repo_name
stringclasses
400 values
branch_name
stringclasses
4 values
file_content
stringlengths
16
72.5k
language
stringclasses
1 value
num_lines
int64
1
1.66k
avg_line_length
float64
6
85
max_line_length
int64
9
949
path
stringlengths
5
103
alphanum_fraction
float64
0.29
0.89
alpha_fraction
float64
0.27
0.89
shuishen112/pairwise-rnn
refs/heads/master
import data_helper import time import datetime import os import tensorflow as tf import numpy as np import evaluation now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) timeDay = time.strftime("%Y%m%d", timeArray) print (timeStamp) def main(args): args._parse_flags() print("\nParameters:") for attr, value in sorted(args.__flags.items()): print(("{}={}".format(attr.upper(), value))) log_dir = 'log/'+ timeDay if not os.path.exists(log_dir): os.makedirs(log_dir) data_file = log_dir + '/test_' + args.data + timeStamp precision = data_file + 'precise' print('load data ...........') train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev]) print('the number of words',len(alphabet)) print('get embedding') if args.data=="quora": embedding = data_helper.get_embedding(alphabet,language="cn") else: embedding = data_helper.get_embedding(alphabet) with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model = QA_CNN_extend(max_input_left = q_max_sent_length, max_input_right = a_max_sent_length, batch_size = args.batch_size, vocab_size = len(alphabet), embedding_size = args.embedding_dim, filter_sizes = list(map(int, args.filter_sizes.split(","))), num_filters = args.num_filters, hidden_size = args.hidden_size, dropout_keep_prob = args.dropout_keep_prob, embeddings = embedding, l2_reg_lambda = args.l2_reg_lambda, trainable = args.trainable, pooling = args.pooling, conv = args.conv) model.build_graph() sess.run(tf.global_variables_initializer()) def train_step(model,sess,batch): for data in batch: feed_dict = { model.question:data[0], model.answer:data[1], model.answer_negative:data[2], model.q_mask:data[3], model.a_mask:data[4], model.a_neg_mask:data[5] } _, summary, step, loss, accuracy,score12, score13, see = sess.run( [model.train_op, model.merged,model.global_step,model.loss, model.accuracy,model.score12,model.score13, model.see], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) def predict(model,sess,batch,test): scores = [] for data in batch: feed_dict = { model.question:data[0], model.answer:data[1], model.q_mask:data[2], model.a_mask:data[3] } score = sess.run( model.score12, feed_dict) scores.extend(score) return np.array(scores[:len(test)]) for i in range(args.num_epoches): datas = data_helper.get_mini_batch(train,alphabet,args.batch_size) train_step(model,sess,datas) test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) predicted_test = predict(model,sess,test_datas,test) print(len(predicted_test)) print(len(test)) map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) print('map_mrr test',map_mrr_test)
Python
116
36.043102
159
/main.py
0.553088
0.546842
shuishen112/pairwise-rnn
refs/heads/master
class Singleton(object): __instance=None def __init__(self): pass def getInstance(self): if Singleton.__instance is None: # Singleton.__instance=object.__new__(cls,*args,**kwd) Singleton.__instance=self.get_test_flag() print("build FLAGS over") return Singleton.__instance def get_test_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 1, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 5e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "cnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_rnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 1, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 0.001, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "rnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") # flags.DEFINE_string('data','8008','data set') flags.DEFINE_string('data','trec','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',False,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_cnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 5e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "cnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_qcnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 0.001, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "qcnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','mean','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_8008_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",200, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 1e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "rnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 250, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','8008','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',False,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS if __name__=="__main__": args=Singleton().get_test_flag() for attr, value in sorted(args.__flags.items()): print(("{}={}".format(attr.upper(), value)))
Python
197
60.426395
121
/config.py
0.627396
0.597571
shuishen112/pairwise-rnn
refs/heads/master
from tensorflow import flags import tensorflow as tf from config import Singleton import data_helper import datetime,os import models import numpy as np import evaluation import sys import logging import time now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) log_filename = "log/" +time.strftime("%Y%m%d", timeArray) program = os.path.basename('program') logger = logging.getLogger(program) if not os.path.exists(log_filename): os.makedirs(log_filename) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s',datefmt='%a, %d %b %Y %H:%M:%S',filename=log_filename+'/qa.log',filemode='w') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) from data_helper import log_time_delta,getLogger logger=getLogger() args = Singleton().get_qcnn_flag() args._parse_flags() opts=dict() logger.info("\nParameters:") for attr, value in sorted(args.__flags.items()): logger.info(("{}={}".format(attr.upper(), value))) opts[attr]=value train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev],dataset=args.data ) logger.info('the number of words :%d '%len(alphabet)) if args.data=="quora" or args.data=="8008" : print("cn embedding") embedding = data_helper.get_embedding(alphabet,dim=200,language="cn",dataset=args.data ) train_data_loader = data_helper.getBatch48008 else: embedding = data_helper.get_embedding(alphabet,dim=300,dataset=args.data ) train_data_loader = data_helper.get_mini_batch opts["embeddings"] =embedding opts["vocab_size"]=len(alphabet) opts["max_input_right"]=a_max_sent_length opts["max_input_left"]=q_max_sent_length opts["filter_sizes"]=list(map(int, args.filter_sizes.split(","))) print("innitilize over") #with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): with tf.Graph().as_default(): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model=models.setup(opts) model.build_graph() saver = tf.train.Saver() # ckpt = tf.train.get_checkpoint_state("checkpoint") # if ckpt and ckpt.model_checkpoint_path: # # Restores from checkpoint # saver.restore(sess, ckpt.model_checkpoint_path) # if os.path.exists("model") : # import shutil # shutil.rmtree("model") # builder = tf.saved_model.builder.SavedModelBuilder("./model") # builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) # builder.save(True) # variable_averages = tf.train.ExponentialMovingAverage( model) # variables_to_restore = variable_averages.variables_to_restore() # saver = tf.train.Saver(variables_to_restore) # for name in variables_to_restore: # print(name) sess.run(tf.global_variables_initializer()) @log_time_delta def predict(model,sess,batch,test): scores = [] for data in batch: score = model.predict(sess,data) scores.extend(score) return np.array(scores[:len(test)]) best_p1=0 for i in range(args.num_epoches): for data in train_data_loader(train,alphabet,args.batch_size,model=model,sess=sess): # for data in data_helper.getBatch48008(train,alphabet,args.batch_size): _, summary, step, loss, accuracy,score12, score13, see = model.train(sess,data) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) logger.info("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) #<<<<<<< HEAD # # # if i>0 and i % 5 ==0: # test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) # # predicted_test = predict(model,sess,test_datas,test) # map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) # # logger.info('map_mrr test' +str(map_mrr_test)) # print('map_mrr test' +str(map_mrr_test)) # # test_datas = data_helper.get_mini_batch_test(dev,alphabet,args.batch_size) # predicted_test = predict(model,sess,test_datas,dev) # map_mrr_test = evaluation.evaluationBypandas(dev,predicted_test) # # logger.info('map_mrr dev' +str(map_mrr_test)) # print('map_mrr dev' +str(map_mrr_test)) # map,mrr,p1 = map_mrr_test # if p1>best_p1: # best_p1=p1 # filename= "checkpoint/"+args.data+"_"+str(p1)+".model" # save_path = saver.save(sess, filename) # # load_path = saver.restore(sess, model_path) # # import shutil # shutil.rmtree("model") # builder = tf.saved_model.builder.SavedModelBuilder("./model") # builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) # builder.save(True) # # #======= test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) predicted_test = predict(model,sess,test_datas,test) map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) logger.info('map_mrr test' +str(map_mrr_test)) print('epoch '+ str(i) + 'map_mrr test' +str(map_mrr_test))
Python
164
35.829269
161
/run.py
0.628704
0.62142
shuishen112/pairwise-rnn
refs/heads/master
#coding:utf-8 import tensorflow as tf import numpy as np from tensorflow.contrib import rnn import models.blocks as blocks # model_type :apn or qacnn class QA_CNN_extend(object): # def __init__(self,max_input_left,max_input_right,batch_size,vocab_size,embedding_size,filter_sizes,num_filters,hidden_size, # dropout_keep_prob = 1,learning_rate = 0.001,embeddings = None,l2_reg_lambda = 0.0,trainable = True,pooling = 'attentive',conv = 'narrow'): # # """ # QA_RNN model for question answering # # Args: # self.dropout_keep_prob: dropout rate # self.num_filters : number of filters # self.para : parameter list # self.extend_feature_dim : my extend feature dimension # self.max_input_left : the length of question # self.max_input_right : the length of answer # self.pooling : pooling strategy :max pooling or attentive pooling # # """ # self.dropout_keep_prob = tf.placeholder(tf.float32,name = 'dropout_keep_prob') # self.num_filters = num_filters # self.embeddings = embeddings # self.embedding_size = embedding_size # self.batch_size = batch_size # self.filter_sizes = filter_sizes # self.l2_reg_lambda = l2_reg_lambda # self.para = [] # # self.max_input_left = max_input_left # self.max_input_right = max_input_right # self.trainable = trainable # self.vocab_size = vocab_size # self.pooling = pooling # self.total_num_filter = len(self.filter_sizes) * self.num_filters # # self.conv = conv # self.pooling = 'traditional' # self.learning_rate = learning_rate # # self.hidden_size = hidden_size # # self.attention_size = 100 def __init__(self,opt): for key,value in opt.items(): self.__setattr__(key,value) self.attention_size = 100 self.pooling = 'mean' self.total_num_filter = len(self.filter_sizes) * self.num_filters self.para = [] self.dropout_keep_prob_holder = tf.placeholder(tf.float32,name = 'dropout_keep_prob') def create_placeholder(self): print(('Create placeholders')) # he length of the sentence is varied according to the batch,so the None,None self.question = tf.placeholder(tf.int32,[None,None],name = 'input_question') self.max_input_left = tf.shape(self.question)[1] self.batch_size = tf.shape(self.question)[0] self.answer = tf.placeholder(tf.int32,[None,None],name = 'input_answer') self.max_input_right = tf.shape(self.answer)[1] self.answer_negative = tf.placeholder(tf.int32,[None,None],name = 'input_right') # self.q_mask = tf.placeholder(tf.int32,[None,None],name = 'q_mask') # self.a_mask = tf.placeholder(tf.int32,[None,None],name = 'a_mask') # self.a_neg_mask = tf.placeholder(tf.int32,[None,None],name = 'a_neg_mask') def add_embeddings(self): print( 'add embeddings') if self.embeddings is not None: print( "load embedding") W = tf.Variable(np.array(self.embeddings),name = "W" ,dtype="float32",trainable = self.trainable) else: print( "random embedding") W = tf.Variable(tf.random_uniform([self.vocab_size, self.embedding_size], -1.0, 1.0),name="W",trainable = self.trainable) self.embedding_W = W # self.overlap_W = tf.Variable(a,name="W",trainable = True) self.para.append(self.embedding_W) self.q_embedding = tf.nn.embedding_lookup(self.embedding_W,self.question) self.a_embedding = tf.nn.embedding_lookup(self.embedding_W,self.answer) self.a_neg_embedding = tf.nn.embedding_lookup(self.embedding_W,self.answer_negative) #real length self.q_len,self.q_mask = blocks.length(self.question) self.a_len,self.a_mask = blocks.length(self.answer) self.a_neg_len,self.a_neg_mask = blocks.length(self.answer_negative) def convolution(self): print( 'convolution:wide_convolution') self.kernels = [] for i,filter_size in enumerate(self.filter_sizes): with tf.name_scope('conv-max-pool-%s' % filter_size): filter_shape = [filter_size,self.embedding_size,1,self.num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev = 0.1), name="W") b = tf.Variable(tf.constant(0.0, shape=[self.num_filters]), name="b") self.kernels.append((W,b)) self.para.append(W) self.para.append(b) embeddings = [self.q_embedding,self.a_embedding,self.a_neg_embedding] self.q_cnn,self.a_cnn,self.a_neg_cnn = [self.wide_convolution(tf.expand_dims(embedding,-1)) for embedding in embeddings] #convolution def pooling_graph(self): if self.pooling == 'mean': self.q_pos_cnn = self.mean_pooling(self.q_cnn,self.q_mask) self.q_neg_cnn = self.mean_pooling(self.q_cnn,self.q_mask) self.a_pos_cnn = self.mean_pooling(self.a_cnn,self.a_mask) self.a_neg_cnn = self.mean_pooling(self.a_neg_cnn,self.a_neg_mask) elif self.pooling == 'attentive': self.q_pos_cnn,self.a_pos_cnn = self.attentive_pooling(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.attentive_pooling(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) elif self.pooling == 'position': self.q_pos_cnn,self.a_pos_cnn = self.position_attention(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.position_attention(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) elif self.pooling == 'traditional': print( self.pooling) print(self.q_cnn) self.q_pos_cnn,self.a_pos_cnn = self.traditional_attention(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.traditional_attention(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) def para_initial(self): # print(("---------")) # self.W_qp = tf.Variable(tf.truncated_normal(shape = [self.hidden_size * 2,1],stddev = 0.01,name = 'W_qp')) self.U = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'U')) self.W_hm = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'W_hm')) self.W_qm = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'W_qm')) self.W_ms = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,1],stddev = 0.01,name = 'W_ms')) self.M_qi = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.embedding_size],stddev = 0.01,name = 'M_qi')) def mean_pooling(self,conv,mask): conv = tf.squeeze(conv,2) print( tf.expand_dims(tf.cast(mask,tf.float32),-1)) # conv_mask = tf.multiply(conv,tf.expand_dims(tf.cast(mask,tf.float32),-1)) # self.see = conv_mask # print( conv_mask) return tf.reduce_mean(conv,axis = 1); def attentive_pooling(self,input_left,input_right,q_mask,a_mask): Q = tf.squeeze(input_left,axis = 2) A = tf.squeeze(input_right,axis = 2) print( Q) print( A) # Q = tf.reshape(input_left,[-1,self.max_input_left,len(self.filter_sizes) * self.num_filters],name = 'Q') # A = tf.reshape(input_right,[-1,self.max_input_right,len(self.filter_sizes) * self.num_filters],name = 'A') # G = tf.tanh(tf.matmul(tf.matmul(Q,self.U),\ # A,transpose_b = True),name = 'G') first = tf.matmul(tf.reshape(Q,[-1,len(self.filter_sizes) * self.num_filters]),self.U) second_step = tf.reshape(first,[-1,self.max_input_left,len(self.filter_sizes) * self.num_filters]) result = tf.matmul(second_step,tf.transpose(A,perm = [0,2,1])) print( second_step) print( tf.transpose(A,perm = [0,2,1])) # print( 'result',result) G = tf.tanh(result) # G = result # column-wise pooling ,row-wise pooling row_pooling = tf.reduce_max(G,1,True,name = 'row_pooling') col_pooling = tf.reduce_max(G,2,True,name = 'col_pooling') self.attention_q = tf.nn.softmax(col_pooling,1,name = 'attention_q') self.attention_q_mask = tf.multiply(self.attention_q,tf.expand_dims(tf.cast(q_mask,tf.float32),-1)) self.attention_a = tf.nn.softmax(row_pooling,name = 'attention_a') self.attention_a_mask = tf.multiply(self.attention_a,tf.expand_dims(tf.cast(a_mask,tf.float32),1)) self.see = G R_q = tf.reshape(tf.matmul(Q,self.attention_q_mask,transpose_a = 1),[-1,self.num_filters * len(self.filter_sizes)],name = 'R_q') R_a = tf.reshape(tf.matmul(self.attention_a_mask,A),[-1,self.num_filters * len(self.filter_sizes)],name = 'R_a') return R_q,R_a def traditional_attention(self,input_left,input_right,q_mask,a_mask): input_left = tf.squeeze(input_left,axis = 2) input_right = tf.squeeze(input_right,axis = 2) input_left_mask = tf.multiply(input_left, tf.expand_dims(tf.cast(q_mask,tf.float32),2)) Q = tf.reduce_mean(input_left_mask,1) a_shape = tf.shape(input_right) A = tf.reshape(input_right,[-1,self.total_num_filter]) m_t = tf.nn.tanh(tf.reshape(tf.matmul(A,self.W_hm),[-1,a_shape[1],self.total_num_filter]) + tf.expand_dims(tf.matmul(Q,self.W_qm),1)) f_attention = tf.exp(tf.reshape(tf.matmul(tf.reshape(m_t,[-1,self.total_num_filter]),self.W_ms),[-1,a_shape[1],1])) self.f_attention_mask = tf.multiply(f_attention,tf.expand_dims(tf.cast(a_mask,tf.float32),2)) self.f_attention_norm = tf.divide(self.f_attention_mask,tf.reduce_sum(self.f_attention_mask,1,keep_dims = True)) self.see = self.f_attention_norm a_attention = tf.reduce_sum(tf.multiply(input_right,self.f_attention_norm),1) return Q,a_attention def position_attention(self,input_left,input_right,q_mask,a_mask): input_left = tf.squeeze(input_left,axis = 2) input_right = tf.squeeze(input_right,axis = 2) # Q = tf.reshape(input_left,[-1,self.max_input_left,self.hidden_size*2],name = 'Q') # A = tf.reshape(input_right,[-1,self.max_input_right,self.hidden_size*2],name = 'A') Q = tf.reduce_mean(tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)),1) QU = tf.matmul(Q,self.U) QUA = tf.multiply(tf.expand_dims(QU,1),input_right) self.attention_a = tf.cast(tf.argmax(QUA,2) ,tf.float32) # q_shape = tf.shape(input_left) # Q_1 = tf.reshape(input_left,[-1,self.total_num_filter]) # QU = tf.matmul(Q_1,self.U) # QU_1 = tf.reshape(QU,[-1,q_shape[1],self.total_num_filter]) # A_1 = tf.transpose(input_right,[0,2,1]) # QUA = tf.matmul(QU_1,A_1) # QUA = tf.nn.l2_normalize(QUA,1) # G = tf.tanh(QUA) # Q = tf.reduce_mean(tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)),1) # # self.Q_mask = tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)) # row_pooling = tf.reduce_max(G,1,name="row_pooling") # col_pooling = tf.reduce_max(G,2,name="col_pooling") # self.attention_a = tf.nn.softmax(row_pooling,1,name = "attention_a") self.attention_a_mask = tf.multiply(self.attention_a,tf.cast(a_mask,tf.float32)) self.see = self.attention_a self.attention_a_norm = tf.divide(self.attention_a_mask,tf.reduce_sum(self.attention_a_mask,1,keep_dims =True)) self.r_a = tf.reshape(tf.matmul(tf.transpose(input_right,[0,2,1]) ,tf.expand_dims(self.attention_a_norm,2)),[-1,self.total_num_filter]) return Q ,self.r_a def create_loss(self): with tf.name_scope('score'): self.score12 = self.getCosine(self.q_pos_cnn,self.a_pos_cnn) self.score13 = self.getCosine(self.q_neg_cnn,self.a_neg_cnn) l2_loss = tf.constant(0.0) for p in self.para: l2_loss += tf.nn.l2_loss(p) with tf.name_scope("loss"): self.losses = tf.maximum(0.0, tf.subtract(0.05, tf.subtract(self.score12, self.score13))) self.loss = tf.reduce_sum(self.losses) + self.l2_reg_lambda * l2_loss tf.summary.scalar('loss', self.loss) # Accuracy with tf.name_scope("accuracy"): self.correct = tf.equal(0.0, self.losses) self.accuracy = tf.reduce_mean(tf.cast(self.correct, "float"), name="accuracy") tf.summary.scalar('accuracy', self.accuracy) def create_op(self): self.global_step = tf.Variable(0, name = "global_step", trainable = False) self.optimizer = tf.train.AdamOptimizer(self.learning_rate) self.grads_and_vars = self.optimizer.compute_gradients(self.loss) self.train_op = self.optimizer.apply_gradients(self.grads_and_vars, global_step = self.global_step) def max_pooling(self,conv,input_length): pooled = tf.nn.max_pool( conv, ksize = [1, input_length, 1, 1], strides = [1, 1, 1, 1], padding = 'VALID', name="pool") return pooled def getCosine(self,q,a): pooled_flat_1 = tf.nn.dropout(q, self.dropout_keep_prob_holder) pooled_flat_2 = tf.nn.dropout(a, self.dropout_keep_prob_holder) pooled_len_1 = tf.sqrt(tf.reduce_sum(tf.multiply(pooled_flat_1, pooled_flat_1), 1)) pooled_len_2 = tf.sqrt(tf.reduce_sum(tf.multiply(pooled_flat_2, pooled_flat_2), 1)) pooled_mul_12 = tf.reduce_sum(tf.multiply(pooled_flat_1, pooled_flat_2), 1) score = tf.div(pooled_mul_12, tf.multiply(pooled_len_1, pooled_len_2), name="scores") return score def wide_convolution(self,embedding): cnn_outputs = [] for i,filter_size in enumerate(self.filter_sizes): conv = tf.nn.conv2d( embedding, self.kernels[i][0], strides=[1, 1, self.embedding_size, 1], padding='SAME', name="conv-1" ) h = tf.nn.relu(tf.nn.bias_add(conv, self.kernels[i][1]), name="relu-1") cnn_outputs.append(h) cnn_reshaped = tf.concat(cnn_outputs,3) return cnn_reshaped def variable_summaries(self,var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) def build_graph(self): self.create_placeholder() self.add_embeddings() self.para_initial() self.convolution() self.pooling_graph() self.create_loss() self.create_op() self.merged = tf.summary.merge_all() def train(self,sess,data): feed_dict = { self.question:data[0], self.answer:data[1], self.answer_negative:data[2], # self.q_mask:data[3], # self.a_mask:data[4], # self.a_neg_mask:data[5], self.dropout_keep_prob_holder:self.dropout_keep_prob } _, summary, step, loss, accuracy,score12, score13, see = sess.run( [self.train_op, self.merged,self.global_step,self.loss, self.accuracy,self.score12,self.score13, self.see], feed_dict) return _, summary, step, loss, accuracy,score12, score13, see def predict(self,sess,data): feed_dict = { self.question:data[0], self.answer:data[1], # self.q_mask:data[2], # self.a_mask:data[3], self.dropout_keep_prob_holder:1.0 } score = sess.run( self.score12, feed_dict) return score if __name__ == '__main__': cnn = QA_CNN_extend( max_input_left = 33, max_input_right = 40, batch_size = 3, vocab_size = 5000, embedding_size = 100, filter_sizes = [3,4,5], num_filters = 64, hidden_size = 100, dropout_keep_prob = 1.0, embeddings = None, l2_reg_lambda = 0.0, trainable = True, pooling = 'max', conv = 'wide') cnn.build_graph() input_x_1 = np.reshape(np.arange(3 * 33),[3,33]) input_x_2 = np.reshape(np.arange(3 * 40),[3,40]) input_x_3 = np.reshape(np.arange(3 * 40),[3,40]) q_mask = np.ones((3,33)) a_mask = np.ones((3,40)) a_neg_mask = np.ones((3,40)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) feed_dict = { cnn.question:input_x_1, cnn.answer:input_x_2, # cnn.answer_negative:input_x_3, cnn.q_mask:q_mask, cnn.a_mask:a_mask, cnn.dropout_keep_prob_holder:cnn.dropout_keep # cnn.a_neg_mask:a_neg_mask # cnn.q_pos_overlap:q_pos_embedding, # cnn.q_neg_overlap:q_neg_embedding, # cnn.a_pos_overlap:a_pos_embedding, # cnn.a_neg_overlap:a_neg_embedding, # cnn.q_position:q_position, # cnn.a_pos_position:a_pos_position, # cnn.a_neg_position:a_neg_position } question,answer,score = sess.run([cnn.question,cnn.answer,cnn.score12],feed_dict) print( question.shape,answer.shape) print( score)
Python
381
46.682415
147
/models/QA_CNN_pairwise.py
0.592162
0.5751
shuishen112/pairwise-rnn
refs/heads/master
from my.general import flatten, reconstruct, add_wd, exp_mask import numpy as np import tensorflow as tf _BIAS_VARIABLE_NAME = "bias" _WEIGHTS_VARIABLE_NAME = "kernel" def linear(args, output_size, bias, bias_start=0.0, scope=None, squeeze=False, wd=0.0, input_keep_prob=1.0, is_train=None):#, name_w='', name_b='' # if args is None or (nest.is_sequence(args) and not args): # raise ValueError("`args` must be specified") # if not nest.is_sequence(args): # args = [args] flat_args = [flatten(arg, 1) for arg in args]#[210,20] # if input_keep_prob < 1.0: # assert is_train is not None flat_args = [tf.nn.dropout(arg, input_keep_prob) for arg in flat_args] total_arg_size = 0#[60] shapes = [a.get_shape() for a in flat_args] for shape in shapes: if shape.ndims != 2: raise ValueError("linear is expecting 2D arguments: %s" % shapes) if shape[1].value is None: raise ValueError("linear expects shape[1] to be provided for shape %s, " "but saw %s" % (shape, shape[1])) else: total_arg_size += shape[1].value # print(total_arg_size) # exit() dtype = [a.dtype for a in flat_args][0] # scope = tf.get_variable_scope() with tf.variable_scope(scope) as outer_scope: weights = tf.get_variable(_WEIGHTS_VARIABLE_NAME, [total_arg_size, output_size], dtype=dtype) if len(flat_args) == 1: res = tf.matmul(flat_args[0], weights) else: res = tf.matmul(tf.concat(flat_args, 1), weights) if not bias: flat_out = res else: with tf.variable_scope(outer_scope) as inner_scope: inner_scope.set_partitioner(None) biases = tf.get_variable( _BIAS_VARIABLE_NAME, [output_size], dtype=dtype, initializer=tf.constant_initializer(bias_start, dtype=dtype)) flat_out = tf.nn.bias_add(res, biases) out = reconstruct(flat_out, args[0], 1) if squeeze: out = tf.squeeze(out, [len(args[0].get_shape().as_list())-1]) if wd: add_wd(wd) return out def softmax(logits, mask=None, scope=None): with tf.name_scope(scope or "Softmax"): if mask is not None: logits = exp_mask(logits, mask) flat_logits = flatten(logits, 1) flat_out = tf.nn.softmax(flat_logits) out = reconstruct(flat_out, logits, 1) return out def softsel(target, logits, mask=None, scope=None): """ :param target: [ ..., J, d] dtype=float :param logits: [ ..., J], dtype=float :param mask: [ ..., J], dtype=bool :param scope: :return: [..., d], dtype=float """ with tf.name_scope(scope or "Softsel"): a = softmax(logits, mask = mask) target_rank = len(target.get_shape().as_list()) out = tf.reduce_sum(tf.expand_dims(a, -1) * target, target_rank - 2) return out def highway_layer(arg, bias, bias_start=0.0, scope=None, wd=0.0, input_keep_prob=1.0): with tf.variable_scope(scope or "highway_layer"): d = arg.get_shape()[-1] trans = linear([arg], d, bias, bias_start=bias_start, scope='trans', wd=wd, input_keep_prob=input_keep_prob) trans = tf.nn.relu(trans) gate = linear([arg], d, bias, bias_start=bias_start, scope='gate', wd=wd, input_keep_prob=input_keep_prob) gate = tf.nn.sigmoid(gate) out = gate * trans + (1 - gate) * arg return out def highway_network(arg, num_layers, bias, bias_start=0.0, scope=None, wd=0.0, input_keep_prob=1.0): with tf.variable_scope(scope or "highway_network"): prev = arg cur = None for layer_idx in range(num_layers): cur = highway_layer(prev, bias, bias_start=bias_start, scope="layer_{}".format(layer_idx), wd=wd, input_keep_prob=input_keep_prob) prev = cur return cur def conv1d(in_, filter_size, height, padding, keep_prob=1.0, scope=None): with tf.variable_scope(scope or "conv1d"): num_channels = in_.get_shape()[-1] filter_ = tf.get_variable("filter", shape=[1, height, num_channels, filter_size], dtype='float') bias = tf.get_variable("bias", shape=[filter_size], dtype='float') strides = [1, 1, 1, 1] in_ = tf.nn.dropout(in_, keep_prob) xxc = tf.nn.conv2d(in_, filter_, strides, padding) + bias # [N*M, JX, W/filter_stride, d] out = tf.reduce_max(tf.nn.relu(xxc), 2) # [-1, JX, d] return out def multi_conv1d(in_, filter_sizes, heights, padding, keep_prob=1.0, scope=None): with tf.variable_scope(scope or "multi_conv1d"): assert len(filter_sizes) == len(heights) outs = [] for filter_size, height in zip(filter_sizes, heights): if filter_size == 0: continue out = conv1d(in_, filter_size, height, padding, keep_prob=keep_prob, scope="conv1d_{}".format(height)) outs.append(out) concat_out = tf.concat(outs, axis=2) return concat_out if __name__ == '__main__': a = tf.Variable(np.random.random(size=(2,2,4))) b = tf.Variable(np.random.random(size=(2,3,4))) c = tf.tile(tf.expand_dims(a, 2), [1, 1, 3, 1]) test = flatten(c,1) out = reconstruct(test, c, 1) d = tf.tile(tf.expand_dims(b, 1), [1, 2, 1, 1]) e = linear([c,d,c*d],1,bias = False,scope = "test",) # f = softsel(d, e) with tf.Session() as sess: tf.global_variables_initializer().run() print(sess.run(test)) print(sess.run(tf.shape(out))) exit() print(sess.run(tf.shape(a))) print(sess.run(a)) print(sess.run(tf.shape(b))) print(sess.run(b)) print(sess.run(tf.shape(c))) print(sess.run(c)) print(sess.run(tf.shape(d))) print(sess.run(d)) print(sess.run(tf.shape(e))) print(sess.run(e))
