COUNT = 0 prob, pred = y_pred.topk(maxk, 1, True, True) # prob = np.where(prob > prob_threshold, prob, 0) for j in range(pred.size(0)): if int(y_actual[j]) == int(pred[j]): PRED_CORRECT_COUNT += 1 if PRED_COUNT == 0: final_acc = 0 else: final_acc = float(PRED_CORRECT_COUNT / PRED_COUNT) return final_acc * 100, PRED_COUNT if __name__ == '__main__': main()
Python
226
45.637169
227
/infer_SDCNet.py
0.54592
0.509962
Sssssbo/SDCNet
refs/heads/master
from .resnext101 import ResNeXt101
Python
1
34
34
/resnext/__init__.py
0.857143
0.685714
Sssssbo/SDCNet
refs/heads/master
import numpy as np import os import pylab as pl #import pydensecrf.densecrf as dcrf class AvgMeter(object): def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def check_mkdir(dir_name): if not os.path.exists(dir_name): os.mkdir(dir_name) def cal_precision_recall_mae(prediction, gt): # input should be np array with data type uint8 assert prediction.dtype == np.uint8 assert gt.dtype == np.uint8 assert prediction.shape == gt.shape eps = 1e-4 prediction = prediction / 255. gt = gt / 255. mae = np.mean(np.abs(prediction - gt)) hard_gt = np.zeros(prediction.shape) hard_gt[gt > 0.5] = 1 t = np.sum(hard_gt) #t is sum of 1 precision, recall, TPR, FP = [], [], [], [] # calculating precision and recall at 255 different binarizing thresholds for threshold in range(256): threshold = threshold / 255. hard_prediction = np.zeros(prediction.shape) hard_prediction[prediction > threshold] = 1 #false_pred = np.zeros(prediction.shape) #false_prediction[prediction < threshold] = 1 a = prediction.shape tp = np.sum(hard_prediction * hard_gt) p = np.sum(hard_prediction) #for roc #fp = np.sum(false_pred * hard_gt) #tpr = (tp + eps)/(a + eps) fp = p - tp #TPR.append(tpr) FP.append(fp) precision.append((tp + eps) / (p + eps)) recall.append((tp + eps) / (t + eps)) return precision, recall, mae#, TPR, FP def cal_fmeasure(precision, recall): assert len(precision) == 256 assert len(recall) == 256 beta_square = 0.3 max_fmeasure = max([(1 + beta_square) * p * r / (beta_square * p + r) for p, r in zip(precision, recall)]) return max_fmeasure def cal_sizec(prediction, gt): # input should be np array with data type uint8 assert prediction.dtype == np.uint8 assert gt.dtype == np.uint8 assert prediction.shape == gt.shape eps = 1e-4 #print(gt.shape) prediction = prediction / 255. gt = gt / 255. hard_gt = np.zeros(prediction.shape) hard_gt[gt > 0.5] = 1 t = np.sum(hard_gt) #t is sum of 1 precision, recall, TPR, FP = [], [], [], [] # calculating precision and recall at 255 different binarizing thresholds best_threshold = 0 best_F = 0 for threshold in range(256): threshold = threshold / 255. gt_size = np.ones(prediction.shape) a = np.sum(gt_size) hard_prediction = np.zeros(prediction.shape) hard_prediction[prediction > threshold] = 1 tp = np.sum(hard_prediction * hard_gt) p = np.sum(hard_prediction) #print(a, p) precision = (tp + eps) / (p + eps) recall = (tp + eps) / (t + eps) beta_square = 0.3 fmeasure = (1 + beta_square) * precision * recall / (beta_square * precision + recall) if fmeasure > best_F: best_threshold = threshold*255 best_F = fmeasure sm_size = p / a if 0 <= sm_size < 0.1: sizec = 0 elif 0.1 <= sm_size < 0.2: sizec = 1 elif 0.2 <= sm_size < 0.3: sizec = 2 elif 0.3 <= sm_size < 0.4: sizec = 3 elif 0.4 <= sm_size <= 1.0: sizec = 4 return sizec, best_threshold#, TPR, FP def cal_sc(gt): # input should be np array with data type uint8 assert gt.dtype == np.uint8 eps = 1e-4 gt = gt / 255. #print(gt.shape) img_size = np.ones(gt.shape) a = np.sum(img_size) hard_gt = np.zeros(gt.shape) hard_gt[gt > 0.5] = 1 p = np.sum(hard_gt) b = np.sum(gt) sm_size = float(p) / float(a) #print(p, a, sm_size, b) #print(gt) if 0 <= sm_size < 0.1: sizec = 0 elif 0.1 <= sm_size < 