Python
160
36.712502
116
/models/my/nn.py
0.572754
0.558005
shuishen112/pairwise-rnn
refs/heads/master
from .QA_CNN_pairwise import QA_CNN_extend as CNN from .QA_RNN_pairwise import QA_RNN_extend as RNN from .QA_CNN_quantum_pairwise import QA_CNN_extend as QCNN def setup(opt): if opt["model_name"]=="cnn": model=CNN(opt) elif opt["model_name"]=="rnn": model=RNN(opt) elif opt['model_name']=='qcnn': model=QCNN(opt) else: print("no model") exit(0) return model
Python
14
25.642857
58
/models/__init__.py
0.691689
0.689008
shuishen112/pairwise-rnn
refs/heads/master
# -*- coding: utf-8 -*- from tensorflow import flags import tensorflow as tf from config import Singleton import data_helper import datetime import os import models import numpy as np import evaluation from data_helper import log_time_delta,getLogger logger=getLogger() args = Singleton().get_rnn_flag() #args = Singleton().get_8008_flag() args._parse_flags() opts=dict() logger.info("\nParameters:") for attr, value in sorted(args.__flags.items()): logger.info(("{}={}".format(attr.upper(), value))) opts[attr]=value train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev],dataset=args.data ) logger.info('the number of words :%d '%len(alphabet)) if args.data=="quora" or args.data=="8008" : print("cn embedding") embedding = data_helper.get_embedding(alphabet,dim=200,language="cn",dataset=args.data ) train_data_loader = data_helper.getBatch48008 else: embedding = data_helper.get_embedding(alphabet,dim=300,dataset=args.data ) train_data_loader = data_helper.get_mini_batch opts["embeddings"] =embedding opts["vocab_size"]=len(alphabet) opts["max_input_right"]=a_max_sent_length opts["max_input_left"]=q_max_sent_length opts["filter_sizes"]=list(map(int, args.filter_sizes.split(","))) print("innitilize over") #with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): with tf.Graph().as_default(): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model=models.setup(opts) model.build_graph() saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) # fun first than print or save ckpt = tf.train.get_checkpoint_state("checkpoint") if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) print(sess.run(model.position_embedding)[0]) if os.path.exists("model") : import shutil shutil.rmtree("model") builder = tf.saved_model.builder.SavedModelBuilder("./model") builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) builder.save(True) variable_averages = tf.train.ExponentialMovingAverage( model) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) for name in variables_to_restore: print(name) @log_time_delta def predict(model,sess,batch,test): scores = [] for data in batch: score = model.predict(sess,data) scores.extend(score) return np.array(scores[:len(test)]) text = "怎么 提取 公积金 ?" splited_text=data_helper.encode_to_split(text,alphabet) mb_q,mb_q_mask = data_helper.prepare_data([splited_text]) mb_a,mb_a_mask = data_helper.prepare_data([splited_text]) data = (mb_q,mb_a,mb_q_mask,mb_a_mask) score = model.predict(sess,data) print(score) feed_dict = { model.question:data[0], model.answer:data[1], model.q_mask:data[2], model.a_mask:data[3], model.dropout_keep_prob_holder:1.0 } sess.run(model.position_embedding,feed_dict=feed_dict)[0]
Python
114
31.622807
92
/test.py
0.651019
0.64324
shuishen112/pairwise-rnn
refs/heads/master
#-*- coding:utf-8 -*- import os import numpy as np import tensorflow as tf import string from collections import Counter import pandas as pd from tqdm import tqdm import random from functools import wraps import time import pickle def log_time_delta(func): @wraps(func) def _deco(*args, **kwargs): start = time.time() ret = func(*args, **kwargs) end = time.time() delta = end - start print( "%s runed %.2f seconds"% (func.__name__,delta)) return ret return _deco import tqdm from nltk.corpus import stopwords OVERLAP = 237 class Alphabet(dict): def __init__(self, start_feature_id = 1): self.fid = start_feature_id def add(self, item): idx = self.get(item, None) if idx is None: idx = self.fid self[item] = idx # self[idx] = item self.fid += 1 return idx def dump(self, fname): with open(fname, "w") as out: for k in sorted(self.keys()): out.write("{}\t{}\n".format(k, self[k])) def cut(sentence): tokens = sentence.lower().split() # tokens = [w for w in tokens if w not in stopwords.words('english')] return tokens @log_time_delta def load(dataset, filter = False): data_dir = "data/" + dataset datas = [] for data_name in ['train.txt','test.txt','dev.txt']: data_file = os.path.join(data_dir,data_name) data = pd.read_csv(data_file,header = None,sep="\t",names=["question","answer","flag"]).fillna('0') # data = pd.read_csv(data_file,header = None,sep="\t",names=["question","answer","flag"],quoting =3).fillna('0') if filter == True: datas.append(removeUnanswerdQuestion(data)) else: datas.append(data) # sub_file = os.path.join(data_dir,'submit.txt') # submit = pd.read_csv(sub_file,header = None,sep = "\t",names = ['question','answer'],quoting = 3) # datas.append(submit) return tuple(datas) @log_time_delta def removeUnanswerdQuestion(df): counter= df.groupby("question").apply(lambda group: sum(group["flag"])) questions_have_correct=counter[counter>0].index counter= df.groupby("question").apply(lambda group: sum(group["flag"]==0)) questions_have_uncorrect=counter[counter>0].index counter=df.groupby("question").apply(lambda group: len(group["flag"])) questions_multi=counter[counter>1].index return df[df["question"].isin(questions_have_correct) & df["question"].isin(questions_have_correct) & df["question"].isin(questions_have_uncorrect)].reset_index() @log_time_delta def get_alphabet(corpuses=None,dataset=""): pkl_name="temp/"+dataset+".alphabet.pkl" if os.path.exists(pkl_name): return pickle.load(open(pkl_name,"rb")) alphabet = Alphabet(start_feature_id = 0) alphabet.add('[UNK]') alphabet.add('END') count = 0 for corpus in corpuses: for texts in [corpus["question"].unique(),corpus["answer"]]: for sentence in texts: tokens = cut(sentence) for token in set(tokens): alphabet.add(token) print("alphabet size %d" % len(alphabet.keys()) ) if not os.path.exists("temp"): os.mkdir("temp") pickle.dump( alphabet,open(pkl_name,"wb")) return alphabet @log_time_delta def getSubVectorsFromDict(vectors,vocab,dim = 300): embedding = np.zeros((len(vocab),dim)) count = 1 for word in vocab: if word in vectors: count += 1 embedding[vocab[word]]= vectors[word] else: embedding[vocab[word]]= np.random.uniform(-0.5,+0.5,dim)#vectors['[UNKNOW]'] #.tolist() print( 'word in embedding',count) return embedding def encode_to_split(sentence,alphabet): indices = [] tokens = cut(sentence) seq = [alphabet[w] if w in alphabet else alphabet['[UNK]'] for w in tokens] return seq @log_time_delta def load_text_vec(alphabet,filename="",embedding_size = 100): vectors = {} with open(filename,encoding='utf-8') as f: i = 0 for line in f: i += 1 if i % 100000 == 0: print( 'epch %d' % i) items = line.strip().split(' ') if len(items) == 2: vocab_size, embedding_size= items[0],items[1] print( ( vocab_size, embedding_size)) else: word = items[0] if word in alphabet: vectors[word] = items[1:] print( 'embedding_size',embedding_size) print( 'done') print( 'words found in wor2vec embedding ',len(vectors.keys())) return vectors @log_time_delta def get_embedding(alphabet,dim = 300,language ="en",dataset=""): pkl_name="temp/"+dataset+".subembedding.pkl" if os.path.exists(pkl_name): return pickle.load(open(pkl_name,"rb")) if language=="en": fname = 'embedding/glove.6B/glove.6B.300d.txt' else: fname= "embedding/embedding.200.header_txt" embeddings = load_text_vec(alphabet,fname,embedding_size = dim) sub_embeddings = getSubVectorsFromDict(embeddings,alphabet,dim) pickle.dump( sub_embeddings,open(pkl_name,"wb")) return sub_embeddings @log_time_delta def get_mini_batch_test(df,alphabet,batch_size): q = [] a = [] pos_overlap = [] for index,row in df.iterrows(): question = encode_to_split(row["question"],alphabet) answer = encode_to_split(row["answer"],alphabet) overlap_pos = overlap_index(row['question'],row['answer']) q.append(question) a.append(answer) pos_overlap.append(overlap_pos) m = 0 n = len(q) idx_list = np.arange(m,n,batch_size) mini_batches = [] for idx in idx_list: mini_batches.append(np.arange(idx,min(idx + batch_size,n))) for mini_batch in mini_batches: mb_q = [ q[t] for t in mini_batch] mb_a = [ a[t] for t in mini_batch] mb_pos_overlap = [pos_overlap[t] for t in mini_batch] mb_q,mb_q_mask = prepare_data(mb_q) mb_a,mb_pos_overlaps = prepare_data(mb_a,mb_pos_overlap) yield(mb_q,mb_a) # calculate the overlap_index def overlap_index(question,answer,stopwords = []): ans_token = cut(answer) qset = set(cut(question)) aset = set(ans_token) a_len = len(ans_token) # q_index = np.arange(1,q_len) a_index = np.arange(1,a_len + 1) overlap = qset.intersection(aset) # for i,q in enumerate(cut(question)[:q_len]): # value = 1 # if q in overlap: # value = 2 # q_index[i] = value for i,a in enumerate(ans_token): if a in overlap: a_index[i] = OVERLAP return a_index def getBatch48008(df,alphabet,batch_size,sort_by_len = True,shuffle = False): q,a,neg_a=[],[],[] answers=df["answer"][:250] ground_truth=df.groupby("question").apply(lambda group: group[group.flag==1].index[0]%250 ).to_dict() for question in tqdm(df['question'].unique()): index= ground_truth[question] canindates = [i for i in range(250)] canindates.remove(index) a_neg_index = random.choice(canindates) seq_q = encode_to_split(question,alphabet) seq_a = encode_to_split(answers[index],alphabet) seq_neg_a = encode_to_split(answers[a_neg_index],alphabet) q.append(seq_q) a.append( seq_a) neg_a.append(seq_neg_a ) return iteration_batch(q,a,neg_a,batch_size,sort_by_len,shuffle) def iteration_batch(q,a,neg_a,batch_size,sort_by_len = True,shuffle = False): if sort_by_len: sorted_index = sorted(range(len(q)), key=lambda x: len(q[x]), reverse=True) q = [ q[i] for i in sorted_index] a = [a[i] for i in sorted_index] neg_a = [ neg_a[i] for i in sorted_index] pos_overlap = [pos_overlap[i] for i in sorted_index] neg_overlap = [neg_overlap[i] for i in sorted_index] #get batch m = 0 n = len(q) idx_list = np.arange(m,n,batch_size) if shuffle: np.random.shuffle(idx_list) mini_batches = [] for idx in idx_list: mini_batches.append(np.arange(idx,min(idx + batch_size,n))) for mini_batch in tqdm(mini_batches): mb_q = [ q[t] for t in mini_batch] mb_a = [ a[t] for t in mini_batch] mb_neg_a = [ neg_a[t] for t in mini_batch] mb_pos_overlap = [pos_overlap[t] for t in mini_batch] mb_neg_overlap = [neg_overlap[t] for t in mini_batch] mb_q,mb_q_mask = prepare_data(mb_q) mb_a,mb_pos_overlaps = prepare_data(mb_a,mb_pos_overlap) mb_neg_a,mb_neg_overlaps = prepare_data(mb_neg_a,mb_neg_overlap) # mb_a,mb_a_mask = prepare_data(mb_a,mb_pos_overlap) # mb_neg_a , mb_a_neg_mask = prepare_data(mb_neg_a) yield(mb_q,mb_a,mb_neg_a,mb_q_mask,mb_a_mask,mb_a_neg_mask) def get_mini_batch(df,alphabet,batch_size,sort_by_len = True,shuffle = False,model=None,sess=None): q = [] a = [] neg_a = [] for question in df['question'].unique(): # group = df[df["question"]==question] # pos_answers = group[df["flag"] == 1]["answer"] # neg_answers = group[df["flag"] == 0]["answer"].reset_index() group = df[df["question"]==question] pos_answers = group[group["flag"] == 1]["answer"] neg_answers = group[group["flag"] == 0]["answer"]#.reset_index() for pos in pos_answers: if model is not None and sess is not None: pos_sent= encode_to_split(pos,alphabet) q_sent,q_mask= prepare_data([pos_sent]) neg_sents = [encode_to_split(sent,alphabet) for sent in neg_answers] a_sent,a_mask= prepare_data(neg_sents) scores = model.predict(sess,(np.tile(q_sent,(len(neg_answers),1)),a_sent,np.tile(q_mask,(len(neg_answers),1)),a_mask)) neg_index = scores.argmax() else: if len(neg_answers.index) > 0: neg_index = np.random.choice(neg_answers.index) neg = neg_answers.reset_index().loc[neg_index,]["answer"] seq_q = encode_to_split(question,alphabet) seq_a = encode_to_split(pos,alphabet) seq_neg_a = encode_to_split(neg,alphabet) q.append(seq_q) a.append(seq_a) neg_a.append(seq_neg_a) return iteration_batch(q,a,neg_a,batch_size,sort_by_len,shuffle) def prepare_data(seqs,overlap = None): lengths = [len(seq) for seq in seqs] n_samples = len(seqs) max_len = np.max(lengths) x = np.zeros((n_samples,max_len)).astype('int32') if overlap is not None: overlap_position = np.zeros((n_samples,max_len)).astype('float') for idx ,seq in enumerate(seqs): x[idx,:lengths[idx]] = seq overlap_position[idx,:lengths[idx]] = overlap[idx] return x,overlap_position else: x_mask = np.zeros((n_samples, max_len)).astype('float') for idx, seq in enumerate(seqs): x[idx, :lengths[idx]] = seq x_mask[idx, :lengths[idx]] = 1.0 # print( x, x_mask) return x, x_mask # def prepare_data(seqs): # lengths = [len(seq) for seq in seqs] # n_samples = len(seqs) # max_len = np.max(lengths) # x = np.zeros((n_samples, max_len)).astype('int32') # x_mask = np.zeros((n_samples, max_len)).astype('float') # for idx, seq in enumerate(seqs): # x[idx, :lengths[idx]] = seq # x_mask[idx, :lengths[idx]] = 1.0 # # print( x, x_mask) # return x, x_mask def getLogger(): import sys import logging import os import time now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) log_filename = "log/" +time.strftime("%Y%m%d", timeArray) program = os.path.basename(sys.argv[0]) logger = logging.getLogger(program) if not os.path.exists(log_filename): os.mkdir(log_filename) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s',datefmt='%a, %d %b %Y %H:%M:%S',filename=log_filename+'/qa'+timeStamp+'.log',filemode='w') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) return logger
Python
363
33.487602
167
/data_helper.py
0.582389
0.574804
pablor0mero/Placester_Test_Pablo_Romero
refs/heads/master
# For this solution I'm using TextBlob, using it's integration with WordNet. from textblob import TextBlob from textblob import Word from textblob.wordnet import VERB import nltk import os import sys import re import json results = { "results" : [] } #Override NLTK data path to use the one I uploaded in the folder dir_path = os.path.dirname(os.path.realpath(__file__)) nltk_path = dir_path + os.path.sep + "nltk_data" nltk.data.path= [nltk_path] #Text to analyze TEXT = """ Take this paragraph of text and return an alphabetized list of ALL unique words. A unique word is any form of a word often communicated with essentially the same meaning. For example, fish and fishes could be defined as a unique word by using their stem fish. For each unique word found in this entire paragraph, determine the how many times the word appears in total. Also, provide an analysis of what sentence index position or positions the word is found. The following words should not be included in your analysis or result set: "a", "the", "and", "of", "in", "be", "also" and "as". Your final result MUST be displayed in a readable console output in the same format as the JSON sample object shown below. """ TEXT = TEXT.lower() WORDS_NOT_TO_CONSIDER = ["a", "the", "and", "of", "in", "be", "also", "as"] nlpText= TextBlob(TEXT) def getSentenceIndexesForWord(word, sentences): sentenceIndexes = [] for index, sentence in enumerate(sentences): count = sum(1 for _ in re.finditer(r'\b%s\b' % re.escape(word.lower()), sentence)) if count > 0: sentenceIndexes.append(index) return sentenceIndexes #1: Get all words, excluding repetitions and all the sentences in the text nlpTextWords = sorted(set(nlpText.words)) nlpTextSentences = nlpText.raw_sentences #2 Get results synonymsList = [] allreadyReadWords = [] for word in nlpTextWords: if word not in WORDS_NOT_TO_CONSIDER and word not in allreadyReadWords: timesInText = nlpText.word_counts[word] #Get sentence indexes where the word can be found sentenceIndexes = getSentenceIndexesForWord(word, nlpTextSentences) #Check for synonyms for word2 in nlpTextWords: if word2 not in WORDS_NOT_TO_CONSIDER and ( word.lower() != word2.lower() and len(list(set(word.synsets) & set(word2.synsets))) > 0 ): #If I find a synonym of the word I add it to the list of words allready read and add the times that synonym appeared in the text to the total #count of the unique word and the corresponding sentence indexes allreadyReadWords.append(word2) timesInText = timesInText + nlpText.word_counts[word2] sentenceIndexes += getSentenceIndexesForWord(word2,nlpTextSentences) allreadyReadWords.append(word) results["results"].append({"word" : word.lemmatize(), #I return the lemma of the word because TextBlob's stems seem to be wrong for certain words "total-occurances": timesInText, "sentence-indexes": sorted(set(sentenceIndexes))}) print(json.dumps(results, indent=4))
Python
71
44.929577
157
/main.py
0.670813
0.666869
GabinCleaver/Auto_Discord_Bump
refs/heads/main
import requests import time token = "TOKEN" headers = { 'User-Agent' : 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7', 'Authorization' : token } id = input(f"[?] Salon ID: ") print("") while True: requests.post( f"https://discord.com/api/channels/{id}/messages", headers = headers, json = {"content" : "!d bump"} ) print("[+] Serveur Bumpé") time.sleep(121 * 60)
Python
21
20.809525
109
/autobump.py
0.561845
0.51153
altopalido/yelp_python
refs/heads/master
# Madis Settings MADIS_PATH='/Users/alexiatopalidou/Desktop/erg/madis/src' # Webserver Settings # IMPORTANT: The port must be available. web_port = 9090 # must be integer (this is wrong:'9090')
Python
6
31.666666
57
/yelp_python/settings.py
0.75
0.709184
altopalido/yelp_python
refs/heads/master
# ----- CONFIGURE YOUR EDITOR TO USE 4 SPACES PER TAB ----- # import settings import sys def connection(): ''' User this function to create your connections ''' import sys sys.path.append(settings.MADIS_PATH) import madis con = madis.functions.Connection('/Users/alexiatopalidou/Desktop/erg/yelp_python/yelp.db') return con def classify_review(reviewid): #check for compatible data type try: val=str(reviewid) except ValueError: return [("Error! Insert correct data type.")] # Create a new connection global con con=connection() # Create cursors on the connection #alternative: create the desired list after every textwindow, posterms, negterms query cur=con.cursor() cura=con.cursor() curb=con.cursor() cur1=con.cursor() cur2=con.cursor() #check for existance of given data inside the yelp.db curcheck=con.cursor() cur.execute("SELECT var('reviewid',?)",(reviewid,)) check=curcheck.execute("SELECT review_id from reviews where review_id=?",(val,)) try: ch=check.next() except StopIteration: return [("Error! Insert valid Review id.",)] #sql query with textwindow - one for each occasion (terms with 1, 2 or 3 words) res=cur.execute("SELECT textwindow(text,0,0,1) from reviews where review_id=var('reviewid');") resa=cura.execute("SELECT textwindow(text,0,0,2) from reviews where review_id=var('reviewid');") resb=curb.execute("SELECT textwindow(text,0,0,3) from reviews where review_id=var('reviewid');") #get positive/negative terms res1=cur1.execute("SELECT * from posterms;") res2=cur2.execute("SELECT * from negterms;") #create lists that store a)all reviews terms, b)positive terms and c)negative terms k=[] for n in res: k.append(n) for n in resa: k.append(n) for n in resb: k.append(n) m=[] for z in res1: m.append(z) o=[] for p in res2: o.append(p) #check if the review is positive or negative x=0 for i in k: for j in m: if i==j: x=x+1 y=0 for i in k: for j in o: if i==j: y=y+1 if x>y: rsl='positive' elif x<y: rsl='negative' else: rsl='neutral' #return a list with the results res=cur.execute("SELECT b.name, ? from business b, reviews r where r.business_id=b.business_id and r.review_id=?",(rsl, val,)) l=[("business_name","result")] for i in res: l.append(i) return l def classify_review_plain_sql(reviewid): # Create a new connection con=connection() # Create a cursor on the connection cur=con.cursor() return [("business_name","result")] def updatezipcode(business_id,zipcode): #check for compatible data type try: val=str(business_id) val2=int(zipcode) except ValueError: return [("Error! Insert correct data type.",)] # Create a new connection global con con=connection() # Create a cursor on the connection cur=con.cursor() #check for existance of given data inside the yelp.db or allowance of data value curcheck=con.cursor() cur.execute("select var('business_id',?)", (val,)) check=curcheck.execute("SELECT business_id from business where business_id=?;",(val,)) try: ch=check.next() except StopIteration: return [("Error! Insert valid Business Id.",)] if val2>99999999999999999999: #we do not actually need that return [("Error! Insert valid Zip code.",)] #execute main sql query res=cur.execute("UPDATE business set zip_code=? where business_id=?;",(val2,val,)) #return ok or comment that return and de-comment the bottom return for the business_id and the new zip_code return [('ok',)] #res=cur.execute("SELECT business_id, zip_code from business where business_id=?;",(val,)) #l=[("business_id", "zip_code"),] #for i in res: # l.append(i) #return l def selectTopNbusinesses(category_id,n): #check for compatible data type try: val=int(category_id) val2=int(n) except ValueError: return [("Error! Insert correct data type",)] # Create a new connection global con con=connection() # Create a cursor on the connection cur=con.cursor() #check for existance of given data inside the yelp.db curcheck=con.cursor() cur.execute("SELECT var('category_id',?)", (val,)) check=curcheck.execute("SELECT category_id from category where category_id=?;",(val,)) try: ch=check.next() except StopIteration: return [("Error! Insert valid Category Id.",)] if val2<0: return [("Error! Choose >=0 businesses to return.",)] #execute main sql query res=cur.execute("SELECT b.business_id, count(rpn.positive) from reviews_pos_neg rpn, reviews r, business b, business_category bc, category c where rpn.review_id=r.review_id and r.business_id=b.business_id and b.business_id=bc.business_id and bc.category_id=c.category_id and c.category_id=? group by b.business_id order by count(rpn.positive) desc;",(val,)) #return a list with the results l=[("business_id", "number_of_reviews",)] for i in res: l.append(i) return l[0:val2+1] def traceUserInfuence(userId,depth): # Create a new connection con=connection() # Create a cursor on the connection cur=con.cursor() return [("user_id",),]
Python
206
26.485437
361
/yelp_python/app.py
0.622395
0.612681
smellycats/SX-CarRecgServer
refs/heads/master
from car_recg import app from car_recg.recg_ser import RecgServer from ini_conf import MyIni if __name__ == '__main__': rs = RecgServer() rs.main() my_ini = MyIni() sys_ini = my_ini.get_sys_conf() app.config['THREADS'] = sys_ini['threads'] app.config['MAXSIZE'] = sys_ini['threads'] * 16 app.run(host='0.0.0.0', port=sys_ini['port'], threaded=True) del rs del my_ini
Python
14
27.857143
64
/run.py
0.613861
0.59901
smellycats/SX-CarRecgServer
refs/heads/master
# -*- coding: utf-8 -*- import Queue class Config(object): # 密码 string SECRET_KEY = 'hellokitty' # 服务器名称 string HEADER_SERVER = 'SX-CarRecgServer' # 加密次数 int ROUNDS = 123456 # token生存周期,默认1小时 int EXPIRES = 7200 # 数据库连接 string SQLALCHEMY_DATABASE_URI = 'mysql://root:[email protected]/hbc_store' # 数据库连接绑定 dict SQLALCHEMY_BINDS = {} # 用户权限范围 dict SCOPE_USER = {} # 白名单启用 bool WHITE_LIST_OPEN = True # 白名单列表 set WHITE_LIST = set() # 处理线程数 int THREADS = 4 # 允许最大数队列为线程数16倍 int MAXSIZE = THREADS * 16 # 图片下载文件夹 string IMG_PATH = 'img' # 图片截取文件夹 string CROP_PATH = 'crop' # 超时 int TIMEOUT = 5 # 识别优先队列 object RECGQUE = Queue.PriorityQueue() # 退出标记 bool IS_QUIT = False # 用户字典 dict USER = {} # 上传文件保存路径 string UPLOAD_PATH = 'upload' class Develop(Config): DEBUG = True class Production(Config): DEBUG = False class Testing(Config): TESTING = True
Python
53
17.905661
69
/car_recg/config.py
0.593812
0.56986
smellycats/SX-CarRecgServer
refs/heads/master
# -*- coding: utf-8 -*- import os import Queue import random from functools import wraps import arrow from flask import g, request from flask_restful import reqparse, Resource from passlib.hash import sha256_crypt from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from car_recg import app, db, api, auth, limiter, logger, access_logger from models import Users, Scope import helper def verify_addr(f): """IP地址白名单""" @wraps(f) def decorated_function(*args, **kwargs): if not app.config['WHITE_LIST_OPEN'] or request.remote_addr == '127.0.0.1' or request.remote_addr in app.config['WHITE_LIST']: pass else: return {'status': '403.6', 'message': u'禁止访问:客户端的 IP 地址被拒绝'}, 403 return f(*args, **kwargs) return decorated_function @auth.verify_password def verify_password(username, password): if username.lower() == 'admin': user = Users.query.filter_by(username='admin').first() else: return False if user: return sha256_crypt.verify(password, user.password) return False def verify_token(f): """token验证装饰器""" @wraps(f) def decorated_function(*args, **kwargs): if not request.headers.get('Access-Token'): return {'status': '401.6', 'message': 'missing token header'}, 401 token_result = verify_auth_token(request.headers['Access-Token'], app.config['SECRET_KEY']) if not token_result: return {'status': '401.7', 'message': 'invalid token'}, 401 elif token_result == 'expired': return {'status': '401.8', 'message': 'token expired'}, 401 g.uid = token_result['uid'] g.scope = set(token_result['scope']) return f(*args, **kwargs) return decorated_function def verify_scope(scope): def scope(f): """权限范围验证装饰器""" @wraps(f) def decorated_function(*args, **kwargs): if 'all' in g.scope or scope in g.scope: return f(*args, **kwargs) else: return {}, 405 return decorated_function return scope class Index(Resource): def get(self): return { 'user_url': '%suser{/user_id}' % (request.url_root), 'scope_url': '%suser/scope' % (request.url_root), 'token_url': '%stoken' % (request.url_root), 'recg_url': '%sv1/recg' % (request.url_root), 'uploadrecg_url': '%sv1/uploadrecg' % (request.url_root), 'state_url': '%sv1/state' % (request.url_root) }, 200, {'Cache-Control': 'public, max-age=60, s-maxage=60'} class RecgListApiV1(Resource): def post(self): parser = reqparse.RequestParser() parser.add_argument('imgurl', type=unicode, required=True, help='A jpg url is require', location='json') parser.add_argument('coord', type=list, required=True, help='A coordinates array is require', location='json') args = parser.parse_args() # 回调用的消息队列 que = Queue.Queue() if app.config['RECGQUE'].qsize() > app.config['MAXSIZE']: return {'message': 'Server Is Busy'}, 449 imgname = '%32x' % random.getrandbits(128) imgpath = os.path.join(app.config['IMG_PATH'], '%s.jpg' % imgname) try: helper.get_url_img(request.json['imgurl'], imgpath) except Exception as e: logger.error('Error url: %s' % request.json['imgurl']) return {'message': 'URL Error'}, 400 app.config['RECGQUE'].put((10, request.json, que, imgpath)) try: recginfo = que.get(timeout=15) os.remove(imgpath) except Queue.Empty: return {'message': 'Timeout'}, 408 except Exception as e: logger.error(e) else: return { 'imgurl': request.json['imgurl'], 'coord': request.json['coord'], 'recginfo': recginfo }, 201 class StateListApiV1(Resource): def get(self): return { 'threads': app.config['THREADS'], 'qsize': app.config['RECGQUE'].qsize() } class UploadRecgListApiV1(Resource): def post(self): # 文件夹路径 string filepath = os.path.join(app.config['UPLOAD_PATH'], arrow.now().format('YYYYMMDD')) if not os.path.exists(filepath): os.makedirs(filepath) try: # 上传文件命名 随机32位16进制字符 string imgname = '%32x' % random.getrandbits(128) # 文件绝对路径 string imgpath = os.path.join(filepath, '%s.jpg' % imgname) f = request.files['file'] f.save(imgpath) except Exception as e: logger.error(e) return {'message': 'File error'}, 400 # 回调用的消息队列 object que = Queue.Queue() # 识别参数字典 dict r = {'coord': []} app.config['RECGQUE'].put((9, r, que, imgpath)) try: recginfo = que.get(timeout=app.config['TIMEOUT']) except Queue.Empty: return {'message': 'Timeout'}, 408 except Exception as e: logger.error(e) else: return {'coord': r['coord'], 'recginfo': recginfo}, 201 api.add_resource(Index, '/') api.add_resource(RecgListApiV1, '/v1/recg') api.add_resource(StateListApiV1, '/v1/state') api.add_resource(UploadRecgListApiV1, '/v1/uploadrecg')
Python
176
30.78409
134
/car_recg/views.py
0.558634
0.540222
josemiche11/reversebycondition
refs/heads/master
''' Input- zoho123 Output- ohoz123 ''' char= input("Enter the string: ") char2= list(char) num= "1234567890" list1= [0]*len(char) list2=[] for i in range(len(char)): if char2[i] not in num: list2.append( char2.index( char2[i])) char2[i]= "*" list2.reverse() k=0 for j in range( len(char) ): if j in list2: list1[j]= char[list2[k]] k= k+1 else: list1[j]= char[j] ch="" for l in range(len(list1)): ch= ch+ list1[l] print(ch)
Python
26
17.461538
45
/reversebycondition.py
0.539526
0.472332
Lasyin/batch-resize
refs/heads/master
import os import sys import argparse from PIL import Image # From Pillow (pip install Pillow) def resize_photos(dir, new_x, new_y, scale): if(not os.path.exists(dir)): # if not in full path format (/usrers/user/....) # check if path is in local format (folder is in current working directory) if(not os.path.exists(os.path.join(os.getcwd(), dir))): print(dir + " does not exist.") exit() else: # path is not a full path, but folder exists in current working directory # convert path to full path dir = os.path.join(os.getcwd(), dir) i = 1 # image counter for print statements for f in os.listdir(dir): if(not f.startswith('.') and '.' in f): # accepted image types. add more types if you need to support them! accepted_types = ["jpg", "png", "bmp"] if(f[-3:].lower() in accepted_types): # checks last 3 letters of file name to check file type (png, jpg, bmp...) # TODO: need to handle filetypes of more than 3 letters (for example, jpeg) path = os.path.join(dir, f) img = Image.open(path) if(scale > 0): w, h = img.size newIm = img.resize((w*scale, h*scale)) else: newIm = img.resize((new_x, new_y)) newIm.save(path) print("Image #" + str(i) + " finsihed resizing: " + path) i=i+1 else: print(f + " of type: " + f[-3:].lower() + " is not an accepted file type. Skipping.") print("ALL DONE :) Resized: " + str(i) + " photos") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-d", "-directory", help="(String) Specify the folder path of images to resize") parser.add_argument("-s", "-size", help="(Integer) New pixel value of both width and height. To specify width and height seperately, use -x and -y.") parser.add_argument("-x", "-width", help="(Integer) New pixel value of width") parser.add_argument("-y", "-height", help="(Integer) New pixel value of height") parser.add_argument("-t", "-scale", help="(Integer) Scales pixel sizes.") args = parser.parse_args() if(not args.d or ((not args.s) and (not args.x and not args.y) and (not args.t))): print("You have error(s)...\n") if(not args.d): print("+ DIRECTORY value missing Please provide a path to the folder of images using the argument '-d'\n") if((not args.s) and (not args.x or not args.y) and (not args.t)): print("+ SIZE value(s) missing! Please provide a new pixel size. Do this by specifying -s (width and height) OR -x (width) and -y (height) values OR -t (scale) value") exit() x = 0 y = 0 scale = 0 if(args.s): x = int(args.s) y = int(args.s) elif(args.x and args.y): x = int(args.x) y = int(args.y) elif(args.t): scale = int(args.t) print("Resizing all photos in: " + args.d + " to size: " + str(x)+"px,"+str(y)+"px") resize_photos(args.d, x, y, scale)
Python
73
43.109589
179
/batch_resize.py
0.554969
0.551863
snehG0205/Twitter_Mining
refs/heads/master
import tweepy import csv import pandas as pd from textblob import TextBlob import matplotlib.pyplot as plt ####input your credentials here consumer_key = 'FgCG8zcxF4oINeuAqUYzOw9xh' consumer_secret = 'SrSu7WhrYUpMZnHw7a5ui92rUA1n2jXNoZVb3nJ5wEsXC5xlN9' access_token = '975924102190874624-uk5zGlYRwItkj7pZO2m89NefRm5DFLg' access_token_secret = 'ChvmTjG8hl61xUrXkk3AdKcXMlvAKf4ise1kIQLKsnPu4' auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth,wait_on_rate_limit=True) # Open/Create a file to append data csvFile = open('tweets.csv', 'w+') # Use csv Writer csvWriter = csv.writer(csvFile) tag = "#DonaldTrump" limit = 0 res = "" positive = 0 negative = 0 neutral = 0 csvWriter.writerow(["ID", "Username", "Twitter @", "Tweet","Tweeted At", "Favourite Count", "Retweet Count", "Sentiment"]) csvWriter.writerow([]) for tweet in tweepy.Cursor(api.search,q=""+tag,count=350,lang="en",tweet_mode = "extended").items(): # print (tweet.created_at, tweet.text) temp = tweet.full_text if temp.startswith('RT @'): continue blob = TextBlob(tweet.full_text) if blob.sentiment.polarity > 0: res = "Positive" positive = positive+1 elif blob.sentiment.polarity == 0: res = "Neutral" neutral = neutral+1 else: res = "Negative" negative = negative+1 print ("ID:", tweet.id) print ("User ID:", tweet.user.id) print ("Name: ", tweet.user.name) print ("Twitter @:", tweet.user.screen_name) print ("Text:", tweet.full_text) print ("Tweet length:", len(tweet.full_text)) print ("Created:(UTC)", tweet.created_at) print ("Favorite Count:", tweet.favorite_count) print ("Retweet count:", tweet.retweet_count) print ("Sentiment:", res) # print ("Retweeted? :", tweet.retweeted) # print ("Truncated:", tweet.truncated) print ("\n\n") csvWriter.writerow([tweet.id, tweet.user.name, tweet.user.screen_name, tweet.full_text,tweet.created_at, tweet.favorite_count, tweet.retweet_count, res]) csvWriter.writerow([]) limit = limit + 1 if limit == 25: break print ("Done") print ("\n\n\n") total = positive+negative+neutral positivePercent = 100*(positive/total) negativePercent = 100*(negative/total) neutralPercent = 100*(neutral/total) print ("Positive tweets: {} %".format(positivePercent)) print ("Negative tweets: {} %".format(negativePercent)) print ("Neutral tweets: {} %".format(neutralPercent)) # infile = 'tweets.csv' # with open(infile, 'r') as csvfile: # rows = csv.reader(csvfile) # for row in rows: # sentence = row[3] # blob = TextBlob(sentence) # print (blob.sentiment) labels = 'Neutral', 'Positive', 'Negative' sizes = [] sizes.append(neutralPercent) sizes.append(positivePercent) sizes.append(negativePercent) colors = ['lightskyblue','yellowgreen', 'lightcoral'] explode = (0.0, 0, 0) # explode 1st slice # Plot plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=False, startangle=140) plt.suptitle("Sentiment Analysis of {} tweets related to {}".format(limit, tag)) plt.axis('equal') plt.show()
Python
104
28.73077
157
/tweepy_tester.py
0.66796
0.655674
snehG0205/Twitter_Mining
refs/heads/master
import tweepy import csv import pandas as pd # keys and tokens from the Twitter Dev Console consumer_key = 'FgCG8zcxF4oINeuAqUYzOw9xh' consumer_secret = 'SrSu7WhrYUpMZnHw7a5ui92rUA1n2jXNoZVb3nJ5wEsXC5xlN9' access_token = '975924102190874624-uk5zGlYRwItkj7pZO2m89NefRm5DFLg' access_token_secret = 'ChvmTjG8hl61xUrXkk3AdKcXMlvAKf4ise1kIQLKsnPu4' #Twitter only allows access to a users most recent 3240 tweets with this method #authorize twitter, initialize tweepy auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) #initialize a list to hold all the tweepy Tweets alltweets = [] #make initial request for most recent tweets (200 is the maximum allowed count) new_tweets = api.search(q="#DonaldTrump",count=200,tweet_mode="extended") #save most recent tweets alltweets.extend(new_tweets) #save the id of the oldest tweet less one # oldest = alltweets[-1].id - 1 #keep grabbing tweets until there are no tweets left to grab while len(new_tweets) > 0: # print "getting tweets before %s" % (oldest) #all subsiquent requests use the max_id param to prevent duplicates new_tweets = api.search(q="#DonaldTrump",count=200,tweet_mode="extended") #save most recent tweets alltweets.extend(new_tweets) #update the id of the oldest tweet less one oldest = alltweets[-1].id - 1 # print "...%s tweets downloaded so far" % (len(alltweets)) #transform the tweepy tweets into a 2D array that will populate the csv outtweets = [[tweet.id_str, tweet.created_at, tweet.full_tweet.encode("utf-8"), tweet.retweet_count, tweet.favorite_count] for tweet in alltweets] #write the csv with open('tweets.csv', 'w+') as f: writer = csv.writer(f) writer.writerow(["id","created_at","full_text","retweet_count","favorite_count"]) writer.writerows(outtweets)
Python
52
32.53846
146
/twitter1.py
0.729513
0.716332
snehG0205/Twitter_Mining
refs/heads/master
import csv csvFile = open('res.csv', 'w+')
Python
2
20.5
31
/tester.py
0.642857
0.642857
snehG0205/Twitter_Mining
refs/heads/master
from test import mining tag = "#WednesdayWisdom" limit = "10" sen_list = mining(tag,int(limit)) print(sen_list)
Python
5
21.4
33
/Twitter-Flask/untitled.py
0.72973
0.711712
snehG0205/Twitter_Mining
refs/heads/master
from flask import Flask, render_template, request from test import mining app = Flask(__name__) @app.route('/') def index(): return render_template('hello.html') @app.route('/', methods=['GET', 'POST']) def submit(): if request.method == 'POST': print (request.form) # debug line, see data printed below tag = request.form['tag'] limit = request.form['limit'] # msg = tag+" "+limit sen_list = mining(tag,limit) msg = "Positive Percent = "+sen_list[0]+"% <br>Negative Percent = "+sen_list[1]+"% <br>Neutral Percent = "+sen_list[2]+"%" return ""+msg if __name__ == '__main__': app.run(debug = True) print("This")
Python
24
25.416666
124
/Twitter-Flask/app.py
0.631912
0.627172
snehG0205/Twitter_Mining
refs/heads/master
#!/usr/bin/env python print ("some output") return "hello"
Python
4
14
21
/Twitter-Flask/hello.py
0.694915
0.694915
snehG0205/Twitter_Mining
refs/heads/master
import matplotlib.pyplot as plt # Data to plot labels = 'Neutral', 'Positive', 'Negative' sizes = [20, 40, 40] colors = ['lightskyblue','yellowgreen', 'lightcoral'] explode = (0.0, 0, 0) # explode 1st slice # Plot plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=140) plt.axis('equal') # plt.title('Sentiment analysis') plt.suptitle('Analysing n tweets related to #') plt.show()
Python
16
27.125
61
/piPlotter.py
0.685969
0.650334
nopple/ctf
refs/heads/master
#!/usr/bin/env python import socket, subprocess, sys from struct import pack, unpack global scenes global officers scenes = {} officers = {} remote = len(sys.argv) > 1 PORT = 8888 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if remote: HOST = "dosfun4u_5d712652e1d06a362f7fc6d12d66755b.2014.shallweplayaga.me" else: HOST = '127.0.0.1' def chksum(data): ret = 0 for d in data: ret += ord(d) return ret & 0xffff def add_officer(officer_id, status=0, x=0, y=0): global officers print 'update' if officers.has_key(officer_id) and officers[officer_id] else 'add', 'officer', hex(officer_id) officers[officer_id] = True payload = pack('H', 0x7d0) payload += pack('H', officer_id) payload += pack('H', status) payload += pack('H', x) payload += pack('H', y) payload += pack('H', 0x0) return payload def remove_officer(officer_id): global officers print 'remove officer', hex(officer_id), 'should work' if officers.has_key(officer_id) and officers[officer_id] else 'should fail' officers[officer_id] = False payload = pack('H', 0xbb8) payload += pack('H', officer_id) return payload def add_scene(scene_id, data2, data3, inline_data='', x=0, y=0): global scenes print 'update' if scenes.has_key(scene_id) and scenes[scene_id] else 'add', 'scene', hex(scene_id) scenes[scene_id] = True size1 = len(inline_data)/2 size2 = len(data2) size3 = len(data3) payload = pack('H', 0xfa0) payload += pack('H', scene_id) payload += pack('H', x) payload += pack('H', y) payload += pack('B', size1) payload += pack('B', size2) payload += pack('H', size3) payload += pack('H', 0) payload += inline_data[:size1*2] payload += data2 payload += data3 return payload def recv_all(s, size): ret = [] received = 0 while size > received: c = s.recv(size-received) if c == '': raise Exception('Connection closed') ret.append(c) received += len(c) return ''.join(ret) def recv_until(s, pattern): ret = '' while True: c = s.recv(1) if c == '': raise Exception("Connection closed") ret += c if ret.find(pattern) != -1: break return ret s.connect((HOST, PORT)) if remote: print s.recv(4096) buf = s.recv(4096) print buf data = buf.split(' ')[0] print 'challenge = {}'.format(data) print 'hashcatting...' p = subprocess.Popen(['./hashcat', data], stdout=subprocess.PIPE); result = p.communicate()[0].strip('\n\r\t ') print 'response = {}'.format(result) s.send(result) def send_cmd(s,payload,recvLen=0): payload += pack('H', chksum(payload)) s.send(payload) return recv_all(s, recvLen) shellcode = open('shellcode', 'rb').read() print 'Getting block into free-list' send_cmd(s,add_officer(1),5) send_cmd(s,remove_officer(1),5) print 'Adding officer to reuse block from free-list' send_cmd(s,add_officer(0xc),5) print 'Writing shellcode to 008f:0000' send_cmd(s,add_scene(1, pack("<HHHHHH", 0xc, 0, 0x4688, 0x8f, 0, 0), shellcode),5) print 'Modifying officer structure to include pointer to fake officer on stack' send_cmd(s,add_scene(2, pack("<HHHHHH", 1, 0, 0, 0, 0x47aa, 0x011f), "lolololol"),5) print 'Writing return to shellcode on stack' send_cmd(s,add_officer(0x945, 0x1d26, 0x10, 0x97),5) print 'Receiving response...' print 'Key 1:', recv_until(s,'\n').replace('\x00', '')[:-1] print 'Key 2:', recv_until(s,'\n')[:-1]
Python
124
25.620968
131
/dosfun4u/pwn.py
0.668585
0.624962
nopple/ctf
refs/heads/master
#!/usr/bin/env python import socket from struct import pack, unpack DEBUG = False server = "shitsco_c8b1aa31679e945ee64bde1bdb19d035.2014.shallweplayaga.me" server = "127.0.0.1" port = 31337 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((server, port)) s.settimeout(30) def recv_until(s, pattern): ret = '' while True: c = s.recv(1) if c == '': raise Exception("Connection closed") ret += c if ret.find(pattern) != -1: break return ret # trigger use-after-free by creating 2 items and then removing them in order print recv_until(s, "$ ") print "set 1 abcd" s.send("set 1 abcd\n") print recv_until(s, "$ ") print "set 2 abcd" s.send("set 2 abcd\n") print recv_until(s, "$ ") print "set 1" s.send("set 1\n") print recv_until(s, "$ ") print "set 2" s.send("set 2\n") print recv_until(s, "$ ") print "show <pointers>" # set use-after-free item via strdup of argument to 'show' command # first two items are the key,value pair followed by blink and flink # use a pointer to the string "password" in the code section for the key (0x80495d0) # use the location of the password in bss for the value (0x804c3a0) # use something to terminate the linked list for flink and blink # - can't use null directly here since the strdup allocation would be cut short (must be 16 bytes to re-use the free'd block) # - just use a pointer to some nulls in bss instead (0x804c390) s.send("show " + pack("<IIII", 0x80495d0, 0x804C3A0, 0x804C390, 0x0804C390) + "\n") print recv_until(s, "$ ") # now, this will simply dump the password for us print "show" s.send("show\n") a = recv_until(s, ': ') pw = recv_until(s, '\n')[:-1] b = recv_until(s, "$ ") print a + pw + '\n' + b print 'Enable password: "' + pw + '"' print "enable " + pw s.send('enable ' + pw + '\n') print recv_until(s, "# ") print "flag" s.send('flag\n') print recv_until(s, "# ") print "quit" s.send('quit\n')
Python
71
25.830986
127
/shitsco/pwn.py
0.669816
0.618898
phu-bui/Nhan_dien_bien_bao_giao_thong
refs/heads/master
import tkinter as tk from tkinter import filedialog from tkinter import * from PIL import Image, ImageTk import numpy from keras.models import load_model model = load_model('BienBao.h5') class_name = { 1:'Speed limit (20km/h)', 2:'Speed limit (30km/h)', 3:'Speed limit (50km/h)', 4:'Speed limit (60km/h)', 5:'Speed limit (70km/h)', 6:'Speed limit (80km/h)', 7:'End of speed limit (80km/h)', 8:'Speed limit (100km/h)', 9:'Speed limit (120km/h)', 10:'No passing', 11:'No passing veh over 3.5 tons', 12:'Right-of-way at intersection', 13:'Priority road', 14:'Yield', 15:'Stop', 16:'No vehicles', 17:'Veh > 3.5 tons prohibited', 18:'No entry', 19:'General caution', 20:'Dangerous curve left', 21:'Dangerous curve right', 22:'Double curve', 23:'Bumpy road', 24:'Slippery road', 25:'Road narrows on the right', 26:'Road work', 27:'Traffic signals', 28:'Pedestrians', 29:'Children crossing', 30:'Bicycles crossing', 31:'Beware of ice/snow', 32:'Wild animals crossing', 33:'End speed + passing limits', 34:'Turn right ahead', 35:'Turn left ahead', 36:'Ahead only', 37:'Go straight or right', 38:'Go straight or left', 39:'Keep right', 40:'Keep left', 41:'Roundabout mandatory', 42:'End of no passing', 43:'End no passing veh > 3.5 tons' } top=tk.Tk() top.geometry('800x600') top.title('Phan loai bien bao giao thong') top.configure(background='#CDCDCD') label = Label(top, background = '#CDCDCD', font=('arial',15,'bold')) label.place(x=0, y=0, relwidth = 1, relheight = 1) sign_image = Label(top) def classify(file_path): global label_packed image = Image.open(file_path) image = image.resize((30, 30)) image = numpy.expand_dims(image, axis=0) image = numpy.array(image) print(image.shape) pred = model.predict_classes([image])[0] sign = class_name[pred+1] print(sign) label.configure(foreground = '#011638', text = sign) def show_classify_button(file_path): classify_button = Button(top,text='Phan loai', command = lambda : classify(file_path), padx=10, pady=5) classify_button.configure(background='GREEN', foreground = 'white', font = ('arial', 10, 'bold')) classify_button.place(relx = 0.79, rely = 0.46) def upload_image(): try: file_path = filedialog.askopenfilename() uploaded = Image.open(file_path) uploaded.thumbnail(((top.winfo_width()/2.25), (top.winfo_height()/2.25))) im = ImageTk.PhotoImage(uploaded) sign_image.configure(image= im) sign_image.image = im label.configure(text='') show_classify_button(file_path) except: pass upload = Button(top, text='Upload an image', command=upload_image, padx = 10, pady = 5) upload.configure(background='#364156', foreground = 'white', font = ('arial', 10, 'bold')) upload.pack(side = BOTTOM, pady = 50) sign_image.pack(side=BOTTOM, expand = True) label.pack(side = BOTTOM, expand = True) heading = Label(top, text = 'Bien bao giao thong cua ban', pady = 20, font = ('arial', 20, 'bold')) heading.configure(background = '#CDCDCD', foreground = '#364156') heading.pack() top.mainloop()
Python
103
30.747572
107
/main.py
0.631386
0.579688
Jerin-Alisha/Python-Code-Assessment
refs/heads/master
def returnSum(dict): sum=0 for i in dict: sum=sum+dict[i] return sum dict={'Rick':85,'Amit':42,'George':53,'Tanya':60,'Linda':35} print 'sum:', returnSum(dict)
Python
7
24.714285
60
/Dictionary with function.py
0.582888
0.524064
Jerin-Alisha/Python-Code-Assessment
refs/heads/master
n=int(input("enter the numbers u want to print:")) for i in range(1,n+1): if(i%3==0): print ('Fizz') continue elif(i%5==0): print ('Buzz') continue print i
Python
9
21.222221
50
/FizzBuzz.py
0.46789
0.440367
Jerin-Alisha/Python-Code-Assessment
refs/heads/master
def switch(on_strike): players = {1,2} return list(players.difference(set([on_strike])))[0] def get_player(previous_score, previous_player, previous_bowl_number): if previous_score%2 == 0 and (previous_bowl_number%6 !=0 or previous_bowl_number ==0): player = previous_player elif previous_score%2 != 0 and previous_bowl_number % 6 == 0: player = previous_player else: player = switch(previous_player) return player a = [1, 2, 0, 0, 4, 1, 6, 2, 1, 3] player_turns = [] player_score_chart = {1:0, 2:0} total_score = 0 previous_score=0 previous_player=1 previous_bowl_number=0 for runs in a: player_turns.append(get_player(previous_score, previous_player, previous_bowl_number)) previous_bowl_number+=1 previous_score=runs previous_player=player_turns[-1] player_score_chart[previous_player] += previous_score total_score += previous_score print 'Total Score : ', total_score print 'Batsman 1 Score : ', player_score_chart[1] print 'Batsman 2 Score : ', player_score_chart[2]
Python
36
28.611111
90
/Cricket Match Player Score.py
0.646098
0.61343
Jerin-Alisha/Python-Code-Assessment
refs/heads/master
arr=[1,2,3,5,8,4,7,9,1,4,12,5,6,5,2,1,0,8,1] a = [None] * len(arr); visited = 0; for i in range(0, len(arr)): count = 1; for j in range(i+1, len(arr)): if(arr[i] == arr[j]): count = count + 1; a[j] = visited; if(a[i] != visited): a[i] = count; for i in range(0, len(a)): if(a[i] != visited): print(" "+ str(arr[i]) +" has occured "+ str(a[i])+" times");
Python
14
31.285715
69
/repeat.py
0.408511
0.353191
TheDinner22/lightning-sim
refs/heads/main
# represent the "board" in code # dependencies import random class Board: def __init__(self, width=10): self.width = width self.height = width * 2 self.WALL_CHANCE = .25 self.FLOOR_CHANCE = .15 # create the grid self.create_random_grid() def create_random_grid(self): # reset old grid self.grid = [] # generate cells for new grid for i in range(self.width * self.height): # is the cell at the left, right, top, or bottom? is_left = True if i % self.width == 0 else False is_right = True if i % self.width == self.width-1 else False is_top = True if i < self.width else False is_bottom = True if i > (self.width * self.height - self.width) else False # create the cell cell = { "left" : is_left, "right" : is_right, "roof" : is_top, "floor" : is_bottom, "ID" : i } # append to grid self.grid.append(cell) # randomly generate walls total = self.width * self.height horizontal_amount = int(total * self.FLOOR_CHANCE) verticle_amount = int(total * self.WALL_CHANCE) # generate the walls for _i in range(verticle_amount): random_index = random.randrange(0, total) adding_num = -1 if random_index == total - 1 else 1 first = "right" if adding_num == 1 else "left" second = "right" if first == "left" else "left" self.grid[random_index][first] = True self.grid[random_index + adding_num][second] = True # generate the floors for _i in range(horizontal_amount): random_index = random.randrange(0, total) adding_num = self.width * -1 if random_index > (total - self.width) else self.width first = "floor" if adding_num == self.width else "roof" second = "floor" if first == "roof" else "roof" self.grid[random_index][first] = True self.grid[random_index + adding_num - 1][second] = True def can_move_from(self, cell_index): # TODO this works but its a lot of repeated code. Can it be made better? # can you move left can_move_left = False is_left = True if cell_index % self.width == 0 else False if not is_left and self.grid[cell_index]["left"] == False: left_cell = self.grid[cell_index - 1] is_wall_left = True if left_cell["right"] == True else False can_move_left = True if not is_wall_left else False # can you move right can_move_right = False is_right = True if cell_index % self.width == self.width-1 else False if not is_right and self.grid[cell_index]["right"] == False: right_cell = self.grid[cell_index + 1] is_wall_right = True if right_cell["left"] == True else False can_move_right = True if not is_wall_right else False # can you move up can_move_up = False is_top = True if cell_index < self.width else False if not is_top and self.grid[cell_index]["roof"] == False: top_cell = self.grid[cell_index - self.width] is_wall_top = True if top_cell["floor"] == True else False can_move_up = True if not is_wall_top else False # can you move down can_move_down = False is_bottom = True if cell_index > (self.width * self.height - self.width) else False if not is_bottom and self.grid[cell_index]["floor"] == False: bottom_cell = self.grid[cell_index + self.width] is_wall_bottom = True if bottom_cell["roof"] == True else False can_move_down = True if not is_wall_bottom else False # return the results return can_move_left, can_move_right, can_move_up, can_move_down def BFS(self): """breadth first search to find the quickest way to the bottom""" start_i = random.randrange(0,self.width) paths = [ [start_i] ] solved = False dead_ends = [] while not solved: for path in paths: # find all possibles moves from path if len(dead_ends) >= len(paths) or len(paths) > 10000: # TODO this solution sucks return False, False # NOTE order is left right up down if path[-1] >= (self.width * self.height - self.width): solved = True return paths, paths.index(path) possible_moves = self.can_move_from(path[-1]) if True in possible_moves: move_order = [-1, 1, (self.width) * -1, self.width] first_append_flag = False origonal_path = path.copy() for i in range(4): possible_move = possible_moves[i] if possible_move: move = move_order[i] next_index = origonal_path[-1] + move if not next_index in origonal_path: if not first_append_flag: path.append(next_index) first_append_flag = True else: new_path = origonal_path.copy() new_path.append(next_index) paths.append(new_path) if not first_append_flag: dead_ends.append(paths.index(path)) else: dead_ends.append(paths.index(path)) def pretty_print_BFS(self, path): for i in range(self.width * self.height): cell = self.grid[i] in_path = True if cell["ID"] in path else False number_str = str(i) if len(number_str) == 1: number_str += " " elif len(number_str) == 2: number_str += " " end_str = "\n" if i % self.width == self.width-1 else " " if in_path: print('\033[92m' + number_str + '\033[0m', end=end_str) else: print(number_str, end=end_str) print(path) if __name__ == "__main__": b = Board(10) paths, index = b.BFS() if paths and index: b.pretty_print_BFS(paths[index]) else: print('ljfdsakfdl') # can_move_left, can_move_right, can_move_up, can_move_down = b.can_move_from(0) # print("can_move_left ", can_move_left) # print("can_move_right ", can_move_right) # print("can_move_up ", can_move_up) # print("can_move_down ", can_move_down)
Python