0.2: sizec = 1 elif 0.2 <= sm_size < 0.3: sizec = 2 elif 0.3 <= sm_size < 0.4: sizec = 3 elif 0.4 <= sm_size <= 1.0: sizec = 4 return sizec def pr_cruve(precision, recall): assert len(precision) == 256 assert len(recall) == 256 r = [a[1] for a in zip(precision, recall)] p = [a[0] for a in zip(precision, recall)] pl.title('PR curve') pl.xlabel('Recall') pl.xlabel('Precision') pl.plot(r, p) pl.show() # for define the size type of the salient object def size_aware(gt): assert gt.dtype == np.uint8 eps = 1e-4 gt = gt / 255. hard_gt = np.zeros(gt.shape) hard_gt[gt > 0.5] = 1 t = np.sum(hard_gt) pic = np.size(hard_gt) rate = t/pic return rate # # codes of this function are borrowed from https://github.com/Andrew-Qibin/dss_crf # def crf_refine(img, annos): # def _sigmoid(x): # return 1 / (1 + np.exp(-x)) # assert img.dtype == np.uint8 # assert annos.dtype == np.uint8 # assert img.shape[:2] == annos.shape # # img and annos should be np array with data type uint8 # EPSILON = 1e-8 # M = 2 # salient or not # tau = 1.05 # # Setup the CRF model # d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], M) # anno_norm = annos / 255. # n_energy = -np.log((1.0 - anno_norm + EPSILON)) / (tau * _sigmoid(1 - anno_norm)) # p_energy = -np.log(anno_norm + EPSILON) / (tau * _sigmoid(anno_norm)) # U = np.zeros((M, img.shape[0] * img.shape[1]), dtype='float32') # U[0, :] = n_energy.flatten() # U[1, :] = p_energy.flatten() # d.setUnaryEnergy(U) # d.addPairwiseGaussian(sxy=3, compat=3) # d.addPairwiseBilateral(sxy=60, srgb=5, rgbim=img, compat=5) # # Do the inference # infer = np.array(d.inference(1)).astype('float32') # res = infer[1, :] # res = res * 255 # res = res.reshape(img.shape[:2]) # return res.astype('uint8')
Python
227
25.356829
110
/misc.py
0.56343
0.531673
Sssssbo/SDCNet
refs/heads/master
from .make_model import ResNet50, ResNet50_BIN, ResNet50_LowIN
Python
1
62
62
/resnet/__init__.py
0.822581
0.725806
Sssssbo/SDCNet
refs/heads/master
from .resnet import ResNet, BasicBlock, Bottleneck import torch from torch import nn from .config import resnet50_path model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class ResNet50(nn.Module): def __init__(self): super(ResNet50, self).__init__() net = ResNet(last_stride=2, block=Bottleneck, frozen_stages=False, layers=[3, 4, 6, 3]) net.load_param(resnet50_path) self.layer0 = net.layer0 self.layer1 = net.layer1 self.layer2 = net.layer2 self.layer3 = net.layer3 self.layer4 = net.layer4 def forward(self, x): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) return layer4 def load_param(self, trained_path): param_dict = torch.load(trained_path) for i in param_dict: if 'classifier' in i or 'arcface' in i: continue self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model from {}'.format(trained_path)) class ResNet50_BIN(nn.Module): def __init__(self): super(ResNet50_BIN, self).__init__() net = ResNet(last_stride=2, block=IN_Bottleneck, frozen_stages=False, layers=[3, 4, 6, 3]) net.load_param(resnet50_path) self.layer0 = net.layer0 self.layer1 = net.layer1 self.layer2 = net.layer2 self.layer3 = net.layer3 self.layer4 = net.layer4 def forward(self, x): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) return layer4 def load_param(self, trained_path): param_dict = torch.load(trained_path) for i in param_dict: if 'classifier' in i or 'arcface' in i: continue self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model from {}'.format(trained_path)) class ResNet50_LowIN(nn.Module): def __init__(self): super(ResNet50_LowIN, self).__init__() net = ResNet_LowIN(last_stride=2, block=Bottleneck, frozen_stages=False, layers=[3, 4, 6, 3]) net.load_param(resnet50_path) self.layer0 = net.layer0 self.layer1 = net.layer1 self.layer2 = net.layer2 self.layer3 = net.layer3 self.layer4 = net.layer4 def forward(self, x): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) return layer4 def load_param(self, trained_path): param_dict = torch.load(trained_path) for i in param_dict: if 'classifier' in i or 'arcface' in i: continue self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model from {}'.format(trained_path))