191
35.329842
97
/lib/board.py
0.51333
0.506269
TheDinner22/lightning-sim
refs/heads/main
# use pygame to show the board on a window # dependencies import pygame, random class Window: def __init__(self, board): # init py game pygame.init() # width height self.WIDTH = 600 self.HEIGHT = 600 # diffenet display modes self.display_one = False self.display_all = False # place holder self.solution = [] self.display_all_c = 0 # the board to display on the window self.board = board # define the dimensions of the cells of the board self.cell_width = self.WIDTH // self.board.width # define the left padding for the grid total_width = self.cell_width * self.board.width self.left_padding = (self.WIDTH - total_width) // 2 # colors self.COLORS = { "BLACK" : (255, 255, 255), "GREY" : (230, 230, 230), "BLUE" : (0, 0, 255), "RED" : (255, 0, 0), "YELLOW" : (212, 175, 55) } def create_random_color(self): return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) def create_window(self): # define window self.WIN = pygame.display.set_mode( (self.WIDTH, self.HEIGHT) ) # name window pygame.display.set_caption("LIGHT NING") # logo/icon for window logo = pygame.image.load("images/logo.png") pygame.display.set_icon(logo) def get_BFS(self): solved = False while not solved: self.board.create_random_grid() paths, index = self.board.BFS() if paths != False and index != False: self.solution = paths[index] solved = True self.paths = paths self.solution_i = index def draw_grid_solution(self): fflag = True for i in range(self.board.width * self.board.height): if not i in self.solution: continue # might not work col_num = i % self.board.width row_num = i // self.board.width x_pos = self.left_padding + (col_num * self.cell_width) y_pos = row_num * self.cell_width # define rect r = pygame.Rect(x_pos, y_pos, self.cell_width, self.cell_width) # draw the rectangle pygame.draw.rect(self.WIN, self.COLORS["YELLOW"], r) def draw_BFS(self): if self.display_all_c >= len(self.paths): self.display_all_c = 0 # generate a color for each path path_colors = [] for path in self.paths: path_colors.append(self.create_random_color()) path_colors[-1] = (0, 0 ,0) temp = self.paths.pop(self.display_all_c) self.paths.append(temp) for path in self.paths: for i in path: # might not work col_num = i % self.board.width row_num = i // self.board.width x_pos = self.left_padding + (col_num * self.cell_width) y_pos = row_num * self.cell_width # define rect r = pygame.Rect(x_pos, y_pos, self.cell_width, self.cell_width) # draw the rectangle pygame.draw.rect(self.WIN, path_colors[self.paths.index(path)], r) self.display_all_c += 1 def draw_window(self): self.WIN.fill(self.COLORS["GREY"]) if self.display_one: self.draw_grid_solution() elif self.display_all: self.draw_BFS() pygame.display.update() def main(self): # create window self.create_window() self.running = True while self.running: for event in pygame.event.get(): if event.type == pygame.QUIT: self.running = False elif event.type == pygame.KEYDOWN: if event.key == pygame.K_0: self.get_BFS() elif event.key == pygame.K_1: # toggle display one self.display_one = not self.display_one if self.display_one: self.display_all = False elif event.key == pygame.K_2: # toggle display all self.display_all = not self.display_all if self.display_all: self.display_all_c = 0 self.display_one = False self.draw_window() if __name__ == "__main__": win = Window() win.main()
Python
159
28.754717
87
/lib/window.py
0.501057
0.487104
TheDinner22/lightning-sim
refs/heads/main
# this could and will be better i just needed to make it here as a # proof of concept but it will be online and better later import os, sys BASE_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # adds project dir to places it looks for the modules sys.path.append(BASE_PATH) from lib.board import Board from lib.window import Window b = Board() win = Window(b) win.main()
Python
15
25.4
125
/main.py
0.736709
0.736709
JoeChan/openbgp
refs/heads/master
# Copyright 2015 Cisco Systems, Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ All BGP constant values """ # some handy things to know BGP_MAX_PACKET_SIZE = 4096 BGP_MARKER_SIZE = 16 # size of BGP marker BGP_HEADER_SIZE = 19 # size of BGP header, including marker BGP_MIN_OPEN_MSG_SIZE = 29 BGP_MIN_UPDATE_MSG_SIZE = 23 BGP_MIN_NOTIFICATION_MSG_SIZE = 21 BGP_MIN_KEEPALVE_MSG_SIZE = BGP_HEADER_SIZE BGP_TCP_PORT = 179 BGP_ROUTE_DISTINGUISHER_SIZE = 8 # BGP message types BGP_OPEN = 1 BGP_UPDATE = 2 BGP_NOTIFICATION = 3 BGP_KEEPALIVE = 4 BGP_ROUTE_REFRESH = 5 BGP_CAPABILITY = 6 BGP_ROUTE_REFRESH_CISCO = 0x80 BGP_SIZE_OF_PATH_ATTRIBUTE = 2 # attribute flags, from RFC1771 BGP_ATTR_FLAG_OPTIONAL = 0x80 BGP_ATTR_FLAG_TRANSITIVE = 0x40 BGP_ATTR_FLAG_PARTIAL = 0x20 BGP_ATTR_FLAG_EXTENDED_LENGTH = 0x10 # SSA flags BGP_SSA_TRANSITIVE = 0x8000 BGP_SSA_TYPE = 0x7FFF # SSA Types BGP_SSA_L2TPv3 = 1 BGP_SSA_mGRE = 2 BGP_SSA_IPSec = 3 BGP_SSA_MPLS = 4 BGP_SSA_L2TPv3_IN_IPSec = 5 BGP_SSA_mGRE_IN_IPSec = 6 # AS_PATH segment types AS_SET = 1 # RFC1771 AS_SEQUENCE = 2 # RFC1771 AS_CONFED_SET = 4 # RFC1965 has the wrong values, corrected in AS_CONFED_SEQUENCE = 3 # draft-ietf-idr-bgp-confed-rfc1965bis-01.txt # OPEN message Optional Parameter types BGP_OPTION_AUTHENTICATION = 1 # RFC1771 BGP_OPTION_CAPABILITY = 2 # RFC2842 # attribute types BGPTYPE_ORIGIN = 1 # RFC1771 BGPTYPE_AS_PATH = 2 # RFC1771 BGPTYPE_NEXT_HOP = 3 # RFC1771 BGPTYPE_MULTI_EXIT_DISC = 4 # RFC1771 BGPTYPE_LOCAL_PREF = 5 # RFC1771 BGPTYPE_ATOMIC_AGGREGATE = 6 # RFC1771 BGPTYPE_AGGREGATOR = 7 # RFC1771 BGPTYPE_COMMUNITIES = 8 # RFC1997 BGPTYPE_ORIGINATOR_ID = 9 # RFC2796 BGPTYPE_CLUSTER_LIST = 10 # RFC2796 BGPTYPE_DPA = 11 # work in progress BGPTYPE_ADVERTISER = 12 # RFC1863 BGPTYPE_RCID_PATH = 13 # RFC1863 BGPTYPE_MP_REACH_NLRI = 14 # RFC2858 BGPTYPE_MP_UNREACH_NLRI = 15 # RFC2858 BGPTYPE_EXTENDED_COMMUNITY = 16 # Draft Ramachandra BGPTYPE_NEW_AS_PATH = 17 # draft-ietf-idr-as4bytes BGPTYPE_NEW_AGGREGATOR = 18 # draft-ietf-idr-as4bytes BGPTYPE_SAFI_SPECIFIC_ATTR = 19 # draft-kapoor-nalawade-idr-bgp-ssa-00.txt BGPTYPE_TUNNEL_ENCAPS_ATTR = 23 # RFC5512 BGPTYPE_LINK_STATE = 99 BGPTYPE_ATTRIBUTE_SET = 128 # VPN Route Target # BGP_EXT_COM_RT_0 = 0x0002 # Route Target,Format AS(2bytes):AN(4bytes) BGP_EXT_COM_RT_1 = 0x0102 # Route Target,Format IPv4 address(4bytes):AN(2bytes) BGP_EXT_COM_RT_2 = 0x0202 # Route Target,Format AS(4bytes):AN(2bytes) # Route Origin (SOO site of Origin) BGP_EXT_COM_RO_0 = 0x0003 # Route Origin,Format AS(2bytes):AN(4bytes) BGP_EXT_COM_RO_1 = 0x0103 # Route Origin,Format IP address:AN(2bytes) BGP_EXT_COM_RO_2 = 0x0203 # Route Origin,Format AS(2bytes):AN(4bytes) # BGP Flow Spec BGP_EXT_TRA_RATE = 0x8006 # traffic-rate 2-byte as#, 4-byte float BGP_EXT_TRA_ACTION = 0x8007 # traffic-action bitmask BGP_EXT_REDIRECT = 0x8008 # redirect 6-byte Route Target BGP_EXT_TRA_MARK = 0x8009 # traffic-marking DSCP value # BGP cost cummunity BGP_EXT_COM_COST = 0x4301 # BGP link bandwith BGP_EXT_COM_LINK_BW = 0x4004 # NLRI type as define in BGP flow spec RFC BGPNLRI_FSPEC_DST_PFIX = 1 # RFC 5575 BGPNLRI_FSPEC_SRC_PFIX = 2 # RFC 5575 BGPNLRI_FSPEC_IP_PROTO = 3 # RFC 5575 BGPNLRI_FSPEC_PORT = 4 # RFC 5575 BGPNLRI_FSPEC_DST_PORT = 5 # RFC 5575 BGPNLRI_FSPEC_SRC_PORT = 6 # RFC 5575 BGPNLRI_FSPEC_ICMP_TP = 7 # RFC 5575 BGPNLRI_FSPEC_ICMP_CD = 8 # RFC 5575 BGPNLRI_FSPEC_TCP_FLAGS = 9 # RFC 5575 BGPNLRI_FSPEC_PCK_LEN = 10 # RFC 5575 BGPNLRI_FSPEC_DSCP = 11 # RFC 5575 BGPNLRI_FSPEC_FRAGMENT = 12 # RFC 5575 # BGP message Constants VERSION = 4 PORT = 179 HDR_LEN = 19 MAX_LEN = 4096 # BGP messages type MSG_OPEN = 1 MSG_UPDATE = 2 MSG_NOTIFICATION = 3 MSG_KEEPALIVE = 4 MSG_ROUTEREFRESH = 5 MSG_CISCOROUTEREFRESH = 128 # BGP Capabilities Support SUPPORT_4AS = False CISCO_ROUTE_REFRESH = False NEW_ROUTE_REFRESH = False GRACEFUL_RESTART = False # AFI_SAFI mapping AFI_SAFI_DICT = { (1, 1): 'ipv4', (1, 4): 'label_ipv4', (1, 128): 'vpnv4', (2, 1): 'ipv6', (2, 4): 'label_ipv6', (2, 128): 'vpnv6' } AFI_SAFI_STR_DICT = { 'ipv4': (1, 1), 'ipv6': (1, 2) } # BGP FSM State ST_IDLE = 1 ST_CONNECT = 2 ST_ACTIVE = 3 ST_OPENSENT = 4 ST_OPENCONFIRM = 5 ST_ESTABLISHED = 6 # BGP Timer (seconds) DELAY_OPEN_TIME = 10 ROUTE_REFRESH_TIME = 10 LARGER_HOLD_TIME = 4 * 60 CONNECT_RETRY_TIME = 30 IDLEHOLD_TIME = 30 HOLD_TIME = 120 stateDescr = { ST_IDLE: "IDLE", ST_CONNECT: "CONNECT", ST_ACTIVE: "ACTIVE", ST_OPENSENT: "OPENSENT", ST_OPENCONFIRM: "OPENCONFIRM", ST_ESTABLISHED: "ESTABLISHED" } # Notification error codes ERR_MSG_HDR = 1 ERR_MSG_OPEN = 2 ERR_MSG_UPDATE = 3 ERR_HOLD_TIMER_EXPIRED = 4 ERR_FSM = 5 ERR_CEASE = 6 # Notification suberror codes ERR_MSG_HDR_CONN_NOT_SYNC = 1 ERR_MSG_HDR_BAD_MSG_LEN = 2 ERR_MSG_HDR_BAD_MSG_TYPE = 3 ERR_MSG_OPEN_UNSUP_VERSION = 1 ERR_MSG_OPEN_BAD_PEER_AS = 2 ERR_MSG_OPEN_BAD_BGP_ID = 3 ERR_MSG_OPEN_UNSUP_OPT_PARAM = 4 ERR_MSG_OPEN_UNACCPT_HOLD_TIME = 6 ERR_MSG_OPEN_UNSUP_CAPA = 7 # RFC 5492 ERR_MSG_OPEN_UNKNO = 8 ERR_MSG_UPDATE_MALFORMED_ATTR_LIST = 1 ERR_MSG_UPDATE_UNRECOGNIZED_WELLKNOWN_ATTR = 2 ERR_MSG_UPDATE_MISSING_WELLKNOWN_ATTR = 3 ERR_MSG_UPDATE_ATTR_FLAGS = 4 ERR_MSG_UPDATE_ATTR_LEN = 5 ERR_MSG_UPDATE_INVALID_ORIGIN = 6 ERR_MSG_UPDATE_INVALID_NEXTHOP = 8 ERR_MSG_UPDATE_OPTIONAL_ATTR = 9 ERR_MSG_UPDATE_INVALID_NETWORK_FIELD = 10 ERR_MSG_UPDATE_MALFORMED_ASPATH = 11 ERR_MSG_UPDATE_UNKOWN_ATTR = 12 AttributeID_dict = { 1: 'ORIGIN', 2: 'AS_PATH', 3: 'NEXT_HOP', 4: 'MULTI_EXIT_DISC', 5: 'LOCAL_PREF', 6: 'ATOMIC_AGGREGATE', 7: 'AGGREGATOR', 8: 'COMMUNITY', 9: 'ORIGINATOR_ID', 10: 'CLUSTER_LIST', 14: 'MP_REACH_NLRI', 15: 'MP_UNREACH_NLRI', 16: 'EXTENDED_COMMUNITY', 17: 'AS4_PATH', 18: 'AS4_AGGREGATOR' } ATTRSTR_DICT = { 'AGGREGATOR': 7, 'AS4_AGGREGATOR': 18, 'AS4_PATH': 17, 'AS_PATH': 2, 'ATOMIC_AGGREGATE': 6, 'CLUSTER_LIST': 10, 'COMMUNITY': 8, 'EXTENDED_COMMUNITY': 16, 'LOCAL_PREFERENCE': 5, 'MP_REACH_NLRI': 14, 'MP_UNREACH_NLRI': 15, 'MULTI_EXIT_DISC': 4, 'NEXT_HOP': 3, 'ORIGIN': 1, 'ORIGINATOR_ID': 9} TCP_MD5SIG_MAXKEYLEN = 80 SS_PADSIZE_IPV4 = 120 TCP_MD5SIG = 14 SS_PADSIZE_IPV6 = 100 SIN6_FLOWINFO = 0 SIN6_SCOPE_ID = 0 COMMUNITY_DICT = False
Python
267
24.932585
80
/openbgp/common/constants.py
0.69103
0.617362
Glitchfix/TransposeMatrixIndorse
refs/heads/master
from flask import Flask, render_template, request, jsonify from flask_cors import CORS import json import numpy as np app = Flask(__name__) CORS(app) @app.route('/transpose', methods=["POST"]) def homepage(): data = request.json result = None error = "" try: mat = data["matrix"] mat = np.array(mat) result = mat.T.tolist() error = "" except KeyError as e: error = "Key %s not found" % (str(e)) pass except Exception as e: error = str(e) pass return jsonify({"result": result, "error": error}) app.run()
Python
29
19.724138
58
/server.py
0.579035
0.579035
shlsheth263/malware-detection-using-ANN
refs/heads/master
from tkinter import * from tkinter import ttk from tkinter import filedialog import test_python3 class Root(Tk): def __init__(self): super(Root, self).__init__() self.title("Malware Detection") self.minsize(500, 300) self.labelFrame = ttk.LabelFrame(self, text = " Open File") self.labelFrame.grid(column = 0, row = 1, padx = 200, pady = 20) self.button() def button(self): self.button = ttk.Button(self.labelFrame, text = "Browse A File",command = self.fileDialog) self.button.grid(column = 1, row = 1) def fileDialog(self): self.filename = filedialog.askopenfilename(initialdir = "/", title = "Select A File") self.label = ttk.Label(self.labelFrame, text = "") self.label.grid(column = 1, row = 2) self.label.configure(text = self.filename) root = Root() root.mainloop()
Python
35
24.685715
99
/python/gui.py
0.620267
0.600223
shlsheth263/malware-detection-using-ANN
refs/heads/master
#!/usr/bin/env python import sys import time import pandas as pd import pepy import binascii import numpy as np from hashlib import md5 import sklearn from tkinter import * from tkinter import ttk from tkinter import filedialog from tensorflow.keras.models import load_model def test(p): exe = {} print("Signature: %s" % int(p.signature)) exe['Signature'] = int(p.signature) exe['Magic'] = int(p.magic) print("Machine: %s (%s)" % (int(p.machine), p.get_machine_as_str())) exe['Machine'] = int(p.machine), p.get_machine_as_str() print("Number of sections: %s" % p.numberofsections) exe['Number of Sections'] = p.numberofsections print("Number of symbols: %s" % p.numberofsymbols) exe['Number of symbols'] = p.numberofsymbols print("Characteristics: %s" % int(p.characteristics)) exe['characteristics'] = int(p.characteristics) exe['timestamp'] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(p.timedatestamp)) print("Timedatestamp: %s" % time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(p.timedatestamp))) exe['CodeSize'] = int(p.codesize) print("Size of code: %s" % int(p.codesize)) exe['SizeofInitial'] = int(p.initdatasize) print("Size of initialized data: %s" % int(p.initdatasize)) exe['UninitSize'] = int(p.uninitdatasize) print("Size of uninitialized data: %s" % int(p.uninitdatasize)) exe['Baseofcode'] = int(p.baseofcode) print("Base address of code: %s" % int(p.baseofcode)) try: exe['baseaddr'] = int(p.baseofdata) print("Base address of data: %s" % int(p.baseofdata)) except: # Not available on PE32+, ignore it. pass exe['imagebase'] = int(p.imagebase) print("Image base address: %s" % int(p.imagebase)) exe['sectionalign'] = int(p.sectionalignement) print("Section alignment: %s" % int(p.sectionalignement)) exe['filealign'] = int(p.filealignment) print("File alignment: %s" % int(p.filealignment)) exe['imagesize'] = int(p.imagesize) print("Size of image: %s" % int(p.imagesize)) exe['headersize'] = int(p.headersize) print("Size of headers: %s" % int(p.headersize)) exe['checksum'] = int(p.checksum) print("Checksum: %s" % int(p.checksum)) exe['dllchar'] = int(p.dllcharacteristics) print("DLL characteristics: %s" % int(p.dllcharacteristics)) exe['stacksize'] = int(p.stackreservesize) print("Size of stack reserve: %s" % int(p.stackreservesize)) exe['stackcommit'] = int(p.stackcommitsize) print("Size of stack commit: %s" % int(p.stackcommitsize)) exe['heapsize'] = int(p.heapreservesize) print("Size of heap reserve: %s" % int(p.heapreservesize)) exe['heapcommit'] = int(p.heapcommitsize) print("Size of heap commit: %s" % int(p.heapcommitsize)) exe['rva'] = int(p.rvasandsize) print("Number of RVA and sizes: %s" % int(p.rvasandsize)) ep = p.get_entry_point() byts = p.get_bytes(ep, 8) print("Bytes at %s: %s" % (int(ep), ' '.join(['%#2x' % b for b in byts]))) sections = p.get_sections() print("Sections: (%i)" % len(sections)) for sect in sections: print("[+] %s" % sect.name) print("\tBase: %s" % int(sect.base)) print("\tLength: %s" % sect.length) print("\tVirtual address: %s" % int(sect.virtaddr)) print("\tVirtual size: %i" % sect.virtsize) print("\tNumber of Relocations: %i" % sect.numrelocs) print("\tNumber of Line Numbers: %i" % sect.numlinenums) print("\tCharacteristics: %s" % int(sect.characteristics)) if sect.length: print("\tFirst 10 bytes: 0x%s" % binascii.hexlify(sect.data[:10])) print("\tMD5: %s" % md5(sect.data).hexdigest()) imports = p.get_imports() print("Imports: (%i)" % len(imports)) l = [] for imp in imports: l.append((imp.sym, imp.name, int(imp.addr))) # exe['symbol'] = imp.sym,imp.name,int(imp.addr) print("[+] Symbol: %s (%s %s)" % (imp.sym, imp.name, int(imp.addr))) exe['symbol'] = l exports = p.get_exports() print("Exports: (%i)" % len(exports)) for exp in exports: exe['module'] = exp.mod, exp.func, int(exp.addr) print("[+] Module: %s (%s %s)" % (exp.mod, exp.func, int(exp.addr))) relocations = p.get_relocations() print("Relocations: (%i)" % len(relocations)) for reloc in relocations: print("[+] Type: %s (%s)" % (reloc.type, int(reloc.addr))) resources = p.get_resources() print("Resources: (%i)" % len(resources)) for resource in resources: print("[+] MD5: (%i) %s" % (len(resource.data), md5(resource.data).hexdigest())) if resource.type_str: print("\tType string: %s" % resource.type_str) else: print("\tType: %s (%s)" % (int(resource.type), resource.type_as_str())) if resource.name_str: print("\tName string: %s" % resource.name_str) else: print("\tName: %s" % int(resource.name)) if resource.lang_str: print("\tLang string: %s" % resource.lang_str) else: print("\tLang: %s" % int(resource.lang)) print("\tCodepage: %s" % int(resource.codepage)) print("\tRVA: %s" % int(resource.RVA)) print("\tSize: %s" % int(resource.size)) return exe class Root(Tk): def __init__(self): super(Root, self).__init__() self.mean_entropy = 6.69 self.mean_size = 6.895724 * 10 ** 6 self.mean_pointer = 5.513845 * 10 ** 5 self.mean_petype = 267 self.mean_optionalHeader = 224 self.mean_timestamp = 1.223333 * 10 ** 9 self.var = [2.45814868e+00, 5.78522477e+05, 4.59263747e-02, 3.94699109e+00 , 5.56093128e+05, 4.23275300e-02, 4.28793369e+00, 5.09558456e+05 , 4.26259209e-02, 4.52582805e+00, 5.00721420e+05, 4.38214743e-02 , 4.80847515e+00, 3.36937892e+05, 3.42121736e-02, 5.08079739e+00 , 2.82976405e+05, 3.27880482e-02, 5.19862150e+00, 2.51661820e+05 , 3.03001968e-02, 5.49108651e+00, 2.74803628e+05, 2.34008748e-02 , 5.65433567e+00, 2.61551950e+05, 2.20549168e-02, 5.82167673e+00 , 2.75945872e+05, 1.92542233e-02, 5.39081620e+00, 2.43941220e+05 , 1.66215197e-02, 5.25240971e+00, 2.13100610e+05, 1.38812852e-02 , 4.97209114e+00, 1.79580514e+05, 1.12734193e-02, 4.91835550e+00 , 1.81600442e+05, 9.08298818e-03, 4.67832320e+00, 1.75802757e+05 , 7.47834940e-03, 4.43536234e+00, 1.83062732e+05, 5.76560040e-03 , 3.36212748e+00, 1.05659050e+05, 4.12555574e-03, 3.44924796e+00 , 1.24784300e+05, 3.04785086e-03, 2.55147211e+00, 1.04770043e+05 , 2.20631168e-03, 2.63965525e+00, 1.31953132e+05, 1.50017798e-03 , 1.35032309e+13, 5.91049166e+13, 2.74411618e+08, 2.27146205e+08 , 1.30716250e+00, 1.02203650e+06, 1.64823331e+17, 9.70130473e+00 , 0.00000000e+00, 6.95117702e+14, 6.26391725e+00, 6.32965418e+14 , 0.00000000e+00, 1.39712067e+15, 3.09269595e+15, 2.53964553e+12 , 1.60595659e+06, 2.89297402e+14, 2.38878188e+15, 0.00000000e+00 , 1.35741026e+13, 8.21475966e+16, 8.55336176e-02, 1.57953396e-02 , 1.06058200e-02, 8.71010278e-03, 7.42508784e-03, 6.52156777e-03 , 5.72855385e-03, 4.99552441e-03, 4.36254449e-03, 3.93076962e-03 , 3.63767050e-03, 3.37999893e-03, 3.20280197e-03, 3.04227928e-03 , 2.93082120e-03, 2.85412932e-03, 2.79797761e-03, 2.71092621e-03 , 2.61535713e-03, 2.55340228e-03, 2.48501139e-03, 2.42902100e-03 , 2.36850195e-03, 2.29861381e-03, 2.23819994e-03, 2.17795827e-03 , 2.11676028e-03, 2.06515542e-03, 2.01478973e-03, 1.96564128e-03 , 1.91556309e-03, 1.86943149e-03, 1.83240435e-03, 1.79120738e-03 , 1.75672559e-03, 1.71652747e-03, 1.68120594e-03, 1.65315473e-03 , 1.62036128e-03, 1.59368312e-03, 1.56195259e-03, 1.53480747e-03 , 1.50568561e-03, 1.48263107e-03, 1.46131105e-03, 1.43606408e-03 , 1.41276985e-03, 1.39413270e-03, 1.37646323e-03, 1.35706705e-03] self.mean = [3.38644034e+00, 7.43425464e+02, 6.40294006e-01, 3.41446464e+00 , 7.43311042e+02, 3.93069798e-01, 3.44198895e+00, 7.65279393e+02 , 3.30402571e-01, 3.37149071e+00, 7.42151971e+02, 2.99447860e-01 , 3.17242069e+00, 5.44187845e+02, 2.54659310e-01, 3.13009675e+00 , 4.84051874e+02, 2.31965387e-01, 3.03159921e+00, 4.77210895e+02 , 2.11030105e-01, 2.91210220e+00, 4.75812355e+02, 1.79221157e-01 , 2.48661283e+00, 4.07247419e+02, 1.46988188e-01, 2.35089123e+00 , 4.09849329e+02, 1.27373824e-01, 2.05407365e+00, 3.31339017e+02 , 1.09869680e-01, 1.83130422e+00, 2.84458239e+02, 9.13302463e-02 , 1.65633359e+00, 2.43290193e+02, 7.70382677e-02, 1.53908652e+00 , 2.37653259e+02, 6.49126524e-02, 1.40798980e+00, 2.15514487e+02 , 5.50734013e-02, 1.27721807e+00, 2.05804280e+02, 4.48429695e-02 , 9.54851129e-01, 1.16369741e+02, 3.33964758e-02, 9.08127297e-01 , 1.24898928e+02, 2.66482729e-02, 6.62233444e-01, 1.04622009e+02 , 1.90757276e-02, 6.01659959e-01, 1.28183120e+02, 1.37406010e-02 , 1.70803755e+05, 8.91260553e+05, 1.89259938e+04, 1.02192320e+04 , 6.69685927e+00, 8.22232244e+02, 1.63555414e+08, 3.32080948e+02 , 2.67000000e+02, 5.19991299e+05, 5.71698208e+00, 2.24746765e+05 , 2.67000000e+02, 6.57049714e+05, 6.93815969e+06, 6.83251704e+05 , 1.59274898e+03, 2.44727973e+06, 1.63751281e+06, 2.24000000e+02 , 1.71372990e+05, 1.22412702e+09, 3.23793663e-01, 1.76607058e-01 , 1.55393276e-01, 1.45630353e-01, 1.37842988e-01, 1.31876001e-01 , 1.25851666e-01, 1.20359017e-01, 1.15054661e-01, 1.10336582e-01 , 1.05885689e-01, 1.01550953e-01, 9.65836144e-02, 9.22891413e-02 , 8.80601110e-02, 8.45020529e-02, 8.11572167e-02, 7.87433791e-02 , 7.69100818e-02, 7.45285251e-02, 7.27705280e-02, 7.10439361e-02 , 6.96190823e-02, 6.82907176e-02, 6.71648772e-02, 6.60168642e-02 , 6.49738245e-02, 6.39356689e-02, 6.31187099e-02, 6.23316077e-02 , 6.14790592e-02, 6.07008932e-02, 5.98904188e-02, 5.90441028e-02 , 5.82944078e-02, 5.76313235e-02, 5.69379230e-02, 5.60963207e-02 , 5.53104343e-02, 5.47383798e-02, 5.40714718e-02, 5.34539907e-02 , 5.28624994e-02, 5.23242945e-02, 5.18031428e-02, 5.11818326e-02 , 5.05779398e-02, 4.99491364e-02, 4.95038547e-02, 4.90042634e-02] self.mean=np.array(self.mean) self.var=np.array(self.var) def fileDialog(self): x = test(pepy.parse(self.filename)) importedDLL = set() importedSymbols = set() for row in x['symbol']: importedSymbols.add(row[0]) importedDLL.add(row[1]) self.x_list = [x['Baseofcode'], x['baseaddr'], x['characteristics'], x['dllchar'], self.mean_entropy, x['filealign'], x['imagebase'], list(importedDLL), list(importedSymbols), x['Machine'][0], x['Magic'], x['rva'], x['Number of Sections'], x['Number of symbols'], self.mean_petype, self.mean_pointer, self.mean_size, x['CodeSize'], x['headersize'], x['imagesize'], x['SizeofInitial'], self.mean_optionalHeader, x['UninitSize'], self.mean_timestamp] y = "" z = "" m = np.array(self.x_list) imported_dlls = m[7] imported_syms = m[8] m = np.delete(m, 7) m = np.delete(m, 7) m = np.reshape(m, (1, m.shape[0])) print("m:", m) x_test = m n_x_test = np.zeros(shape=(x_test.shape[0], 132)) for i in range(0, x_test.shape[0]): if i % 1000 == 0: print(i) row = df.iloc[i + 40001, :] row_dlls = imported_dlls row_syms = imported_syms row_dlss_str="" row_syms_str="" for ele in row_dlls: row_dlss_str += ele.lower() +" " for ele in row_syms: row_syms_str += ele.lower() +" " print(row_dlss_str) print(row_syms_str) dll_tfidfs = dll_vec.transform([row_dlss_str, ]).toarray()[0] dll_tfidf_pairs = [] for num, dll in enumerate(row_dlss_str.split()): if num == 20: break dll_tfidf = dll_tfidfs[list(dll_vec.get_feature_names()).index(dll)] dll_tfidf_pairs.append([dll_tfidf, list(dll_vec.get_feature_names()).index(dll)]) dll_tfidf_pairs = np.array(dll_tfidf_pairs) # print(dll_tfidf_pairs) dll_tfidf_pairs = dll_tfidf_pairs[dll_tfidf_pairs[:, 0].argsort()[::-1]] for j, pair in enumerate(dll_tfidf_pairs): name = dll_vec.get_feature_names()[int(pair[1])] if name in scrape_dict: n_x_test[i, 3 * j] = scrape_dict[name][0] n_x_test[i, 3 * j + 1] = scrape_dict[name][1] n_x_test[i, 3 * j + 2] = pair[0] else: n_x_test[i, 3 * j] = 1 n_x_test[i, 3 * j + 1] = 4 n_x_test[i, 3 * j + 2] = pair[0] # print(ip1_train) sym_tfidf = sym_vec.transform([row_syms_str, ]).toarray()[0] sym_tfidf = sorted(sym_tfidf, reverse=True)[:50] ip2_train = np.append(x_test[i], sym_tfidf) n_x_test[i, 60:] = ip2_train num = model.predict((n_x_test - self.mean) / (self.var ** 0.5 + 0.069)) print("NUM" + str(num)) if num >= 0 and num <= 0.3: y = "Low" z = "Good to use" elif num > 0.3 and num <= 0.6: y = "Medium" z = "Can be used" elif num > 0.6 and num <= 1: y = "High" z = "Avoid Using" else: y = "Out of range" z = "Cant determine" self.label.config(text="Recommendation : " + y) self.label = ttk.Label(self.labelFrame, text="") self.label.grid(column=1, row=3) self.label.config(text=z) df = pd.read_csv("brazilian-malware.csv") df = df.drop(columns=["Identify", "SHA1", "FirstSeenDate"]) idll = df.loc[:, "ImportedDlls"] idll = set(idll) dlls = set() for row in idll: for dll in row.split(): dlls.add(dll) isyms = df.loc[:, "ImportedSymbols"] isyms = set(isyms) syms = set() for row in isyms: for dll in row.split(): syms.add(dll) df_temp = df.drop(columns=["ImportedDlls", "ImportedSymbols"]) x_train = np.array(df_temp.drop(columns=["Label"]).iloc[:40001, :]) y_train = np.array(df_temp.iloc[:40001, :].loc[:, "Label"]) x_test = np.array(df_temp.drop(columns=["Label"]).iloc[40001:, :]) y_test = np.array(df_temp.iloc[40001:, :].loc[:, "Label"]) from sklearn.feature_extraction.text import TfidfVectorizer dll_vec = TfidfVectorizer(smooth_idf=False, analyzer="word", tokenizer=lambda x: x.split()) x = dll_vec.fit_transform(list(df.loc[:, "ImportedDlls"])) sym_vec = TfidfVectorizer(smooth_idf=False, analyzer="word", tokenizer=lambda x: x.split()) x = sym_vec.fit_transform(list(df.loc[:, "ImportedSymbols"])) df_scrape = pd.read_csv("spithack1.csv").drop(['Description'], axis=1) np_scrape = df_scrape.values scrape_dict = {} for i, row in enumerate(np_scrape): if not row[1] == "-1": name = row[0].replace("_dll", ".dll") pop = -1 if "Very Low" in row[1]: pop = 1 if "Low" in row[1]: pop = 2 if "Medium" in row[1]: pop = 3 if "High" in row[1]: pop = 4 if "Very High" in row[1]: pop = 5 if pop == -1: print("err", row[1]) exp = row[2].replace(",", "") scrape_dict[name] = [pop, int(exp)] model = load_model('acc_97_44.h5')
Python
386
35.992229
107
/python/test_python3_cli.py~
0.655182
0.439846
Sssssbo/SDCNet
refs/heads/master
import numpy as np import os import torch import torch.nn.functional as F from PIL import Image from torch.autograd import Variable from torchvision import transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import pandas as pd from tqdm import tqdm from misc import check_mkdir, AvgMeter, cal_precision_recall_mae, cal_fmeasure, cal_sizec, cal_sc from datasets import TestFolder_joint import joint_transforms from model import R3Net, SDCNet torch.manual_seed(2021) # set which gpu to use torch.cuda.set_device(6) # the following two args specify the location of the file of trained model (pth extension) # you should have the pth file in the folder './$ckpt_path$/$exp_name$' ckpt_path = './ckpt' exp_name = 'SDCNet' msra10k_path = './SOD_label/label_msra10k.csv' ecssd_path = './SOD_label/label_ECSSD.csv' dutomrom_path = './SOD_label/label_DUT-OMROM.csv' dutste_path = './SOD_label/label_DUTS-TE.csv' hkuis_path = './SOD_label/label_HKU-IS.csv' pascals_path = './SOD_label/label_PASCAL-S.csv' sed2_path = './SOD_label/label_SED2.csv' socval_path = './SOD_label/label_SOC-Val.csv' sod_path = './SOD_label/label_SOD.csv' thur15k_path = './SOD_label/label_THUR-15K.csv' args = { 'snapshot': '30000', # your snapshot filename (exclude extension name) 'save_results': True, # whether to save the resulting masks 'test_mode': 1 } joint_transform = joint_transforms.Compose([ #joint_transforms.RandomCrop(300), #joint_transforms.RandomHorizontallyFlip(), #joint_transforms.RandomRotate(10) ]) img_transform = transforms.Compose([ transforms.Resize((300, 300)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) target_transform = transforms.ToTensor() to_pil = transforms.ToPILImage() to_test ={'ECSSD': ecssd_path,'SOD': sod_path, 'DUTS-TE': dutste_path} #{'DUTS-TE': dutste_path,'ECSSD': ecssd_path,'SOD': sod_path, 'SED2': sed2_path, 'PASCAL-S': pascals_path, 'HKU-IS': hkuis_path, 'DUT-OMROM': dutomrom_path} def main(): net = SDCNet(num_classes = 5).cuda() print('load snapshot \'%s\' for testing, mode:\'%s\'' % (args['snapshot'], args['test_mode'])) print(exp_name) net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth'))) net.eval() results = {} with torch.no_grad(): for name, root in to_test.items(): print('load snapshot \'%s\' for testing %s' %(args['snapshot'], name)) test_data = pd.read_csv(root) test_set = TestFolder_joint(test_data, joint_transform, img_transform, target_transform) test_loader = DataLoader(test_set, batch_size=1, num_workers=0, shuffle=False) precision0_record, recall0_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision1_record, recall1_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision2_record, recall2_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision3_record, recall3_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision4_record, recall4_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision5_record, recall5_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision6_record, recall6_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] mae0_record = AvgMeter() mae1_record = AvgMeter() mae2_record = AvgMeter() mae3_record = AvgMeter() mae4_record = AvgMeter() mae5_record = AvgMeter() mae6_record = AvgMeter() n0, n1, n2, n3, n4, n5 = 0, 0, 0, 0, 0, 0 if args['save_results']: check_mkdir(os.path.join(ckpt_path, exp_name, '%s_%s' % (name, args['snapshot']))) for i, (inputs, gt, labels, img_path) in enumerate(tqdm(test_loader)): shape = gt.size()[2:] img_var = Variable(inputs).cuda() img = np.array(to_pil(img_var.data.squeeze(0).cpu())) gt = np.array(to_pil(gt.data.squeeze(0).cpu())) sizec = labels.numpy() pred2021 = net(img_var, sizec) pred2021 = F.interpolate(pred2021, size=shape, mode='bilinear', align_corners=True) pred2021 = np.array(to_pil(pred2021.data.squeeze(0).cpu())) if labels == 0: precision1, recall1, mae1 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision1, recall1)): p, r = pdata precision1_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall1_record[pidx].update(r) mae1_record.update(mae1) n1 += 1 elif labels == 1: precision2, recall2, mae2 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision2, recall2)): p, r = pdata precision2_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall2_record[pidx].update(r) mae2_record.update(mae2) n2 += 1 elif labels == 2: precision3, recall3, mae3 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision3, recall3)): p, r = pdata precision3_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall3_record[pidx].update(r) mae3_record.update(mae3) n3 += 1 elif labels == 3: precision4, recall4, mae4 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision4, recall4)): p, r = pdata precision4_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall4_record[pidx].update(r) mae4_record.update(mae4) n4 += 1 elif labels == 4: precision5, recall5, mae5 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision5, recall5)): p, r = pdata precision5_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall5_record[pidx].update(r) mae5_record.update(mae5) n5 += 1 precision6, recall6, mae6 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision6, recall6)): p, r = pdata precision6_record[pidx].update(p) recall6_record[pidx].update(r) mae6_record.update(mae6) img_name = os.path.split(str(img_path))[1] img_name = os.path.splitext(img_name)[0] n0 += 1 if args['save_results']: Image.fromarray(pred2021).save(os.path.join(ckpt_path, exp_name, '%s_%s' % ( name, args['snapshot']), img_name + '_2021.png')) fmeasure1 = cal_fmeasure([precord.avg for precord in precision1_record], [rrecord.avg for rrecord in recall1_record]) fmeasure2 = cal_fmeasure([precord.avg for precord in precision2_record], [rrecord.avg for rrecord in recall2_record]) fmeasure3 = cal_fmeasure([precord.avg for precord in precision3_record], [rrecord.avg for rrecord in recall3_record]) fmeasure4 = cal_fmeasure([precord.avg for precord in precision4_record], [rrecord.avg for rrecord in recall4_record]) fmeasure5 = cal_fmeasure([precord.avg for precord in precision5_record], [rrecord.avg for rrecord in recall5_record]) fmeasure6 = cal_fmeasure([precord.avg for precord in precision6_record], [rrecord.avg for rrecord in recall6_record]) results[name] = {'fmeasure1': fmeasure1, 'mae1': mae1_record.avg,'fmeasure2': fmeasure2, 'mae2': mae2_record.avg, 'fmeasure3': fmeasure3, 'mae3': mae3_record.avg, 'fmeasure4': fmeasure4, 'mae4': mae4_record.avg, 'fmeasure5': fmeasure5, 'mae5': mae5_record.avg, 'fmeasure6': fmeasure6, 'mae6': mae6_record.avg} print('test results:') print('[fmeasure1 %.3f], [mae1 %.4f], [class1 %.0f]\n'\ '[fmeasure2 %.3f], [mae2 %.4f], [class2 %.0f]\n'\ '[fmeasure3 %.3f], [mae3 %.4f], [class3 %.0f]\n'\ '[fmeasure4 %.3f], [mae4 %.4f], [class4 %.0f]\n'\ '[fmeasure5 %.3f], [mae5 %.4f], [class5 %.0f]\n'\ '[fmeasure6 %.3f], [mae6 %.4f], [all %.0f]\n'%\ (fmeasure1, mae1_record.avg, n1, fmeasure2, mae2_record.avg, n2, fmeasure3, mae3_record.avg, n3, fmeasure4, mae4_record.avg, n4, fmeasure5, mae5_record.avg, n5, fmeasure6, mae6_record.avg, n0)) def accuracy(y_pred, y_actual, topk=(1,)): """Computes the precision@k for the specified values of k""" final_acc = 0 maxk = max(topk) # for prob_threshold in np.arange(0, 1, 0.01): PRED_COUNT = y_actual.size(0) PRED_CORRECT_COUNT = 0 prob, pred = y_pred.topk(maxk, 1, True, True) # prob = np.where(prob > prob_threshold, prob, 0) for j in range(pred.size(0)): if int(y_actual[j]) == int(pred[j]): PRED_CORRECT_COUNT += 1 if PRED_COUNT == 0: final_acc = 0 else: final_acc = float(PRED_CORRECT_COUNT / PRED_COUNT) return final_acc * 100, PRED_COUNT if __name__ == '__main__': main()
Python
226
45.637169
227
/infer_SDCNet.py
0.54592
0.509962
Sssssbo/SDCNet
refs/heads/master
from .resnext101 import ResNeXt101
Python
1
34
34
/resnext/__init__.py
0.857143
0.685714
Sssssbo/SDCNet
refs/heads/master
import numpy as np import os import pylab as pl #import pydensecrf.densecrf as dcrf class AvgMeter(object): def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def check_mkdir(dir_name): if not os.path.exists(dir_name): os.mkdir(dir_name) def cal_precision_recall_mae(prediction, gt): # input should be np array with data type uint8 assert prediction.dtype == np.uint8 assert gt.dtype == np.uint8 assert prediction.shape == gt.shape eps = 1e-4 prediction = prediction / 255. gt = gt / 255. mae = np.mean(np.abs(prediction - gt)) hard_gt = np.zeros(prediction.shape) hard_gt[gt > 0.5] = 1 t = np.sum(hard_gt) #t is sum of 1 precision, recall, TPR, FP = [], [], [], [] # calculating precision and recall at 255 different binarizing thresholds for threshold in range(256): threshold = threshold / 255. hard_prediction = np.zeros(prediction.shape) hard_prediction[prediction > threshold] = 1 #false_pred = np.zeros(prediction.shape) #false_prediction[prediction < threshold] = 1 a = prediction.shape tp = np.sum(hard_prediction * hard_gt) p = np.sum(hard_prediction) #for roc #fp = np.sum(false_pred * hard_gt) #tpr = (tp + eps)/(a + eps) fp = p - tp #TPR.append(tpr) FP.append(fp) precision.append((tp + eps) / (p + eps)) recall.append((tp + eps) / (t + eps)) return precision, recall, mae#, TPR, FP def cal_fmeasure(precision, recall): assert len(precision) == 256 assert len(recall) == 256 beta_square = 0.3 max_fmeasure = max([(1 + beta_square) * p * r / (beta_square * p + r) for p, r in zip(precision, recall)]) return max_fmeasure def cal_sizec(prediction, gt): # input should be np array with data type uint8 assert prediction.dtype == np.uint8 assert gt.dtype == np.uint8 assert prediction.shape == gt.shape eps = 1e-4 #print(gt.shape) prediction = prediction / 255. gt = gt / 255. hard_gt = np.zeros(prediction.shape) hard_gt[gt > 0.5] = 1 t = np.sum(hard_gt) #t is sum of 1 precision, recall, TPR, FP = [], [], [], [] # calculating precision and recall at 255 different binarizing thresholds best_threshold = 0 best_F = 0 for threshold in range(256): threshold = threshold / 255. gt_size = np.ones(prediction.shape) a = np.sum(gt_size) hard_prediction = np.zeros(prediction.shape) hard_prediction[prediction > threshold] = 1 tp = np.sum(hard_prediction * hard_gt) p = np.sum(hard_prediction) #print(a, p) precision = (tp + eps) / (p + eps) recall = (tp + eps) / (t + eps) beta_square = 0.3 fmeasure = (1 + beta_square) * precision * recall / (beta_square * precision + recall) if fmeasure > best_F: best_threshold = threshold*255 best_F = fmeasure sm_size = p / a if 0 <= sm_size < 0.1: sizec = 0 elif 0.1 <= sm_size < 0.2: sizec = 1 elif 0.2 <= sm_size < 0.3: sizec = 2 elif 0.3 <= sm_size < 0.4: sizec = 3 elif 0.4 <= sm_size <= 1.0: sizec = 4 return sizec, best_threshold#, TPR, FP def cal_sc(gt): # input should be np array with data type uint8 assert gt.dtype == np.uint8 eps = 1e-4 gt = gt / 255. #print(gt.shape) img_size = np.ones(gt.shape) a = np.sum(img_size) hard_gt = np.zeros(gt.shape) hard_gt[gt > 0.5] = 1 p = np.sum(hard_gt) b = np.sum(gt) sm_size = float(p) / float(a) #print(p, a, sm_size, b) #print(gt) if 0 <= sm_size < 0.1: sizec = 0 elif 0.1 <= sm_size < 0.2: sizec = 1 elif 0.2 <= sm_size < 0.3: sizec = 2 elif 0.3 <= sm_size < 0.4: sizec = 3 elif 0.4 <= sm_size <= 1.0: sizec = 4 return sizec def pr_cruve(precision, recall): assert len(precision) == 256 assert len(recall) == 256 r = [a[1] for a in zip(precision, recall)] p = [a[0] for a in zip(precision, recall)] pl.title('PR curve') pl.xlabel('Recall') pl.xlabel('Precision') pl.plot(r, p) pl.show() # for define the size type of the salient object def size_aware(gt): assert gt.dtype == np.uint8 eps = 1e-4 gt = gt / 255. hard_gt = np.zeros(gt.shape) hard_gt[gt > 0.5] = 1 t = np.sum(hard_gt) pic = np.size(hard_gt) rate = t/pic return rate # # codes of this function are borrowed from https://github.com/Andrew-Qibin/dss_crf # def crf_refine(img, annos): # def _sigmoid(x): # return 1 / (1 + np.exp(-x)) # assert img.dtype == np.uint8 # assert annos.dtype == np.uint8 # assert img.shape[:2] == annos.shape # # img and annos should be np array with data type uint8 # EPSILON = 1e-8 # M = 2 # salient or not # tau = 1.05 # # Setup the CRF model # d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], M) # anno_norm = annos / 255. # n_energy = -np.log((1.0 - anno_norm + EPSILON)) / (tau * _sigmoid(1 - anno_norm)) # p_energy = -np.log(anno_norm + EPSILON) / (tau * _sigmoid(anno_norm)) # U = np.zeros((M, img.shape[0] * img.shape[1]), dtype='float32') # U[0, :] = n_energy.flatten() # U[1, :] = p_energy.flatten() # d.setUnaryEnergy(U) # d.addPairwiseGaussian(sxy=3, compat=3) # d.addPairwiseBilateral(sxy=60, srgb=5, rgbim=img, compat=5) # # Do the inference # infer = np.array(d.inference(1)).astype('float32') # res = infer[1, :] # res = res * 255 # res = res.reshape(img.shape[:2]) # return res.astype('uint8')
Python
227
25.356829
110
/misc.py
0.56343
0.531673
Sssssbo/SDCNet
refs/heads/master
from .make_model import ResNet50, ResNet50_BIN, ResNet50_LowIN
Python
1
62
62
/resnet/__init__.py
0.822581
0.725806
Sssssbo/SDCNet
refs/heads/master
from .resnet import ResNet, BasicBlock, Bottleneck import torch from torch import nn from .config import resnet50_path model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class ResNet50(nn.Module): def __init__(self): super(ResNet50, self).__init__() net = ResNet(last_stride=2, block=Bottleneck, frozen_stages=False, layers=[3, 4, 6, 3]) net.load_param(resnet50_path) self.layer0 = net.layer0 self.layer1 = net.layer1 self.layer2 = net.layer2 self.layer3 = net.layer3 self.layer4 = net.layer4 def forward(self, x): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) return layer4 def load_param(self, trained_path): param_dict = torch.load(trained_path) for i in param_dict: if 'classifier' in i or 'arcface' in i: continue self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model from {}'.format(trained_path)) class ResNet50_BIN(nn.Module): def __init__(self): super(ResNet50_BIN, self).__init__() net = ResNet(last_stride=2, block=IN_Bottleneck, frozen_stages=False, layers=[3, 4, 6, 3]) net.load_param(resnet50_path) self.layer0 = net.layer0 self.layer1 = net.layer1 self.layer2 = net.layer2 self.layer3 = net.layer3 self.layer4 = net.layer4 def forward(self, x): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) return layer4 def load_param(self, trained_path): param_dict = torch.load(trained_path) for i in param_dict: if 'classifier' in i or 'arcface' in i: continue self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model from {}'.format(trained_path)) class ResNet50_LowIN(nn.Module): def __init__(self): super(ResNet50_LowIN, self).__init__() net = ResNet_LowIN(last_stride=2, block=Bottleneck, frozen_stages=False, layers=[3, 4, 6, 3]) net.load_param(resnet50_path) self.layer0 = net.layer0 self.layer1 = net.layer1 self.layer2 = net.layer2 self.layer3 = net.layer3 self.layer4 = net.layer4 def forward(self, x): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) return layer4 def load_param(self, trained_path): param_dict = torch.load(trained_path) for i in param_dict: if 'classifier' in i or 'arcface' in i: continue self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model from {}'.format(trained_path))
Python
104
32.740383
78
/resnet/make_model.py
0.586492
0.54175
Sssssbo/SDCNet
refs/heads/master
import os import os.path import torch.utils.data as data from PIL import Image class ImageFolder_joint(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, label_list, joint_transform=None, transform=None, target_transform=None): imgs = [] self.label_list = label_list for index, row in label_list.iterrows(): imgs.append((row['img_path'], row['gt_path'], row['label'])) self.imgs = imgs self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __len__(self): return len(self.label_list) def __getitem__(self, index): img_path, gt_path, label = self.imgs[index] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') if self.joint_transform is not None: img, target = self.joint_transform(img, target) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target, label class ImageFolder_joint_for_edge(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, label_list, joint_transform=None, transform=None, target_transform=None): imgs = [] for index, row in label_list.iterrows(): imgs.append((row['img_path'], row['gt_path'], row['label'])) self.imgs = imgs self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __getitem__(self, index): img_path, gt_path, label = self.imgs[index] edge_path = "."+gt_path.split(".")[1]+"_edge."+gt_path.split(".")[2] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') target_edge = Image.open(edge_path).convert('L') if self.joint_transform is not None: if img.size != target.size or img.size != target_edge.size: print("error path:", img_path, gt_path) print("size:", img.size, target.size, target_edge.size) img, target, target_edge = self.joint_transform(img, target, target_edge) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) target_edge = self.target_transform(target_edge) return img, target, target_edge, label def __len__(self): return len(self.imgs) class TestFolder_joint(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, label_list, joint_transform=None, transform=None, target_transform=None): imgs = [] for index, row in label_list.iterrows(): imgs.append((row['img_path'], row['gt_path'], row['label'])) self.imgs = imgs self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __getitem__(self, index): img_path, gt_path, label = self.imgs[index] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') if self.joint_transform is not None: img, target = self.joint_transform(img, target) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target, label, img_path def __len__(self): return len(self.imgs) def make_dataset(root): img_list = [os.path.splitext(f)[0] for f in os.listdir(root) if f.endswith('.jpg')] return [(os.path.join(root, img_name + '.jpg'), os.path.join(root, img_name + '.png')) for img_name in img_list] class ImageFolder(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, root, joint_transform=None, transform=None, target_transform=None): self.root = root self.imgs = make_dataset(root) self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __getitem__(self, index): img_path, gt_path = self.imgs[index] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') if self.joint_transform is not None: img, target = self.joint_transform(img, target) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.imgs)
Python
125
39.872002
118
/datasets.py
0.623214
0.622627
Sssssbo/SDCNet
refs/heads/master
import torch import torch.nn as nn from .backbones.resnet import ResNet, Comb_ResNet, Pure_ResNet, Jointin_ResNet, Jointout_ResNet, BasicBlock, Bottleneck, GDN_Bottleneck, IN_Bottleneck, IN2_Bottleneck, SNR_Bottleneck, SNR2_Bottleneck, SNR3_Bottleneck from loss.arcface import ArcFace from .backbones.resnet_ibn_a import resnet50_ibn_a, resnet101_ibn_a from .backbones.se_resnet_ibn_a import se_resnet50_ibn_a, se_resnet101_ibn_a import torch.nn.functional as F model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def weights_init_kaiming(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: nn.init.kaiming_normal_(m.weight, a=0, mode='fan_out') nn.init.constant_(m.bias, 0.0) elif classname.find('Conv') != -1: nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') if m.bias is not None: nn.init.constant_(m.bias, 0.0) elif classname.find('BatchNorm') != -1: if m.affine: nn.init.constant_(m.weight, 1.0) nn.init.constant_(m.bias, 0.0) def weights_init_classifier(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: nn.init.normal_(m.weight, std=0.001) if m.bias: nn.init.constant_(m.bias, 0.0) class Backbone(nn.Module): def __init__(self, num_classes, cfg): super(Backbone, self).__init__() last_stride = cfg.MODEL.LAST_STRIDE model_path = cfg.MODEL.PRETRAIN_PATH model_name = cfg.MODEL.NAME self.model_name = cfg.MODEL.NAME pretrain_choice = cfg.MODEL.PRETRAIN_CHOICE #block = cfg.MODEL.BLOCK self.cos_layer = cfg.MODEL.COS_LAYER self.neck = cfg.MODEL.NECK self.neck_feat = cfg.TEST.NECK_FEAT if model_name == 'Pure_resnet50_GDN': self.in_planes = 2048 self.base = ResNet(last_stride=last_stride, block=GDN_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Comb_resnet50_IN': self.in_planes = 2048 self.base = Comb_ResNet(last_stride=last_stride, block=IN_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Pure_resnet50_IN2': self.in_planes = 2048 self.base = Pure_ResNet(last_stride=last_stride, block=IN2_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # elif model_name == 'Pure_resnet50_IN': self.in_planes = 2048 self.base = Pure_ResNet(last_stride=last_stride, block=IN_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Pure_resnet50_SNR': self.in_planes = 2048 self.base = Pure_ResNet(last_stride=last_stride, block=SNR_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Pure_resnet50_SNR2': self.in_planes = 2048 self.base = Pure_ResNet(last_stride=last_stride, block=SNR2_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Jointin_resnet50_SNR3': self.in_planes = 2048 self.base = Jointin_ResNet(last_stride=last_stride, block=SNR3_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Jointout_resnet50_None': self.in_planes = 2048 self.base = Jointout_ResNet(last_stride=last_stride, block=Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Jointout_resnet50_IN': self.in_planes = 2048 self.base = Jointout_ResNet(last_stride=last_stride, block=IN_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'resnet18': self.in_planes = 512 self.base = ResNet(last_stride=last_stride, block=BasicBlock, frozen_stages=cfg.MODEL.FROZEN, layers=[2, 2, 2, 2]) print('using resnet18 as a backbone') elif model_name == 'resnet34': self.in_planes = 512 self.base = ResNet(last_stride=last_stride, block=BasicBlock, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) print('using resnet34 as a backbone') elif model_name == 'resnet50_ibn_a': self.in_planes = 2048 self.base = resnet50_ibn_a(last_stride) print('using se_resnet50_ibn_a as a backbone') elif model_name == 'se_resnet50_ibn_a': self.in_planes = 2048 self.base = se_resnet50_ibn_a( last_stride, frozen_stages=cfg.MODEL.FROZEN) print('using se_resnet50_ibn_a as a backbone') elif model_name == 'resnet101_ibn_a': self.in_planes = 2048 self.base = resnet101_ibn_a( last_stride, frozen_stages=cfg.MODEL.FROZEN) print('using resnet101_ibn_a as a backbone') elif model_name == 'se_resnet101_ibn_a': self.in_planes = 2048 self.base = se_resnet101_ibn_a( last_stride, frozen_stages=cfg.MODEL.FROZEN) print('using se_resnet101_ibn_a as a backbone') else: print('unsupported backbone! but got {}'.format(model_name)) if pretrain_choice == 'imagenet': self.base.load_param(model_path) print('Loading pretrained ImageNet model......from {}'.format(model_path)) self.gap = nn.AdaptiveAvgPool2d(1) self.num_classes = num_classes if self.cos_layer: print('using cosine layer') self.arcface = ArcFace( self.in_planes, self.num_classes, s=30.0, m=0.50) else: self.classifier = nn.Linear( self.in_planes, self.num_classes, bias=False) self.classifier.apply(weights_init_classifier) if model_name == 'Jointin_resnet50_SNR3': self.classifier = nn.Linear( self.in_planes, self.num_classes, bias=False) self.classifier.apply(weights_init_classifier) self.classifier1 = nn.Linear(512, self.num_classes, bias=False) self.classifier1.apply(weights_init_classifier) self.classifier2 = nn.Linear(512, self.num_classes, bias=False) self.classifier2.apply(weights_init_classifier) self.classifier3 = nn.Linear(512, self.num_classes, bias=False) self.classifier3.apply(weights_init_classifier) self.classifier4 = nn.Linear(512, self.num_classes, bias=False) self.classifier4.apply(weights_init_classifier) self.classifier5 = nn.Linear(1024, self.num_classes, bias=False) self.classifier5.apply(weights_init_classifier) self.classifier6 = nn.Linear(256, self.num_classes, bias=False) self.classifier6.apply(weights_init_classifier) self.classifier7 = nn.Linear(256, self.num_classes, bias=False) self.classifier7.apply(weights_init_classifier) self.classifier8 = nn.Linear(256, self.num_classes, bias=False) self.classifier8.apply(weights_init_classifier) self.classifier9 = nn.Linear(256, self.num_classes, bias=False) self.classifier9.apply(weights_init_classifier) self.classifier10 = nn.Linear(512, self.num_classes, bias=False) self.classifier10.apply(weights_init_classifier) self.classifier11 = nn.Linear(128, self.num_classes, bias=False) self.classifier11.apply(weights_init_classifier) self.classifier12 = nn.Linear(128, self.num_classes, bias=False) self.classifier12.apply(weights_init_classifier) self.classifier13 = nn.Linear(128, self.num_classes, bias=False) self.classifier13.apply(weights_init_classifier) self.classifier14 = nn.Linear(128, self.num_classes, bias=False) self.classifier14.apply(weights_init_classifier) self.classifier15 = nn.Linear(256, self.num_classes, bias=False) self.classifier15.apply(weights_init_classifier) self.classifier16 = nn.Linear(64, self.num_classes, bias=False) self.classifier16.apply(weights_init_classifier) self.classifier17 = nn.Linear(64, self.num_classes, bias=False) self.classifier17.apply(weights_init_classifier) self.classifier18 = nn.Linear(64, self.num_classes, bias=False) self.classifier18.apply(weights_init_classifier) self.classifier19 = nn.Linear(64, self.num_classes, bias=False) self.classifier19.apply(weights_init_classifier) elif 'Jointout' in model_name: self.classifier0 = nn.Linear(64, self.num_classes, bias=False) self.classifier0.apply(weights_init_classifier) self.classifier0_1 = nn.Linear(64, self.num_classes, bias=False) self.classifier0_1.apply(weights_init_classifier) self.classifier1 = nn.Linear(256, self.num_classes, bias=False) self.classifier1.apply(weights_init_classifier) self.classifier1_1 = nn.Linear(256, self.num_classes, bias=False) self.classifier1_1.apply(weights_init_classifier) self.classifier2 = nn.Linear(512, self.num_classes, bias=False) self.classifier2.apply(weights_init_classifier) self.classifier2_1 = nn.Linear(512, self.num_classes, bias=False) self.classifier2_1.apply(weights_init_classifier) self.classifier3 = nn.Linear(1024, self.num_classes, bias=False) self.classifier3.apply(weights_init_classifier) self.classifier3_1 = nn.Linear(1024, self.num_classes, bias=False) self.classifier3_1.apply(weights_init_classifier) self.classifier4 = nn.Linear(2048, self.num_classes, bias=False) self.classifier4.apply(weights_init_classifier) self.classifier4_1 = nn.Linear(2048, self.num_classes, bias=False) self.classifier4_1.apply(weights_init_classifier) self.bottleneck = nn.BatchNorm1d(self.in_planes) self.bottleneck.bias.requires_grad_(False) self.bottleneck.apply(weights_init_kaiming) def forward(self, x, label=None, camid=None): # label is unused if self.cos_layer == 'no' if self.training and self.model_name == 'Jointin_resnet50_SNR3': x, x4_2, x4_1, res4_2, res4_1, x3_3, x3_2, x3_1, res3_2, res3_1, x2_3, x2_2, x2_1, res2_2, res2_1, x1_3, x1_2, x1_1, res1_2, res1_1 = self.base(x, camid) global_feat = nn.functional.avg_pool2d(x, x.shape[2:4]) global_feat = global_feat.view(global_feat.shape[0], -1) feat = self.bottleneck(global_feat) cls_score = self.classifier(feat) fx4_2 = nn.functional.avg_pool2d(x4_2, x4_2.shape[2:4]) fx4_2 = fx4_2.view(fx4_2.shape[0], -1) ax4_2 = self.classifier1(fx4_2) fx4_1 = nn.functional.avg_pool2d(x4_1, x4_1.shape[2:4]) fx4_1 = fx4_1.view(fx4_1.shape[0], -1) ax4_1 = self.classifier2(fx4_1) fres4_2 = nn.functional.avg_pool2d(res4_2, res4_2.shape[2:4]) fres4_2 = fres4_2.view(fres4_2.shape[0], -1) ares4_2 = self.classifier3(fres4_2) fres4_1 = nn.functional.avg_pool2d(res4_1, res4_1.shape[2:4]) fres4_1 = fres4_1.view(fres4_1.shape[0], -1) ares4_1 = self.classifier4(fres4_1) fx3_3 = nn.functional.avg_pool2d(x3_3, x3_3.shape[2:4]) fx3_3 = fx3_3.view(fx3_3.shape[0], -1) ax3_3 = self.classifier5(fx3_3) fx3_2 = nn.functional.avg_pool2d(x3_2, x3_2.shape[2:4]) fx3_2 = fx3_2.view(fx3_2.shape[0], -1) ax3_2 = self.classifier6(fx3_2) fx3_1 = nn.functional.avg_pool2d(x3_1, x3_1.shape[2:4]) fx3_1 = fx3_1.view(fx3_1.shape[0], -1) ax3_1 = self.classifier7(fx3_1) fres3_2 = nn.functional.avg_pool2d(res3_2, res3_2.shape[2:4]) fres3_2 = fres3_2.view(fres3_2.shape[0], -1) ares3_2 = self.classifier8(fres3_2) fres3_1 = nn.functional.avg_pool2d(res3_1, res3_1.shape[2:4]) fres3_1 = fres3_1.view(fres3_1.shape[0], -1) ares3_1 = self.classifier9(fres3_1) fx2_3 = nn.functional.avg_pool2d(x2_3, x2_3.shape[2:4]) fx2_3 = fx2_3.view(fx2_3.shape[0], -1) ax2_3 = self.classifier10(fx2_3) fx2_2 = nn.functional.avg_pool2d(x2_2, x2_2.shape[2:4]) fx2_2 = fx2_2.view(fx2_2.shape[0], -1) ax2_2 = self.classifier11(fx2_2) fx2_1 = nn.functional.avg_pool2d(x2_1, x2_1.shape[2:4]) fx2_1 = fx2_1.view(fx2_1.shape[0], -1) ax2_1 = self.classifier12(fx2_1) fres2_2 = nn.functional.avg_pool2d(res2_2, res2_2.shape[2:4]) fres2_2 = fres2_2.view(fres2_2.shape[0], -1) ares2_2 = self.classifier13(fres2_2) fres2_1 = nn.functional.avg_pool2d(res2_1, res2_1.shape[2:4]) fres2_1 = fres2_1.view(fres2_1.shape[0], -1) ares2_1 = self.classifier14(fres2_1) fx1_3 = nn.functional.avg_pool2d(x1_3, x1_3.shape[2:4]) fx1_3 = fx1_3.view(fx1_3.shape[0], -1) ax1_3 = self.classifier15(fx1_3) fx1_2 = nn.functional.avg_pool2d(x1_2, x1_2.shape[2:4]) fx1_2 = fx1_2.view(fx1_2.shape[0], -1) ax1_2 = self.classifier16(fx1_2) fx1_1 = nn.functional.avg_pool2d(x1_1, x1_1.shape[2:4]) fx1_1 = fx1_1.view(fx1_1.shape[0], -1) ax1_1 = self.classifier17(fx1_1) fres1_2 = nn.functional.avg_pool2d(res1_2, res1_2.shape[2:4]) fres1_2 = fres1_2.view(fres1_2.shape[0], -1) ares1_2 = self.classifier18(fres1_2) fres1_1 = nn.functional.avg_pool2d(res1_1, res1_1.shape[2:4]) fres1_1 = fres1_1.view(fres1_1.shape[0], -1) ares1_1 = self.classifier19(fres1_1) return cls_score, global_feat, ax4_2, ax4_1, ares4_2, ares4_1, ax3_3, ax3_2, ax3_1, ares3_2, ares3_1, ax2_3, ax2_2, ax2_1, ares2_2, ares2_1, ax1_3, ax1_2, ax1_1, ares1_2, ares1_1 elif 'Jointout' in self.model_name and self.training: x0, x1, x2, x3, x4, res0, res1, res2, res3, res4 = self.base(x, camid) global_feat = nn.functional.avg_pool2d(x4, x4.shape[2:4]) global_feat = global_feat.view(global_feat.shape[0], -1) feat = self.bottleneck(global_feat) cls_score = self.classifier4(feat) res4 = nn.functional.avg_pool2d(res4, res4.shape[2:4]) res4 = res4.view(res4.shape[0], -1) res4 = self.classifier4_1(res4) x3 = nn.functional.avg_pool2d(x3, x3.shape[2:4]) x3 = x3.view(x3.shape[0], -1) x3 = self.classifier3_1(x3) res3 = nn.functional.avg_pool2d(res3, res3.shape[2:4]) res3 = res3.view(res3.shape[0], -1) res3 = self.classifier3(res3) x2 = nn.functional.avg_pool2d(x2, x2.shape[2:4]) x2 = x2.view(x2.shape[0], -1) x2 = self.classifier2(x2) res2 = nn.functional.avg_pool2d(res2, res2.shape[2:4]) res2 = res2.view(res2.shape[0], -1) res2 = self.classifier2_1(res2) x1 = nn.functional.avg_pool2d(x1, x1.shape[2:4]) x1 = x1.view(x1.shape[0], -1) x1 = self.classifier1(x1) res1 = nn.functional.avg_pool2d(res1, res1.shape[2:4]) res1 = res1.view(res1.shape[0], -1) res1 = self.classifier1_1(res1) x0 = nn.functional.avg_pool2d(x0, x0.shape[2:4]) x0 = x0.view(x0.shape[0], -1) x0 = self.classifier0(x0) res0 = nn.functional.avg_pool2d(res0, res0.shape[2:4]) res0 = res0.view(res0.shape[0], -1) res0 = self.classifier0_1(res0) return global_feat, x0, x1, x2, x3, cls_score, res0, res1, res2, res3, res4 x = self.base(x, camid) # print(x.shape) global_feat = nn.functional.avg_pool2d(x, x.shape[2:4]) # print(global_feat.shape) # print(x.shape) # for convert to onnx, kernel size must be from x.shape[2:4] to a constant [20,20] #global_feat = nn.functional.avg_pool2d(x, [16, 16]) # flatten to (bs, 2048), global_feat.shape[0] global_feat = global_feat.view(global_feat.shape[0], -1) feat = self.bottleneck(global_feat) if self.neck == 'no': feat = global_feat elif self.neck == 'bnneck': feat = self.bottleneck(global_feat) if self.training: if self.cos_layer: cls_score = self.arcface(feat, label) else: cls_score = self.classifier(feat) return cls_score, global_feat # global feature for triplet loss else: if self.neck_feat == 'after': # print("Test with feature after BN") return feat else: # print("Test with feature before BN") return global_feat def load_param(self, trained_path): param_dict = torch.load(trained_path) for i in param_dict: if 'classifier' in i or 'arcface' in i: continue self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model from {}'.format(trained_path)) def load_param_finetune(self, model_path): param_dict = torch.load(model_path) # for i in param_dict: # print(i)#change by sb # self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model for finetuning from {}'.format(model_path)) def make_model(cfg, num_class): model = Backbone(num_class, cfg) return model
Python
399
48.255638
216
/model/make_model.py
0.573042
0.515189
Sssssbo/SDCNet
refs/heads/master
resnet50_path = './resnet/resnet50-19c8e357.pth'
Python
1
48
48
/resnet/config.py
0.755102
0.55102
Sssssbo/SDCNet
refs/heads/master
import torch import torch.nn.functional as F from torch import nn from resnext import ResNeXt101 class R3Net(nn.Module): def __init__(self): super(R3Net, self).__init__() res50 = ResNeXt101() self.layer0 = res50.layer0 self.layer1 = res50.layer1 self.layer2 = res50.layer2 self.layer3 = res50.layer3 self.layer4 = res50.layer4 self.reduce_low = nn.Sequential( nn.Conv2d(64 + 256 + 512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce_high = nn.Sequential( nn.Conv2d(1024 + 2048, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), _ASPP(256) ) self.predict0 = nn.Conv2d(256, 1, kernel_size=1) self.predict1 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict2 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict3 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict4 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict5 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict6 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) for m in self.modules(): if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout): m.inplace = True def forward(self, x, label = None): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) l0_size = layer0.size()[2:] reduce_low = self.reduce_low(torch.cat(( layer0, F.interpolate(layer1, size=l0_size, mode='bilinear', align_corners=True), F.interpolate(layer2, size=l0_size, mode='bilinear', align_corners=True)), 1)) reduce_high = self.reduce_high(torch.cat(( layer3, F.interpolate(layer4, size=layer3.size()[2:], mode='bilinear', align_corners=True)), 1)) reduce_high = F.interpolate(reduce_high, size=l0_size, mode='bilinear', align_corners=True) predict0 = self.predict0(reduce_high) predict1 = self.predict1(torch.cat((predict0, reduce_low), 1)) + predict0 predict2 = self.predict2(torch.cat((predict1, reduce_high), 1)) + predict1 predict3 = self.predict3(torch.cat((predict2, reduce_low), 1)) + predict2 predict4 = self.predict4(torch.cat((predict3, reduce_high), 1)) + predict3 predict5 = self.predict5(torch.cat((predict4, reduce_low), 1)) + predict4 predict6 = self.predict6(torch.cat((predict5, reduce_high), 1)) + predict5 predict0 = F.interpolate(predict0, size=x.size()[2:], mode='bilinear', align_corners=True) predict1 = F.interpolate(predict1, size=x.size()[2:], mode='bilinear', align_corners=True) predict2 = F.interpolate(predict2, size=x.size()[2:], mode='bilinear', align_corners=True) predict3 = F.interpolate(predict3, size=x.size()[2:], mode='bilinear', align_corners=True) predict4 = F.interpolate(predict4, size=x.size()[2:], mode='bilinear', align_corners=True) predict5 = F.interpolate(predict5, size=x.size()[2:], mode='bilinear', align_corners=True) predict6 = F.interpolate(predict6, size=x.size()[2:], mode='bilinear', align_corners=True) if self.training: return predict0, predict1, predict2, predict3, predict4, predict5, predict6 return F.sigmoid(predict6) #-------------------------------------------------------------------------------------------- class SDCNet(nn.Module): def __init__(self, num_classes): super(SDCNet, self).__init__() res50 = ResNeXt101() self.layer0 = res50.layer0 self.layer1 = res50.layer1 self.layer2 = res50.layer2 self.layer3 = res50.layer3 self.layer4 = res50.layer4 self.reducex = nn.Sequential( nn.Conv2d(2048, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), _ASPP(256) ) self.reduce5 = nn.Sequential( nn.Conv2d(64 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce6 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce7 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce8 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce9 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce10 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) # --------------extra module--------------- self.reduce3_0 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce3_1 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce3_2 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce3_3 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce3_4 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce2_0 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce2_1 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce2_2 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce2_3 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce2_4 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce1_0 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce1_1 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce1_2 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce1_3 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce1_4 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce0_0 = nn.Sequential( nn.Conv2d(64, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce0_1 = nn.Sequential( nn.Conv2d(64, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce0_2 = nn.Sequential( nn.Conv2d(64, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce0_3 = nn.Sequential( nn.Conv2d(64, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce0_4 = nn.Sequential( nn.Conv2d(64, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) # self.predict0 = nn.Conv2d(256, 1, kernel_size=1) self.predict1 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict2 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict3 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict4 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict5 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict6 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict7 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict8 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict9 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict10 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.pre4 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 2, kernel_size=1) ) self.pre3 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 2, kernel_size=1) ) self.pre2 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 2, kernel_size=1) ) self.pre1 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 2, kernel_size=1) ) self.reducex_1 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reducex_2 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reducex_3 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) for m in self.modules(): if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout): m.inplace = True self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc0 = nn.Sequential( nn.BatchNorm1d(256), nn.Dropout(0.5), nn.Linear(256, num_classes), ) def forward(self, x, c): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) l0_size = layer0.size()[2:] l1_size = layer1.size()[2:] l2_size = layer2.size()[2:] l3_size = layer3.size()[2:] F1 = self.reducex(layer4) p4 = self.pre4(F1) p4 = F.interpolate(p4, size=x.size()[2:], mode='bilinear', align_corners=True) F0_4 = F.interpolate(F1, size=l3_size, mode='bilinear', align_corners=True) F0_3 = self.reducex_3(torch.cat((F0_4, layer3), 1)) p3 = self.pre3(F0_3) p3 = F.interpolate(p3, size=x.size()[2:], mode='bilinear', align_corners=True) F0_3 = F.interpolate(F0_3, size=l2_size, mode='bilinear', align_corners=True) F0_2 = self.reducex_2(torch.cat((F0_3, layer2), 1)) p2 = self.pre2(F0_2) p2 = F.interpolate(p2, size=x.size()[2:], mode='bilinear', align_corners=True) F0_2 = F.interpolate(F0_2, size=l1_size, mode='bilinear', align_corners=True) F0_1 = self.reducex_1(torch.cat((F0_2, layer1), 1)) p1 = self.pre1(F0_1) p1 = F.interpolate(p1, size=x.size()[2:], mode='bilinear', align_corners=True) p5 = p4 + p3 + p2 + p1 #saliency detect predict1 = self.predict1(F1) predict1 = F.interpolate(predict1, size=l3_size, mode='bilinear', align_corners=True) F1 = F.interpolate(F1, size=l3_size, mode='bilinear', align_corners=True) F2 = F1[:, :, :, :].clone().detach() for i in range(len(c)): if c[i] == 0: F2[i, :, :, :] = self.reduce3_0( torch.cat((F1[i, :, :, :].unsqueeze(0), layer3[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 1: F2[i, :, :, :] = self.reduce3_1( torch.cat((F1[i, :, :, :].unsqueeze(0), layer3[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 2: F2[i, :, :, :] = self.reduce3_2( torch.cat((F1[i, :, :, :].unsqueeze(0), layer3[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 3: F2[i, :, :, :] = self.reduce3_3( torch.cat((F1[i, :, :, :].unsqueeze(0), layer3[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 4: F2[i, :, :, :] = self.reduce3_4( torch.cat((F1[i, :, :, :].unsqueeze(0), layer3[i, :, :, :].unsqueeze(0)), 1)) predict2 = self.predict2(F2) + predict1 predict2 = F.interpolate(predict2, size=l2_size, mode='bilinear', align_corners=True) F2 = F.interpolate(F2, size=l2_size, mode='bilinear', align_corners=True) F3 = F2[:, :, :, :].clone().detach() for i in range(len(c)): if c[i] == 0: F3[i, :, :, :] = self.reduce2_0( torch.cat((F2[i, :, :, :].unsqueeze(0), layer2[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 1: F3[i, :, :, :] = self.reduce2_1( torch.cat((F2[i, :, :, :].unsqueeze(0), layer2[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 2: F3[i, :, :, :] = self.reduce2_2( torch.cat((F2[i, :, :, :].unsqueeze(0), layer2[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 3: F3[i, :, :, :] = self.reduce2_3( torch.cat((F2[i, :, :, :].unsqueeze(0), layer2[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 4: F3[i, :, :, :] = self.reduce2_4( torch.cat((F2[i, :, :, :].unsqueeze(0), layer2[i, :, :, :].unsqueeze(0)), 1)) predict3 = self.predict3(F3) + predict2 predict3 = F.interpolate(predict3, size=l1_size, mode='bilinear', align_corners=True) F3 = F.interpolate(F3, size=l1_size, mode='bilinear', align_corners=True) F4 = F3[:, :, :, :].clone().detach() for i in range(len(c)): if c[i] == 0: F4[i, :, :, :] = self.reduce1_0( torch.cat((F3[i, :, :, :].unsqueeze(0), layer1[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 1: F4[i, :, :, :] = self.reduce1_1( torch.cat((F3[i, :, :, :].unsqueeze(0), layer1[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 2: F4[i, :, :, :] = self.reduce1_2( torch.cat((F3[i, :, :, :].unsqueeze(0), layer1[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 3: F4[i, :, :, :] = self.reduce1_3( torch.cat((F3[i, :, :, :].unsqueeze(0), layer1[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 4: F4[i, :, :, :] = self.reduce1_4( torch.cat((F3[i, :, :, :].unsqueeze(0), layer1[i, :, :, :].unsqueeze(0)), 1)) predict4 = self.predict4(F4) + predict3 F5 = self.reduce5(torch.cat((F4, layer0), 1)) predict5 = self.predict5(F5) + predict4 F0 = F4[:, :, :, :].clone().detach() for i in range(len(c)): if c[i] == 0: F0[i, :, :, :] = self.reduce0_0(layer0[i, :, :, :].unsqueeze(0)) elif c[i] == 1: F0[i, :, :, :] = self.reduce0_1(layer0[i, :, :, :].unsqueeze(0)) elif c[i] == 2: F0[i, :, :, :] = self.reduce0_2(layer0[i, :, :, :].unsqueeze(0)) elif c[i] == 3: F0[i, :, :, :] = self.reduce0_3(layer0[i, :, :, :].unsqueeze(0)) elif c[i] == 4: F0[i, :, :, :] = self.reduce0_4(layer0[i, :, :, :].unsqueeze(0)) F1 = F.interpolate(F1, size=l1_size, mode='bilinear', align_corners=True) F2 = F.interpolate(F2, size=l1_size, mode='bilinear', align_corners=True) F6 = self.reduce6(torch.cat((F0, F5), 1)) F7 = self.reduce7(torch.cat((F0, F4), 1)) F8 = self.reduce8(torch.cat((F0, F3), 1)) F9 = self.reduce9(torch.cat((F0, F2), 1)) F10 = self.reduce10(torch.cat((F0, F1), 1)) predict6 = self.predict6(F6) + predict5 predict7 = self.predict7(F7) + predict6 predict8 = self.predict8(F8) + predict7 predict9 = self.predict9(F9) + predict8 predict10 = self.predict10(F10) + predict9 predict11 = predict6 + predict7 + predict8 + predict9 + predict10 predict1 = F.interpolate(predict1, size=x.size()[2:], mode='bilinear', align_corners=True) predict2 = F.interpolate(predict2, size=x.size()[2:], mode='bilinear', align_corners=True) predict3 = F.interpolate(predict3, size=x.size()[2:], mode='bilinear', align_corners=True) predict4 = F.interpolate(predict4, size=x.size()[2:], mode='bilinear', align_corners=True) predict5 = F.interpolate(predict5, size=x.size()[2:], mode='bilinear', align_corners=True) predict6 = F.interpolate(predict6, size=x.size()[2:], mode='bilinear', align_corners=True) predict7 = F.interpolate(predict7, size=x.size()[2:], mode='bilinear', align_corners=True) predict8 = F.interpolate(predict8, size=x.size()[2:], mode='bilinear', align_corners=True) predict9 = F.interpolate(predict9, size=x.size()[2:], mode='bilinear', align_corners=True) predict10 = F.interpolate(predict10, size=x.size()[2:], mode='bilinear', align_corners=True) predict11 = F.interpolate(predict11, size=x.size()[2:], mode='bilinear', align_corners=True) if self.training: return p5, p4, p3, p2, p1, predict1, predict2, predict3, predict4, predict5, predict6, predict7, predict8, predict9, predict10, predict11 return F.sigmoid(predict11) #---------------------------------------------------------------------------------------- class _ASPP(nn.Module): def __init__(self, in_dim): super(_ASPP, self).__init__() down_dim = in_dim // 2 self.conv1 = nn.Sequential( nn.Conv2d(in_dim, down_dim, kernel_size=1), nn.BatchNorm2d(down_dim), nn.PReLU() ) self.conv2 = nn.Sequential( nn.Conv2d(in_dim, down_dim, kernel_size=3, dilation=2, padding=2), nn.BatchNorm2d(down_dim), nn.PReLU() ) self.conv3 = nn.Sequential( nn.Conv2d(in_dim, down_dim, kernel_size=3, dilation=4, padding=4), nn.BatchNorm2d(down_dim), nn.PReLU() ) self.conv4 = nn.Sequential( nn.Conv2d(in_dim, down_dim, kernel_size=3, dilation=6, padding=6), nn.BatchNorm2d(down_dim), nn.PReLU() ) self.conv5 = nn.Sequential( nn.Conv2d(in_dim, down_dim, kernel_size=1), nn.BatchNorm2d(down_dim), nn.PReLU() ) self.fuse = nn.Sequential( nn.Conv2d(5 * down_dim, in_dim, kernel_size=1), nn.BatchNorm2d(in_dim), nn.PReLU() ) def forward(self, x): conv1 = self.conv1(x) conv2 = self.conv2(x) conv3 = self.conv3(x) conv4 = self.conv4(x) conv5 = F.interpolate(self.conv5(F.adaptive_avg_pool2d(x, 1)), size=x.size()[2:], mode='bilinear', align_corners=True) return self.fuse(torch.cat((conv1, conv2, conv3, conv4, conv5), 1))
Python
529
52.631378
149
/model.py
0.556625
0.46396
Sssssbo/SDCNet
refs/heads/master
import numpy as np import os import torch from PIL import Image from torch.autograd import Variable from torchvision import transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import pandas as pd from tqdm import tqdm import cv2 import numpy as np from config import ecssd_path, hkuis_path, pascals_path, sod_path, dutomron_path, MTDD_test_path from misc import check_mkdir, crf_refine, AvgMeter, cal_precision_recall_mae, cal_fmeasure from datasets import TestFolder_joint import joint_transforms from model import HSNet_single1, HSNet_single1_ASPP, HSNet_single1_NR, HSNet_single2, SDMS_A, SDMS_C torch.manual_seed(2018) # set which gpu to use torch.cuda.set_device(0) ckpt_path = './ckpt' test_path = './test_ECSSD.csv' def main(): img = np.zeros((512, 512),dtype = np.uint8) img2 = cv2.imread('./0595.PNG', 0) cv2.imshow('img',img2) #cv2.waitKey(0) print(img, img2) Image.fromarray(img).save('./free.png') if __name__ == '__main__': main()
Python
41
24.024391
100
/create_free.py
0.719298
0.691033
Sssssbo/SDCNet
refs/heads/master
import numpy as np import os import torch from PIL import Image from torch.autograd import Variable from torchvision import transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import pandas as pd from tqdm import tqdm path_list = ['msra10k', 'ECSSD', 'DUT-OMROM', 'DUTS-TR', 'DUTS-TE', 'HKU-IS', 'PASCAL-S', 'SED2', 'SOC', 'SOD', 'THUR-15K'] def main(): Dataset, Class0, Class1, Class2, Class3, Class4, Class5, Class6, Class7, Class8, Class9, Class10, Total = [], [], [], [], [], [], [], [], [], [], [], [], [] for data_path in path_list: test_path = './SOD_label/label_' + data_path + '.csv' print('Evalute for ' + test_path) test_data = pd.read_csv(test_path) imgs = [] num, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 for index, row in test_data.iterrows(): imgs.append((row['img_path'], row['gt_path'], row['label'])) img_path, gt_path, label = imgs[index] if label == 0: c0 += 1 elif label == 1: c1 += 1 elif label == 2: c2 += 1 elif label == 3: c3 += 1 elif label == 4: c4 += 1 elif label == 5: c5 += 1 elif label == 6: c6 += 1 elif label == 7: c7 += 1 elif label == 8: c8 += 1 elif label == 9: c9 += 1 elif label == 10: c10 += 1 num += 1 print('[Class0 %.f], [Class1 %.f], [Class2 %.f], [Class3 %.f]\n'\ '[Class4 %.f], [Class5 %.f], [Class6 %.f], [Class7 %.f]\n'\ '[Class8 %.f], [Class9 %.f], [Class10 %.f], [Total %.f]\n'%\ (c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, num) ) Dataset.append(data_path) Class0.append(c0) Class1.append(c1) Class2.append(c2) Class3.append(c3) Class4.append(c4) Class5.append(c5) Class6.append(c6) Class7.append(c7) Class8.append(c8) Class9.append(c9) Class10.append(c10) Total.append(num) label_file = pd.DataFrame({'Datasets': Dataset, 'Class 0': Class0, 'Class 1': Class1, 'Class 2': Class2, 'Class 3': Class3, 'Class 4': Class4, 'Class 5': Class5, 'Class 6': Class6, 'Class 7': Class7, 'Class 8': Class8, 'Class 9': Class9, 'Class 10': Class10, 'Num of Pic': Total}) label_file = label_file[['Datasets', 'Class 0', 'Class 1', 'Class 2', 'Class 3', 'Class 4', 'Class 5', 'Class 6', 'Class 7', 'Class 8', 'Class 9', 'Class 10', 'Num of Pic']] label_file.to_csv('./Dataset_statistics.csv', index=False) if __name__ == '__main__': main()
Python
75
36.813332
284
/count_dataset.py
0.492595
0.435825
Sssssbo/SDCNet
refs/heads/master
import datetime import os import time import torch from torch import nn from torch import optim from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision import transforms import pandas as pd import numpy as np import joint_transforms from config import msra10k_path, MTDD_train_path from datasets import ImageFolder_joint from misc import AvgMeter, check_mkdir, cal_sc from model import R3Net, SDCNet from torch.backends import cudnn cudnn.benchmark = True torch.manual_seed(2021) torch.cuda.set_device(6) csv_path = './label_DUTS-TR.csv' ckpt_path = './ckpt' exp_name ='SDCNet' args = { 'iter_num': 30000, 'train_batch_size': 16, 'last_iter': 0, 'lr': 1e-3, 'lr_decay': 0.9, 'weight_decay': 5e-4, 'momentum': 0.9, 'snapshot': '' } joint_transform = joint_transforms.Compose([ joint_transforms.RandomCrop(300), joint_transforms.RandomHorizontallyFlip(), joint_transforms.RandomRotate(10) ]) img_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) target_transform = transforms.ToTensor() to_pil = transforms.ToPILImage() all_data = pd.read_csv(csv_path) train_set = ImageFolder_joint(all_data, joint_transform, img_transform, target_transform) train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], num_workers=0, shuffle=True, drop_last=True)# log_path = os.path.join(ckpt_path, exp_name, str(datetime.datetime.now()) + '.txt') def main(): net = SDCNet(num_classes = 5).cuda().train() # print('training in ' + exp_name) optimizer = optim.SGD([ {'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'], 'lr': 2 * args['lr']}, {'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'], 'lr': args['lr'], 'weight_decay': args['weight_decay']} ], momentum=args['momentum']) if len(args['snapshot']) > 0: print('training resumes from ' + args['snapshot']) net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth'))) optimizer.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '_optim.pth'))) optimizer.param_groups[0]['lr'] = 2 * args['lr'] optimizer.param_groups[1]['lr'] = args['lr'] check_mkdir(ckpt_path) check_mkdir(os.path.join(ckpt_path, exp_name)) open(log_path, 'w').write(str(args) + '\n\n') train(net, optimizer) def train(net, optimizer): start_time = time.time() curr_iter = args['last_iter'] num_class = [0, 0, 0, 0, 0] while True: total_loss_record, loss0_record, loss1_record, loss2_record = AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter() batch_time = AvgMeter() end = time.time() print('-----begining the first stage, train_mode==0-----') for i, data in enumerate(train_loader): optimizer.param_groups[0]['lr'] = 2 * args['lr'] * (1 - float(curr_iter) / args['iter_num'] ) ** args['lr_decay'] optimizer.param_groups[1]['lr'] = args['lr'] * (1 - float(curr_iter) / args['iter_num'] ) ** args['lr_decay'] inputs, gt, labels = data print(labels) # depends on the num of classes cweight = torch.tensor([0.5, 0.75, 1, 1.25, 1.5]) #weight = torch.ones(size=gt.shape) weight = gt.clone().detach() sizec = labels.numpy() #ta = np.zeros(shape=gt.shape) ''' np.zeros(shape=labels.shape) sc = gt.clone().detach() for i in range(len(sizec)): gta = np.array(to_pil(sc[i,:].data.squeeze(0).cpu()))# #print(gta.shape) labels[i] = cal_sc(gta) sizec[i] = labels[i] print(labels) ''' batch_size = inputs.size(0) inputs = Variable(inputs).cuda() gt = Variable(gt).cuda() labels = Variable(labels).cuda() #print(sizec.shape) optimizer.zero_grad() p5, p4, p3, p2, p1, predict1, predict2, predict3, predict4, predict5, predict6, predict7, predict8, predict9, predict10, predict11 = net(inputs, sizec) # mode=1 criterion = nn.BCEWithLogitsLoss().cuda() criterion2 = nn.CrossEntropyLoss().cuda() gt2 = gt.long() gt2 = gt2.squeeze(1) l5 = criterion2(p5, gt2) l4 = criterion2(p4, gt2) l3 = criterion2(p3, gt2) l2 = criterion2(p2, gt2) l1 = criterion2(p1, gt2) loss0 = criterion(predict11, gt) loss10 = criterion(predict10, gt) loss9 = criterion(predict9, gt) loss8 = criterion(predict8, gt) loss7 = criterion(predict7, gt) loss6 = criterion(predict6, gt) loss5 = criterion(predict5, gt) loss4 = criterion(predict4, gt) loss3 = criterion(predict3, gt) loss2 = criterion(predict2, gt) loss1 = criterion(predict1, gt) total_loss = l1 + l2 + l3 + l4 + l5 + loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6 + loss7 + loss8 + loss9 + loss10 total_loss.backward() optimizer.step() total_loss_record.update(total_loss.item(), batch_size) loss1_record.update(l5.item(), batch_size) loss0_record.update(loss0.item(), batch_size) curr_iter += 1.0 batch_time.update(time.time() - end) end = time.time() log = '[iter %d], [R1/Mode0], [total loss %.5f]\n' \ '[l5 %.5f], [loss0 %.5f]\n' \ '[lr %.13f], [time %.4f]' % \ (curr_iter, total_loss_record.avg, loss1_record.avg, loss0_record.avg, optimizer.param_groups[1]['lr'], batch_time.avg) print(log) print('Num of class:', num_class) open(log_path, 'a').write(log + '\n') if curr_iter == args['iter_num']: torch.save(net.state_dict(), os.path.join(ckpt_path, exp_name, '%d.pth' % curr_iter)) torch.save(optimizer.state_dict(), os.path.join(ckpt_path, exp_name, '%d_optim.pth' % curr_iter)) total_time = time.time() - start_time print(total_time) return if __name__ == '__main__': main()