Python
104
32.740383
78
/resnet/make_model.py
0.586492
0.54175
Sssssbo/SDCNet
refs/heads/master
import os import os.path import torch.utils.data as data from PIL import Image class ImageFolder_joint(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, label_list, joint_transform=None, transform=None, target_transform=None): imgs = [] self.label_list = label_list for index, row in label_list.iterrows(): imgs.append((row['img_path'], row['gt_path'], row['label'])) self.imgs = imgs self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __len__(self): return len(self.label_list) def __getitem__(self, index): img_path, gt_path, label = self.imgs[index] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') if self.joint_transform is not None: img, target = self.joint_transform(img, target) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target, label class ImageFolder_joint_for_edge(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, label_list, joint_transform=None, transform=None, target_transform=None): imgs = [] for index, row in label_list.iterrows(): imgs.append((row['img_path'], row['gt_path'], row['label'])) self.imgs = imgs self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __getitem__(self, index): img_path, gt_path, label = self.imgs[index] edge_path = "."+gt_path.split(".")[1]+"_edge."+gt_path.split(".")[2] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') target_edge = Image.open(edge_path).convert('L') if self.joint_transform is not None: if img.size != target.size or img.size != target_edge.size: print("error path:", img_path, gt_path) print("size:", img.size, target.size, target_edge.size) img, target, target_edge = self.joint_transform(img, target, target_edge) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) target_edge = self.target_transform(target_edge) return img, target, target_edge, label def __len__(self): return len(self.imgs) class TestFolder_joint(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, label_list, joint_transform=None, transform=None, target_transform=None): imgs = [] for index, row in label_list.iterrows(): imgs.append((row['img_path'], row['gt_path'], row['label'])) self.imgs = imgs self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __getitem__(self, index): img_path, gt_path, label = self.imgs[index] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') if self.joint_transform is not None: img, target = self.joint_transform(img, target) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target, label, img_path def __len__(self): return len(self.imgs) def make_dataset(root): img_list = [os.path.splitext(f)[0] for f in os.listdir(root) if f.endswith('.jpg')] return [(os.path.join(root, img_name + '.jpg'), os.path.join(root, img_name + '.png')) for img_name in img_list] class ImageFolder(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, root, joint_transform=None, transform=None, target_transform=None): self.root = root self.imgs = make_dataset(root) self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __getitem__(self, index): img_path, gt_path = self.imgs[index] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') if self.joint_transform is not None: img, target = self.joint_transform(img, target) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.imgs)
Python
125
39.872002
118
/datasets.py
0.623214
0.622627
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
9