Python
184
35.255436
172
/SDCNet.py
0.558087
0.529006
Sssssbo/SDCNet
refs/heads/master
import math import torch from torch import nn def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class GDN_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(GDN_Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1_0 = nn.BatchNorm2d( planes, affine=False, track_running_stats=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2_0 = nn.BatchNorm2d( planes, affine=False, track_running_stats=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3_0 = nn.BatchNorm2d( planes * 4, affine=False, track_running_stats=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.in1 = nn.InstanceNorm2d(planes) self.in2 = nn.InstanceNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out1 = torch.zeros_like(out) if self.training == True: #print("training with gdn block") out1[:8] = self.bn1_0(out[:8]) out1[8:16] = self.bn1_0(out[8:16]) out1[16:] = self.bn1_0(out[16:]) else: #print("test for gdn block") out1 = self.in1(out) out = self.bn1(out1) out = self.relu(out) out = self.conv2(out) out1 = torch.zeros_like(out) if self.training == True: out1[:8] = self.bn2_0(out[:8]) out1[8:16] = self.bn2_0(out[8:16]) out1[16:] = self.bn2_0(out[16:]) else: out1 = self.in1(out) out = self.bn2(out1) out = self.relu(out) out = self.conv3(out) out1 = torch.zeros_like(out) if self.training == True: out1[:8] = self.bn3_0(out[:8]) out1[8:16] = self.bn3_0(out[8:16]) out1[16:] = self.bn3_0(out[16:]) else: out1 = self.in2(out) out = self.bn3(out1) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class IN_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(IN_Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.in1_0 = nn.InstanceNorm2d(planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.in2_0 = nn.InstanceNorm2d(planes) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3_0 = nn.InstanceNorm2d(planes * 4) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.in1_0(out) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.in2_0(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.in3_0(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class IN2_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(IN2_Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.in1_0 = nn.InstanceNorm2d(planes) self.conv1_1 = nn.Sequential( nn.Conv2d(planes * 2, planes, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(planes), nn.ReLU(inplace=True) ) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.in2_0 = nn.InstanceNorm2d(planes) self.conv2_1 = nn.Sequential( nn.Conv2d(planes * 2, planes, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(planes), nn.ReLU(inplace=True) ) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3_0 = nn.InstanceNorm2d(planes * 4) self.conv3_1 = nn.Sequential( nn.Conv2d(planes * 8, planes * 4, kernel_size=1, bias=False), nn.BatchNorm2d(planes * 4) ) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x x1 = self.conv1(x) out1 = self.in1_0(x1) out1 = self.bn1(out1) out1 = self.relu(out1) x1 = self.conv1_1(torch.cat((out1,x1),1)) x2 = self.conv2(x1) out2 = self.in2_0(x2) out2 = self.bn2(out2) out2 = self.relu(out2) x2 = self.conv2_1(torch.cat((out2,x2),1)) x3 = self.conv3(x2) out3 = self.in3_0(x3) out3 = self.bn3(out3) out3 = self.relu(out3) x3 = self.conv3_1(torch.cat((out3,x3),1)) if self.downsample is not None: residual = self.downsample(residual) x3 += residual x3 = self.relu(x3) return x3 class SNR_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(SNR_Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.in1_0 = nn.InstanceNorm2d(planes) self.conv1_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn1_1 = nn.BatchNorm2d(planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.in2_0 = nn.InstanceNorm2d(planes) self.conv2_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn2_1 = nn.BatchNorm2d(planes) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3_0 = nn.InstanceNorm2d(planes * 4) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x x1 = self.conv1(x) out1 = self.in1_0(x1) res1 = x1 - out1 res1 = self.conv1_1(res1) res1 = self.bn1_1(res1) res1 = self.relu(res1) x1 = self.bn1(x1) x1 = out1 + res1 x1 = self.relu(x1) x2 = self.conv2(x1) out2 = self.in2_0(x2) res2 = x2 - out2 res2 = self.conv2_1(res2) res2 = self.bn2_1(res2) res2 = self.relu(res2) x2 = self.bn2(x2) x2 = out2 + res2 x2 = self.relu(x2) x3 = self.conv3(x2) x3 = self.bn3(x3) if self.downsample is not None: residual = self.downsample(residual) x3 += residual x3 = self.relu(x3) return x3 class SNR2_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(SNR2_Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.in1_0 = nn.InstanceNorm2d(planes) self.conv1_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn1_1 = nn.BatchNorm2d(planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.in2_0 = nn.InstanceNorm2d(planes) self.conv2_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn2_1 = nn.BatchNorm2d(planes) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3_0 = nn.InstanceNorm2d(planes * 4) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) def forward(self, x): residual = x x1 = self.conv1(x) out1 = self.in1_0(x1) res1 = x1 - out1 res1 = self.conv1_1(res1) res1 = self.bn1_1(res1) res1 = self.relu(res1) x1 = out1 + res1 x1 = self.bn1(x1) x1 = self.relu(x1) x2 = self.conv2(x1) out2 = self.in2_0(x2) if self.stride == 2: res1 = self.maxpool(res1) res2 = x2 - out2 + res1 res2 = self.conv2_1(res2) res2 = self.bn2_1(res2) res2 = self.relu(res2) x2 = out2 + res2 x2 = self.bn2(x2) x2 = self.relu(x2) x3 = self.conv3(x2) x3 = self.bn3(x3) if self.downsample is not None: residual = self.downsample(residual) x3 += residual x3 = self.relu(x3) return x3 class SNR3_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(SNR3_Bottleneck, self).__init__() self.in1 = nn.InstanceNorm2d(planes) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv1_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn1_1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn2_1 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3 = nn.InstanceNorm2d(planes * 4) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) def forward(self, x, x_2=None, x_1=None, r2=None, r1=None): if type(x) is tuple: # print(len(x)) x_2 = x[1] x_1 = x[2] r2 = x[3] r1 = x[4] x = x[0] residual = x x1 = self.conv1(x) out1 = self.in1(x1) res1 = x1 - out1 res1 = self.conv1_1(res1) res1 = self.bn1_1(res1) res1 = self.relu(res1) # print(out1.shape) # print(res1.shape) # print(x1.shape) x1 = out1 + res1 x1 = self.bn1(x1) x1 = self.relu(x1) x2 = self.conv2(x1) out2 = self.in1(x2) res2 = x2 - out2 res2 = self.conv2_1(res2) res2 = self.bn2_1(res2) res2 = self.relu(res2) x2 = out2 + res2 x2 = self.bn2(x2) x2 = self.relu(x2) x3 = self.conv3(x2) x3 = self.bn3(x3) if self.downsample is not None: residual = self.downsample(residual) x3 += residual x3 = self.relu(x3) if x_2 is not None: x2 = x2 + x_2 if x_1 is not None: x1 = x1 + x_1 if r2 is not None: res2 = res2 + r2 if r1 is not None: res1 = res1 + r1 ''' print(x3.shape) print(x2.shape) print(x1.shape) print(res2.shape) print(res1.shape) ''' if self.stride == 2: x1 = self.maxpool(x1) res1 = self.maxpool(res1) return x3, x2, x1, res2, res1 class SNR4_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(SNR4_Bottleneck, self).__init__() self.in1 = nn.InstanceNorm2d(planes) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv1_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn1_1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn2_1 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3 = nn.InstanceNorm2d(planes * 4) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) def forward(self, x, x_2=None, x_1=None, r2=None, r1=None): if type(x) is tuple: # print(len(x)) x_2 = x[1] x_1 = x[2] r2 = x[3] r1 = x[4] x = x[0] residual = x x1 = self.conv1(x) out1 = self.in1(x1) res1 = x1 - out1 res1 = self.conv1_1(res1) res1 = self.bn1_1(res1) res1 = self.relu(res1) # print(out1.shape) # print(res1.shape) # print(x1.shape) x1 = out1 + res1 x1 = self.bn1(x1) x1 = self.relu(x1) x2 = self.conv2(x1) out2 = self.in1(x2) res2 = x2 - out2 res2 = self.conv2_1(res2) res2 = self.bn2_1(res2) res2 = self.relu(res2) x2 = out2 + res2 x2 = self.bn2(x2) x2 = self.relu(x2) x3 = self.conv3(x2) x3 = self.bn3(x3) if self.downsample is not None: residual = self.downsample(residual) x3 += residual x3 = self.relu(x3) if x_2 is not None: x2 = x2 + x_2 if x_1 is not None: x1 = x1 + x_1 if r2 is not None: res2 = res2 + r2 if r1 is not None: res1 = res1 + r1 ''' print(x3.shape) print(x2.shape) print(x1.shape) print(res2.shape) print(res1.shape) ''' if self.stride == 2: x1 = self.maxpool(x1) res1 = self.maxpool(res1) return x3, x2, x1, res2, res1 # --------------------------------- resnet----------------------------------- class ResNet(nn.Module): def __init__(self, last_stride=2, block=Bottleneck, frozen_stages=-1, layers=[3, 4, 6, 3]): self.inplanes = 64 super().__init__() print(block) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) # self.relu = nn.ReLU(inplace=True) # add missed relu self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) self.frozen_stages = frozen_stages self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer( block, 512, layers[3], stride=last_stride) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _freeze_stages(self): if self.frozen_stages >= 0: self.bn1.eval() for m in [self.conv1, self.bn1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) print('layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False def forward(self, x, camid=None): x = self.conv1(x) x = self.bn1(x) # x = self.relu(x) # add missed relu x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # ---------------------------------Comb resnet----------------------------------- class Comb_ResNet(nn.Module): def __init__(self, last_stride=2, block=Bottleneck, frozen_stages=-1, layers=[3, 4, 6, 3]): self.inplanes = 64 super().__init__() print(block) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.in1 = nn.InstanceNorm2d(64) self.bn1_1 = nn.BatchNorm2d(64) self.conv2 = nn.Sequential( nn.Conv2d(128, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=1) ) self.in2 = nn.InstanceNorm2d(256) self.bn2_1 = nn.BatchNorm2d(256) self.conv3 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, kernel_size=1) ) self.in3 = nn.InstanceNorm2d(512) self.bn3_1 = nn.BatchNorm2d(512) self.conv4 = nn.Sequential( nn.Conv2d(1024, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, kernel_size=1) ) self.in4 = nn.InstanceNorm2d(1024) self.bn4_1 = nn.BatchNorm2d(1024) self.conv5 = nn.Sequential( nn.Conv2d(2048, 1024, kernel_size=3, padding=1), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024, 1024, kernel_size=3, padding=1), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024, 1024, kernel_size=1) ) self.relu = nn.ReLU(inplace=True) # add missed relu self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) self.frozen_stages = frozen_stages self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer( block, 512, layers[3], stride=last_stride) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _freeze_stages(self): if self.frozen_stages >= 0: self.bn1.eval() for m in [self.conv1, self.bn1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) print('layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False def forward(self, x, camid=None): x = self.conv1(x) x = self.bn1(x) # x = self.relu(x) # add missed relu x = self.maxpool(x) xin = self.in1(x) xin = self.bn1_1(xin) xin = self.relu(xin) x = self.conv2(torch.cat((xin,x),1)) x = self.layer1(x) xin = self.in2(x) xin = self.bn2_1(xin) xin = self.relu(xin) x = self.conv3(torch.cat((xin,x),1)) x = self.layer2(x) xin = self.in3(x) xin = self.bn3_1(xin) xin = self.relu(xin) x = self.conv4(torch.cat((xin,x),1)) x = self.layer3(x) xin = self.in4(x) xin = self.bn4_1(xin) xin = self.relu(xin) x = self.conv5(torch.cat((xin,x),1)) x = self.layer4(x) return x def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # ---------------------------------Pure resnet----------------------------------- class Pure_ResNet(nn.Module): def __init__(self, last_stride=2, block=Bottleneck, frozen_stages=-1, layers=[3, 4, 6, 3]): self.inplanes = 64 super().__init__() print(block) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) # self.relu = nn.ReLU(inplace=True) # add missed relu self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) self.frozen_stages = frozen_stages self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer( block, 512, layers[3], stride=last_stride) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _freeze_stages(self): if self.frozen_stages >= 0: self.bn1.eval() for m in [self.conv1, self.bn1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) print('layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False def forward(self, x, camid=None): x = self.conv1(x) x = self.bn1(x) #print(camid) # x = self.relu(x) # add missed relu x = self.maxpool(x) if False: x,_,_,_,_ = self.layer1(x) x,_,_,_,_ = self.layer2(x) x,_,_,_,_ = self.layer3(x) x,_,_,_,_ = self.layer4(x) else: x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # ---------------------------------jointin resnet----------------------------------- class Jointin_ResNet(nn.Module): def __init__(self, last_stride=2, block=SNR3_Bottleneck, frozen_stages=-1, layers=[3, 4, 6, 3]): self.inplanes = 64 super().__init__() print(block) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.conv1_1 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.bn1_1 = nn.BatchNorm2d(64) self.in1 = nn.InstanceNorm2d(64) # self.relu = nn.ReLU(inplace=True) # add missed relu self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) self.frozen_stages = frozen_stages self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer( block, 512, layers[3], stride=last_stride) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _freeze_stages(self): if self.frozen_stages >= 0: self.bn1.eval() for m in [self.conv1, self.bn1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) print('layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False def forward(self, x, camid=None): x = self.conv1(x) x0 = self.in1(x) ''' res0 = x - x0 res0 = self.conv1_1(res0) res0 = self.bn1_1(res0) x0 = x0 + res0 ''' x0 = self.bn1(x0) # x = self.relu(x) # add missed relu x0 = self.maxpool(x0) x1_3, x1_2, x1_1, res1_2, res1_1 = self.layer1(x0) x2_3, x2_2, x2_1, res2_2, res2_1 = self.layer2(x1_3) x3_3, x3_2, x3_1, res3_2, res3_1 = self.layer3(x2_3) x4_3, x4_2, x4_1, res4_2, res4_1 = self.layer4(x3_3) if self.training: return x4_3, x4_2, x4_1, res4_2, res4_1, x3_3, x3_2, x3_1, res3_2, res3_1, x2_3, x2_2, x2_1, res2_2, res2_1, x1_3, x1_2, x1_1, res1_2, res1_1 else: return x4_3 def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # ---------------------------------jointout resnet----------------------------------- class Jointout_ResNet(nn.Module): def __init__(self, last_stride=2, block=SNR3_Bottleneck, frozen_stages=-1, layers=[3, 4, 6, 3]): self.inplanes = 64 super().__init__() print(block) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.conv1_res = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace = True), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace = True), nn.Conv2d(64, 64, kernel_size=1) ) self.in1 = nn.InstanceNorm2d(64) self.bn1 = nn.BatchNorm2d(64) self.bn1_1 = nn.BatchNorm2d(64) self.in2 = nn.InstanceNorm2d(256) self.bn2_1 = nn.BatchNorm2d(256) self.bn2_0 = nn.BatchNorm2d(256) self.in3 = nn.InstanceNorm2d(512) self.bn3_1 = nn.BatchNorm2d(512) self.bn3_0 = nn.BatchNorm2d(512) self.in4 = nn.InstanceNorm2d(1024) self.bn4_1 = nn.BatchNorm2d(1024) self.bn4_0 = nn.BatchNorm2d(1024) self.in5 = nn.InstanceNorm2d(2048) self.bn5_1 = nn.BatchNorm2d(2048) self.bn5_0 = nn.BatchNorm2d(2048) self.relu = nn.ReLU(inplace=True) # add missed relu self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) self.frozen_stages = frozen_stages self.layer1 = self._make_layer(block, 64, layers[0]) self.conv2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.conv2_res = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace = True), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace = True), nn.Conv2d(128, 256, kernel_size=1) ) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.conv3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.conv3_res = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace = True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace = True), nn.Conv2d(256, 512, kernel_size=1) ) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.conv4 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False) self.conv4_res = nn.Sequential( nn.Conv2d(1024, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace = True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace = True), nn.Conv2d(512, 1024, kernel_size=1) ) self.layer4 = self._make_layer(block, 512, layers[3], stride=last_stride) self.conv5 = nn.Conv2d(2048, 2048, kernel_size=3, stride=1, padding=1, bias=False) self.conv5_res = nn.Sequential( nn.Conv2d(2048, 1024, kernel_size=3, padding=1), nn.BatchNorm2d(1024), nn.ReLU(inplace = True), nn.Conv2d(1024, 1024, kernel_size=3, padding=1), nn.BatchNorm2d(1024), nn.ReLU(inplace = True), nn.Conv2d(1024, 2048, kernel_size=1) ) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _freeze_stages(self): if self.frozen_stages >= 0: self.bn1.eval() for m in [self.conv1, self.bn1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) print('layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False def forward(self, x, camid=None): x = self.conv1(x) x0 = self.in1(x) res0 = x - x0 x0 = self.bn1(x0) x0 = self.relu(x0) res0 = self.conv1_res(res0) x0 = x0 + res0 x0 = self.bn1_1(x0) # x = self.relu(x) # add missed relu x0 = self.maxpool(x0) x1 = self.layer1(x0) px1 = self.conv2(x1) x1 = self.in2(px1) res1 = px1 - x1 x1 = self.bn2_0(x1) x1 = self.relu(x1) res1 = self.conv2_res(res1) x1 = x1 + res1 x1 = self.bn2_1(x1) x1 = self.relu(x1) x2 = self.layer2(x1) px2 = self.conv3(x2) x2 = self.in3(px2) res2 = px2 - x2 x2 = self.bn3_0(x2) x2 = self.relu(x2) res2 = self.conv3_res(res2) x2 = x2 + res2 x2 = self.bn3_1(x2) x2 = self.relu(x2) x3 = self.layer3(x2) px3 = self.conv4(x3) x3 = self.in4(px3) res3 = px3 - x3 x3 = self.bn4_0(x3) x3 = self.relu(x3) res3 = self.conv4_res(res3) x3 = x3 + res3 x3 = self.bn4_1(x3) x3 = self.relu(x3) x4 = self.layer4(x3) px4 = self.conv5(x4) x4 = self.in5(px4) res4 = px4 - x4 x4 = self.bn5_0(x4) x4 = self.relu(x4) res4 = self.conv5_res(res4) x4 = x4 + res4 x4 = self.bn5_1(x4) x4 = self.relu(x4) if self.training: return x0, x1, x2, x3, x4, res0, res1, res2, res3, res4 else: return x4 def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Python
1,100
34.375454
153
/model/backbones/resnet.py
0.533126
0.481754
ariksu/pyhfss_parser
refs/heads/master
from setuptools import setup setup( name='pyhfss_parser', version='0.0.0', packages=['', 'venv.Lib.site-packages.py', 'venv.Lib.site-packages.py._io', 'venv.Lib.site-packages.py._log', 'venv.Lib.site-packages.py._code', 'venv.Lib.site-packages.py._path', 'venv.Lib.site-packages.py._process', 'venv.Lib.site-packages.py._vendored_packages', 'venv.Lib.site-packages.pip', 'venv.Lib.site-packages.pip._vendor', 'venv.Lib.site-packages.pip._vendor.idna', 'venv.Lib.site-packages.pip._vendor.pytoml', 'venv.Lib.site-packages.pip._vendor.certifi', 'venv.Lib.site-packages.pip._vendor.chardet', 'venv.Lib.site-packages.pip._vendor.chardet.cli', 'venv.Lib.site-packages.pip._vendor.distlib', 'venv.Lib.site-packages.pip._vendor.distlib._backport', 'venv.Lib.site-packages.pip._vendor.msgpack', 'venv.Lib.site-packages.pip._vendor.urllib3', 'venv.Lib.site-packages.pip._vendor.urllib3.util', 'venv.Lib.site-packages.pip._vendor.urllib3.contrib', 'venv.Lib.site-packages.pip._vendor.urllib3.contrib._securetransport', 'venv.Lib.site-packages.pip._vendor.urllib3.packages', 'venv.Lib.site-packages.pip._vendor.urllib3.packages.backports', 'venv.Lib.site-packages.pip._vendor.urllib3.packages.ssl_match_hostname', 'venv.Lib.site-packages.pip._vendor.colorama', 'venv.Lib.site-packages.pip._vendor.html5lib', 'venv.Lib.site-packages.pip._vendor.html5lib._trie', 'venv.Lib.site-packages.pip._vendor.html5lib.filters', 'venv.Lib.site-packages.pip._vendor.html5lib.treewalkers', 'venv.Lib.site-packages.pip._vendor.html5lib.treeadapters', 'venv.Lib.site-packages.pip._vendor.html5lib.treebuilders', 'venv.Lib.site-packages.pip._vendor.lockfile', 'venv.Lib.site-packages.pip._vendor.progress', 'venv.Lib.site-packages.pip._vendor.requests', 'venv.Lib.site-packages.pip._vendor.packaging', 'venv.Lib.site-packages.pip._vendor.cachecontrol', 'venv.Lib.site-packages.pip._vendor.cachecontrol.caches', 'venv.Lib.site-packages.pip._vendor.webencodings', 'venv.Lib.site-packages.pip._vendor.pkg_resources', 'venv.Lib.site-packages.pip._internal', 'venv.Lib.site-packages.pip._internal.req', 'venv.Lib.site-packages.pip._internal.vcs', 'venv.Lib.site-packages.pip._internal.utils', 'venv.Lib.site-packages.pip._internal.models', 'venv.Lib.site-packages.pip._internal.commands', 'venv.Lib.site-packages.pip._internal.operations', 'venv.Lib.site-packages.attr', 'venv.Lib.site-packages.pluggy', 'venv.Lib.site-packages._pytest', 'venv.Lib.site-packages._pytest.mark', 'venv.Lib.site-packages._pytest._code', 'venv.Lib.site-packages._pytest.config', 'venv.Lib.site-packages._pytest.assertion', 'venv.Lib.site-packages.colorama', 'venv.Lib.site-packages.atomicwrites', 'venv.Lib.site-packages.parsimonious', 'venv.Lib.site-packages.parsimonious.tests', 'venv.Lib.site-packages.more_itertools', 'venv.Lib.site-packages.more_itertools.tests', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip.req', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip.vcs', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip.utils', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip.compat', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip.models', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.distlib', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.distlib._backport', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.colorama', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.html5lib', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.html5lib._trie', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.html5lib.filters', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.html5lib.treewalkers', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.html5lib.treeadapters', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.html5lib.treebuilders', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.lockfile', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.progress', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.requests', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.requests.packages', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.requests.packages.chardet', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.requests.packages.urllib3', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.requests.packages.urllib3.util', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.requests.packages.urllib3.contrib', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.requests.packages.urllib3.packages', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.requests.packages.urllib3.packages.ssl_match_hostname', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.packaging', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.cachecontrol', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.cachecontrol.caches', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.webencodings', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip._vendor.pkg_resources', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip.commands', 'venv.Lib.site-packages.pip-9.0.1-py3.7.egg.pip.operations'], url='', license='MIT', author='Ariksu', author_email='[email protected]', description='Attempt to write peg-parser for .hfss' )
Python
77
79.987015
125
/setup.py
0.639994
0.609205
kswgit/ctfs
refs/heads/master
from pwn import * import time context.update(arch='x86', bits=64) iteration = 0x1000 cache_cycle = 0x10000000 shellcode = asm(''' _start: mov rdi, 0x200000000 mov rsi, 0x300000000 mov rbp, 0 loop_start: rdtsc shl rdx, 32 or rax, rdx push rax mov rax, rdi mov rdx, %d a: mov rcx, 0x1000 a2: prefetcht1 [rax+rcx] loop a2 dec edx cmp edx, 0 ja a b: rdtsc shl rdx, 32 or rax, rdx pop rbx sub rax, rbx cmp rax, %d jb exists mov byte ptr [rsi], 1 jmp next exists: mov byte ptr [rsi], 0 next: inc rsi inc rbp add rdi, 0x2000 cmp rbp, 64 jne loop_start end: int3 ''' % (iteration, cache_cycle)) HOST, PORT = '0.0.0.0', 31337 HOST, PORT = '202.120.7.198', 13579 r = remote(HOST, PORT) p = time.time() r.send(p32(len(shellcode)) + shellcode) print r.recvall() print time.time() - p
Python
56
12.803572
39
/0ctf2017/pages.py
0.68863
0.577519
esdb/plinear
refs/heads/master
assembly = ''' 7328- 400560: c5 f9 6e c7 vmovd %edi,%xmm0 7378- 400564: c4 e2 7d 58 c0 vpbroadcastd %xmm0,%ymm0 7435- 400569: c5 fd 76 0e vpcmpeqd (%rsi),%ymm0,%ymm1 7495- 40056d: c5 fd 76 56 20 vpcmpeqd 0x20(%rsi),%ymm0,%ymm2 7559- 400572: c5 fd 76 5e 40 vpcmpeqd 0x40(%rsi),%ymm0,%ymm3 7623- 400577: c5 fd 76 86 80 00 00 vpcmpeqd 0x80(%rsi),%ymm0,%ymm0 7687- 40057e: 00 7701- 40057f: c5 f5 6b ca vpackssdw %ymm2,%ymm1,%ymm1 7761- 400583: c5 e5 6b c0 vpackssdw %ymm0,%ymm3,%ymm0 7821- 400587: c5 f5 63 c0 vpacksswb %ymm0,%ymm1,%ymm0 7881- 40058b: c5 fd d7 c0 vpmovmskb %ymm0,%eax 7934- 40058f: c5 f8 77 vzeroupper ''' print(assembly) lines = assembly.strip().splitlines() i = 0 while True: if i >= len(lines): break line = lines[i] i += 1 line = line[line.find(':') + 3:] byte1 = line[:2] if len(line) >= 2 else ' ' byte2 = line[3:5] if len(line) >= 5 else ' ' byte3 = line[6:8] if len(line) >= 8 else ' ' byte4 = line[9:11] if len(line) >= 11 else ' ' byte5 = line[12:14] if len(line) >= 14 else ' ' byte6 = line[15:17] if len(line) >= 17 else ' ' byte7 = line[18:20] if len(line) >= 20 else ' ' if byte6 != ' ': comment = line[24:] line = lines[i] i += 1 line = line[line.find(':') + 3:] byte8 = line[:2] if len(line) >= 2 else ' ' print(' QUAD $0x%s%s%s%s%s%s%s%s // %s' % (byte8, byte7, byte6, byte5, byte4, byte3, byte2, byte1, comment)) elif byte5 != ' ': print(' LONG $0x%s%s%s%s; BYTE $0x%s // %s' % (byte4, byte3, byte2, byte1, byte5, line[24:])) elif byte4 != ' ': print(' LONG $0x%s%s%s%s // %s' % (byte4, byte3, byte2, byte1, line[24:])) elif byte3 != ' ': print(' WORD $0x%s%s; BYTE $0x%s // %s' % (byte2, byte1, byte3, line[24:]))
Python
44
43.386364
119
/c/translate.py
0.524322
0.376856
riadghorra/whiteboard-oop-project
refs/heads/master
""" Module contenant toutes les figures et opérations de base """ import pygame import pygame.draw from datetime import datetime def distance(v1, v2): """ Calcule la distance euclidienne entre deux vecteurs """ try: return ((v1[0] - v2[0]) ** 2 + (v1[1] - v2[1]) ** 2) ** 0.5 except TypeError: return "Ce ne sont pas des vecteurs" class Figure: def __init__(self): pass def draw(self): pass def fetch_params(self): pass class Point(Figure): """ Classe d'un point prêt à être tracé sur le tableau coord (list) : coordonées point_color (list) : couleur en RGB font_size (int) : epaisseur en pixels toolbar_size (int) : epaisseur de la toolbar en haut du tableau sur laquelle on ne veut pas que le point depasse """ def __init__(self, coord, point_color, font_size, toolbar_size=0): Figure.__init__(self) self.point_color = point_color self.font_size = font_size # used to not write on the toolbar if the font size is big self.coord = [coord[0], max(coord[1], toolbar_size + font_size + 1)] self.type = "Point" def draw(self, screen): """ Dessine le point sur l'ecran """ pygame.draw.circle(screen, self.point_color, self.coord, self.font_size) pygame.display.flip() return def fetch_params(self): """ Retourne un dictionnaire des parametres """ return {"coord": self.coord, "point_color": self.point_color, "font_size": self.font_size} class Line(Figure): """ Classe d'une ligne droite line_color (list) : couleur de la ligne en RGB start_pos (list): coordonee du debut de la ligne droite end_pos (list) : coordonee de la fin de la ligne droite font_size (int): epaisseur """ def __init__(self, line_color, start_pos, end_pos, font_size): Figure.__init__(self) self.line_color = line_color self.start_pos = start_pos self.end_pos = end_pos self.font_size = font_size self.type = "Line" def draw(self, screen): """ Dessine la ligne sur l'ecran """ pygame.draw.line(screen, self.line_color, self.start_pos, self.end_pos, self.font_size) return def fetch_params(self): """ Retourne un dictionnaire des parametres """ return {"line_color": self.line_color, "start_pos": self.start_pos, "end_pos": self.end_pos, "font_size": self.font_size} class Rectangle(Figure): """ Classe d un rectangle color (list) : couleur du rectangle left, right (int) : coordonees d'absice a gauche, droite du rectangle bottom, top (int) : coordonees d'ordonnee en haut et en bas du rectangle """ def __init__(self, c1, c2, color): """ On definit les parametres du rectangle a partir des coordonees de deux coins c1, c2 (lists): coordonees de deux coins du rectangle """ Figure.__init__(self) self.c1 = c1 self.c2 = c2 self.color = color # on recupere left avec le min des abscisses et on fait pareil pour right top et bottom self.left = min(c1[0], c2[0]) self.top = min(c1[1], c2[1]) self.right = max(c1[0], c2[0]) self.bottom = max(c1[1], c2[1]) self.width = self.right - self.left self.length = self.bottom - self.top self.rect = pygame.Rect(self.left, self.top, self.width, self.length) self.type = "rect" def draw(self, screen): """ Dessine le rectangle sur l'ecran """ pygame.draw.rect(screen, self.color, self.rect, 0) def fetch_params(self): """ Retourne un dictionnaire des parametres """ return {"c1": self.c1, "c2": self.c2, "color": self.color} class Circle(Figure): """ Classe d un cercle center (list) : les coordonees du centre extremity (list) : les coordonees d'une extremite color (list) : couleur toolbar_size (int) : la taille de la toolbar en pixel pour ne pas dessiner dessus radius (int) : rayon """ def __init__(self, center, extremity, color, toolbar_size=0): Figure.__init__(self) self.center = center # on ne veut pas depasser sur la toolbar donc on reduit le rayon self.radius = min(int(distance(center, extremity)), center[1] - toolbar_size - 1) self.extremity = [center[0] + self.radius, center[1]] self.color = color self.type = "circle" def draw(self, screen): """ dessine le cercle sur l ecran """ pygame.draw.circle(screen, self.color, self.center, self.radius) def fetch_params(self): """ Retourne un dictionnaire des parametres """ return {"center": self.center, "extremity": self.extremity, "color": self.color} class TextBox(Figure): """ Classe d une textbox x, y (int) : l'abscisse a gauche et l'ordonee a droite de la textbox ie (x,y) est le topleft w (int) : longueur de la textbox h (int) : hauteur de la textbox box_color (list) : couleur du contour de la box font (string) : police du texte font_size (int) : taille des caracteres text (string) : texte de la texbox text_color (list) : couleur du texte """ def __init__(self, x, y, w, h, box_color, font, font_size, text, text_color): Figure.__init__(self) self.__rect = pygame.Rect(x, y, w, h) self._color = box_color self._text = text self._font = font self._font_size = font_size self._sysfont = pygame.font.SysFont(font, font_size) self._text_color = text_color self._txt_surface = self._sysfont.render(text, True, self._text_color) self.id_counter = str(x) + "_" + str(y) self.type = "Text_box" """ Encapsulation """ def fetch_params(self): """ Retourne un dictionnaire des parametres """ return {"x": self.__rect.x, "y": self.__rect.y, "w": self.__rect.w, "h": self.__rect.h, "box_color": self._color, "font": self._font, "font_size": self._font_size, "text": self._text, "text_color": self._text_color} def get_textbox_color(self): return self._color def set_textbox_color(self, new_color): self._color = new_color def get_textbox_text(self): return self._text def add_character_to_text(self, char, whiteboard): """ rajoute un caractere au texte """ id_counter = whiteboard.active_box.id_counter for action in [x for x in whiteboard.get_hist('actions') if x['type'] == 'Text_box']: if action['id'] == id_counter: if action['owner'] in whiteboard.modification_allowed or action['owner'] == whiteboard.name: self._text += char action['params']["text"] = whiteboard.active_box.get_textbox_text() action['params']["w"] = whiteboard.active_box.update() now = datetime.now() timestamp = datetime.timestamp(now) action['timestamp'] = timestamp action['client'] = whiteboard.name action_to_update_textbox = action for textbox in whiteboard.get_text_boxes(): if textbox.id_counter == id_counter: if action['owner'] in whiteboard.modification_allowed or action['owner'] == whiteboard.name: whiteboard.del_text_box(textbox) try: whiteboard.append_text_box(TextBox(**action_to_update_textbox["params"])) except UnboundLocalError: print('Something unexpected happened. A textbox update may have failed') def delete_char_from_text(self, whiteboard): """ efface le dernier caractere du texte """ id_counter = whiteboard.active_box.id_counter for action in [x for x in whiteboard.get_hist('actions') if x['type'] == 'Text_box']: if action['id'] == id_counter: if action['owner'] in whiteboard.modification_allowed or action['owner'] == whiteboard.name: self._text = self._text[:-1] action['params']["text"] = whiteboard.active_box.get_textbox_text() now = datetime.now() timestamp = datetime.timestamp(now) action['timestamp'] = timestamp action['client'] = whiteboard.name action_to_update_textbox = action for textbox in whiteboard.get_text_boxes(): if textbox.id_counter == id_counter: if action['owner'] in whiteboard.modification_allowed or action['owner'] == whiteboard.name: whiteboard.del_text_box(textbox) try: whiteboard.append_text_box(TextBox(**action_to_update_textbox["params"])) except UnboundLocalError: print('Something unexpected happened. A textbox update may have failed') def render_font(self, text, color, antialias=True): """ effectue le rendu du texte """ return self._sysfont.render(text, antialias, color) def set_txt_surface(self, value): self._txt_surface = value @property def rect(self): return self.__rect def update(self): """ Change la taille du rectangle de contour si le texte est trop long """ width = max(140, self._txt_surface.get_width() + 20) self.__rect.w = width return width def draw(self, screen): """ dessine la textbox """ # Blit le texte screen.blit(self._txt_surface, (self.__rect.x + 5, self.__rect.y + 5)) # Blit le rectangle pygame.draw.rect(screen, self._color, self.__rect, 2) # ============================================================================= # fonction de dessins instantanees # ============================================================================= def draw_point(params, screen): """ dessine un point sur l'ecran avec les parametres d entree params (dict) : dictionnaires des parametres screen (pygame screen) : ecran sur lequel dessiner """ try: return Point(**params).draw(screen) except TypeError: return "Parametres incorrect" def draw_line(params, screen): """ dessine une ligne sur l'ecran avec les parametres d entree params (dict) : dictionnaires des parametres screen (pygame screen) : ecran sur lequel dessiner """ try: return Line(**params).draw(screen) except TypeError: return "Parametres incorrect" def draw_textbox(params, screen): """ dessine une textbox sur l'ecran avec les parametres d entree params (dict) : dictionnaires des parametres screen (pygame screen) : ecran sur lequel dessiner """ try: return TextBox(**params).draw(screen) except TypeError: return "Parametres incorrect" def draw_rect(params, screen): """ dessine un rectangle sur l'ecran avec les parametres d entree params (dict) : dictionnaires des parametres screen (pygame screen) : ecran sur lequel dessiner """ try: return Rectangle(**params).draw(screen) except TypeError: return "Parametres incorrect" def draw_circle(params, screen): """ dessine un cercle sur l'ecran avec les parametres d entree params (dict) : dictionnaires des parametres screen (pygame screen) : ecran sur lequel dessiner """ try: return Circle(**params).draw(screen) except TypeError: return "Parametres incorrect"
Python
354
32.785309
116
/src/figures.py
0.577759
0.572659
riadghorra/whiteboard-oop-project
refs/heads/master
import socket import json import sys import math from white_board import WhiteBoard, binary_to_dict ''' Ouverture de la configuration initiale stockée dans config.json qui contient le mode d'écriture, la couleur et la taille d'écriture. Ces Paramètres sont ensuite à modifier par l'utisateur dans l'interface pygame ''' with open('config.json') as json_file: start_config = json.load(json_file) ''' définition de l'adresse IP du serveur. Ici le serveur est en local. ''' hote = start_config["ip_serveur"] port = 5001 def main(): """ Création d'un socket pour communiquer via un protocole TCP/IP """ connexion_avec_serveur = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Connexion au serveur try: connexion_avec_serveur.connect((hote, port)) except (TimeoutError, ConnectionRefusedError, ConnectionResetError, ConnectionAbortedError) as e: return print("Le serveur n'a pas répondu, vérifiez les paramètres de connexion") print("Connexion réussie avec le serveur") # First get the client id username = binary_to_dict(connexion_avec_serveur.recv(2 ** 16))["client_id"] # Second get the message size msg_recu = connexion_avec_serveur.recv(2 ** 8) message_size = binary_to_dict(msg_recu)["message_size"] # Then get the first chunk of history using the number of byte equal to the power of 2 just above its size msg_recu = connexion_avec_serveur.recv(2 ** int(math.log(message_size, 2) + 1)) total_size_received = sys.getsizeof(msg_recu) # One we get the first chunk, we loop until we get the whole history while total_size_received < message_size: msg_recu += connexion_avec_serveur.recv(2 ** int(math.log(message_size, 2) + 1)) total_size_received = sys.getsizeof(msg_recu) msg_decode = binary_to_dict(msg_recu) hist = msg_decode # Après réception de l'état du whiteboard, c'est à dire des figures et textboxes déjà dessinées par des utilisateurs # précédents, le programme lance un whiteboard whiteboard = WhiteBoard(username, start_config, hist) whiteboard.start(connexion_avec_serveur) if __name__ == '__main__': main()
Python
62
34.112904
120
/src/client.py
0.707855
0.700505
riadghorra/whiteboard-oop-project
refs/heads/master
from white_board import WhiteBoard import json ''' This file is used to run locally or to debug ''' with open('config.json') as json_file: start_config = json.load(json_file) def main(): board = WhiteBoard("client", start_config) board.start_local() if __name__ == '__main__': main()
Python
18
16
46
/src/main.py
0.647059
0.647059
riadghorra/whiteboard-oop-project
refs/heads/master
import socket import sys import time from threading import Thread import json ''' Les deux fonctions fonctions suivantes permettent de convertir les dictionnaires en binaire et réciproquement. L'appel de ces dux fonctions permet d'échanger des dictionnaires par socket ''' def dict_to_binary(dico): try: str = json.dumps(dico) return bytes(str, 'utf-8') except TypeError: print("Le dictionnaire n'est pas du format attendu") def binary_to_dict(binary): try: jsn = ''.join(binary.decode("utf-8")) d = json.loads(jsn) except (TypeError, json.decoder.JSONDecodeError) as e: if e == TypeError: print("Le message reçu n'est pas du format attendu") else: print("Un paquet a été perdu") return {"actions": [], "message": [], "auth": []} return d class Client(Thread): """ Classe d'un client qui se connecte au whiteboard. Cette classe hérite de Thread de sorte que plusieurs clients pourront utiliser le whiteboard en parallèle. Chaque client a un nom, un booleen qui indique si le client a terminé d'utiliser le whiteboard, ainsi qu'un historique avec toutes les opérations effectuées par lui ou les autres utilisateurs sur le whiteboard. C'est cet historique que le client va échanger avec le serveur """ # Class level id for client client_id = 1 def __init__(self, server_, client_socket=None): Thread.__init__(self) self._client_socket = client_socket self._done = False self._last_timestamp_sent = 0 self.server = server_ # Increment client id at each creation of instance self.client_id = "Client" + str(Client.client_id) Client.client_id += 1 """Encapsulation""" def __get_client_socket(self): return self._client_socket def __set_client_socket(self, c): self._client_socket = c client_socket = property(__get_client_socket, __set_client_socket) def __get_last_timestamp_sent(self): return self._last_timestamp_sent def __set_last_timestamp_sent(self, c): self._last_timestamp_sent = c last_timestamp_sent = property(__get_last_timestamp_sent, __set_last_timestamp_sent) def is_done(self): return self._done def end(self): self._done = True def check_match(self, action): """ methode permettant de vérifier si une action est déjà existante dans l'objet self._current_hist. Elle permet notamment de savoir si une textbox vient d'être rajoutée par un autre utilisateur du whiteboard ou si la textbox a simplement été mise à jour """ for textbox in [x for x in self.server.historique["actions"] if x["type"] == "Text_box"]: if action["id"] == textbox["id"]: textbox["timestamp"] = action["timestamp"] textbox["params"] = action["params"] textbox["client"] = action["client"] return True return False def disconnect_client(self): """ methode s'executant pour mettre fin à la connexion entre le serveur et un client """ self.end() print("Déconnexion d'un client") self.server.historique["message"] = "end" def run(self): """ Dans cette methode, la boucle while centrale vient en continu récupérer les dictionnaires d'historiques envoyés par les clients. Si le dictionnaire est différent du précédent, cela signifie qu'une mise à jour a été faite par un utilisateur. Il convient alors de comparer le timestamp de ces mises à jour au last_timestamp qui est le dernier timestamp où le whiboard était à jour. Toutes les nouvelles opérations sont ensuite envoyées au client """ try: while not self.is_done(): msg_recu = self.client_socket.recv(2 ** 24) new_actions = binary_to_dict(msg_recu) # Go through each new action and add them to history and there are two cases : if it's an action on # an already existing text box then modify it in history, else append the action to the history for action in new_actions["actions"]: matched = False if action["type"] == "Text_box": matched = self.check_match(action) if not matched: self.server.historique["actions"].append(action) if self.server.historique["message"] == "END": # S'éxécute si le client se déconnecte self.disconnect_client() if new_actions["auth"] != []: if new_actions["auth"][1]: self.server.historique["auth"].append(new_actions["auth"][0]) else: self.server.historique["auth"].remove(new_actions["auth"][0]) time.sleep(0.01) actions_to_send = [x for x in self.server.historique["actions"] if (x["timestamp"] > self.last_timestamp_sent and x["client"] != self.client_id)] to_send = {"message": "", 'actions': actions_to_send, 'auth': self.server.historique["auth"]} self.client_socket.send(dict_to_binary(to_send)) # Update last timestamp if there is a new action if actions_to_send: self.last_timestamp_sent = max([x["timestamp"] for x in actions_to_send]) except (ConnectionAbortedError, ConnectionResetError) as e: # Gère la déconnexion soudaine d'un client print("Un client s'est déconnecté") class Server: """ Cette classe définit un serveur. Elle a pour paramètres un port et une adresse hôte nécessaire à la création d'une connexion, également une connexion socket propre au serveur, ainsi qu'une liste des clients à connecter, une liste des threads lancés qui est la liste des clients actuellement connectés et un dictionnaire historique des opérations faites sur le serveur à échanger avec les différents clients """ def __init__(self, port, host='', historique=None): self._host = host self._port = port self.__connexion = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.__clients = [] self.__threadlaunched = [] if historique is None: self.historique = {"message": "", 'actions': [], 'auth': []} else: self.historique = historique '''Les méthodes et properties suivantes permettent de gérer les encapsulations''' @property def host(self): return self._host @property def port(self): return self._port @property def clients(self): return self.__clients def add_client(self, new_client): self.__clients.append(new_client) def remove_client(self, client_removed): self.__clients.remove(client_removed) @property def threadlaunched(self): return self.__threadlaunched def add_thread(self, new_thread): self.__threadlaunched.append(new_thread) def remove_thread(self, thread_removed): self.__threadlaunched.remove(thread_removed) def scan_new_client(self): """Cette méthode permet de récupérer les informations du client entrant""" # Get connexion info from server client, infos_connexion = self.__connexion.accept() # Initialize a new client thread new_thread = Client(self) # Give them an id and send it to server client_id = new_thread.client_id client.send(dict_to_binary({"client_id": client_id})) to_send = dict_to_binary(self.historique) # Get the size of history and send it because it can be too long message_size = sys.getsizeof(to_send) client.send(dict_to_binary({"message_size": message_size})) # Wait a little for the previous message to not overlap with the next one ## !!WARNING!! DEPENDING ON THE COMPUTER THIS SLEEP TIME MAY BE TOO SMALL, IF THE WHITEBOARD CRASHES, PLEASE ## INCREASE IT time.sleep(0.5) client.send(to_send) # Get the last timestamp sent to client try: new_thread.last_timestamp_sent = max([x["timestamp"] for x in self.historique["actions"]]) except ValueError: new_thread.last_timestamp_sent = 0 new_thread.client_socket = client self.add_client(new_thread) print("Un client s'est connecté. Bienvenue {} !".format(client_id)) def run(self): """ Dans cette méthode, la boucle while permet d'écouter en permanence de nouveaux clients potentiels et de gérer les déconnexions de clients et fermetures de thread""" self.__connexion.bind((self.host, self.port)) # Le serveur acceptera maximum 100 clients self.__connexion.listen(100) print("Le serveur est prêt sur le port numéro {}".format(self.port)) while True: self.scan_new_client() for client in self.clients: client.start() self.remove_client(client) self.add_thread(client) for thread in self.threadlaunched: if thread.is_done(): thread.join() self.remove_thread(thread) if __name__ == '__main__': server = Server(5001, '') server.run()
Python
252
37.111111
119
/src/serveur.py
0.609329
0.606518
riadghorra/whiteboard-oop-project
refs/heads/master
""" Module contenant les differents outils de gestion du tableau """ import pygame import pygame.draw from datetime import datetime from figures import Point, Line, TextBox, Rectangle, Circle import time # ============================================================================= # classes de gestion des changements de parametres utilisateur # ============================================================================= class TriggerBox: """ Classe mere abstraite qui represente une zone carree de l'ecran sur laquelle on peut cliquer top_left (list) : coordonees du pixel en haut a gauche size (int) : taille en pixel du cote du carre """ def __init__(self, top_left, size): self.rect = pygame.Rect(top_left, size) self.coords = top_left def is_triggered(self, event): """ retourne le booleen : l'utilisateur clique sur la triggerbox event (pygame event) : clic de souris d un utilisateur """ return self.rect.collidepoint(event.pos) class Auth(TriggerBox): """ Classe d'un bouton qui change l'autorisation de modification """ def __init__(self, top_left, size): TriggerBox.__init__(self, top_left, size) self._size = size def add(self, screen): """ Dessine la authbox """ pygame.draw.rect(screen, [0, 0, 0], self.rect, 1) pygame.draw.circle(screen, [255, 0, 0], [int(self.coords[0] + self._size[0] / 2), int(self.coords[1] + self._size[1] / 2)], int(min(self._size[0], self._size[1] / 3))) font = pygame.font.Font(None, 18) legend = {"text": font.render("auth", True, [0, 0, 0]), "coords": self.coords} screen.blit(legend["text"], legend["coords"]) def switch(self, screen, erasing_auth, modification_allowed, name): if erasing_auth: pygame.draw.circle(screen, [0, 255, 0], [int(self.coords[0] + self._size[0] / 2), int(self.coords[1] + self._size[1] / 2)], int(min(self._size[0], self._size[1] / 3))) print("{} a donné son autorisation de modifications".format(name)) else: pygame.draw.circle(screen, [255, 0, 0], [int(self.coords[0] + self._size[0] / 2), int(self.coords[1] + self._size[1] / 2)], int(min(self._size[0], self._size[1] / 3))) print("{} a retiré son autorisation de modifications".format(name)) return [name, erasing_auth] class Save(TriggerBox): """ Classe d'un bouton qui permet la sauvegarde du whiteboard en format PNG """ def __init__(self, top_left, size): TriggerBox.__init__(self, top_left, size) self._size = size def add(self, screen): """ Dessine la savebox """ pygame.draw.rect(screen, [0, 0, 0], self.rect, 1) font = pygame.font.Font(None, 18) legend = {"text": font.render("save", True, [0, 0, 0]), "coords": self.coords} screen.blit(legend["text"], legend["coords"]) def save(self, screen, whiteboard): pygame.image.save(screen.subsurface((0, whiteboard.get_config(["toolbar_y"]) + 1, whiteboard.get_config(["width"]), whiteboard.get_config(["length"]) - whiteboard.get_config( ["toolbar_y"]) - 1)), "mygreatdrawing.png") class Mode(TriggerBox): """ Classe d'un mode de dessin du tableau dans lequel on peut rentrer via la triggerbox dont il herite name (string) : nom du mode qui sera inscrit dans sa triggerbox sur l'ecran """ def __init__(self, name, top_left, size): super(Mode, self).__init__(top_left, size) self.name = name def add(self, screen): """ Dessine la triggerbox du mode et la rend active sur l'ecran """ pygame.draw.rect(screen, [0, 0, 0], self.rect, 1) font = pygame.font.Font(None, 18) legend = {"text": font.render(self.name, True, [0, 0, 0]), "coords": self.coords} screen.blit(legend["text"], legend["coords"]) class ColorBox(TriggerBox): """ Classe d'une triggerbox de choix de couleur sur l'ecran color (list) : color of the box """ def __init__(self, color, top_left, size): super(ColorBox, self).__init__(top_left, size) self.color = color def add(self, screen): """ Dessine la colorbox """ pygame.draw.rect(screen, self.color, self.rect) class FontSizeBox(TriggerBox): """ Classe des triggerbox de choix de l'epaisseur du trait font_size (int) : epaisseur du trait en pixel """ def __init__(self, font_size, top_left, size): super(FontSizeBox, self).__init__(top_left, size) self.font_size = font_size self.center = [top_left[0] + size[0] // 2, top_left[1] + size[1] // 2] # pour dessiner un cercle representant l epaisseur de selection def add(self, screen): """ Dessine la fontsizebox """ pygame.draw.rect(screen, [0, 0, 0], self.rect, 1) pygame.draw.circle(screen, [0, 0, 0], self.center, self.font_size) # ============================================================================= # classes de gestion des evenements utilisateur # ============================================================================= class EventHandler: """ Classe mere des gestionnaires d'evenements utilisateur en fontcion des modes whiteboard : classe whiteboard sur laquelle notre handler va gerer les evenements utilisateur """ def __init__(self, whiteboard): self.whiteboard = whiteboard def handle(self, event): """ Ce test commun a tous les modes verifie si l'utilisateur quitte ou change de mode """ out = False if event.type == pygame.QUIT: self.whiteboard.end() self.whiteboard.switch_config("quit") out = True if event.type == pygame.MOUSEBUTTONDOWN: coord = event.dict['pos'] if coord[1] <= self.whiteboard.get_config(["toolbar_y"]): self.whiteboard.switch_config(event) out = True return out class HandlePoint(EventHandler): """ Classe du gestionnaire d'evenement en mode point """ def __init__(self, whiteboard): EventHandler.__init__(self, whiteboard) def handle_all(self, event): """ En mode point on s'interesse aux clics gauches de souris et on dessine un point """ handled = self.handle(event) # commun a tous les handler qui verifie si on change de mode ou on quitte if handled: return if event.type == pygame.MOUSEBUTTONDOWN: if event.dict["button"] != 1: return coord = event.dict["pos"] to_draw = Point(coord, self.whiteboard.get_config(["active_color"]), self.whiteboard.get_config(["font_size"]), self.whiteboard.get_config(["toolbar_y"])) now = datetime.now() timestamp = datetime.timestamp(now) self.whiteboard.draw(to_draw, timestamp) class HandleLine(EventHandler): """ Classe du gestionnaire d'evenement en mode ligne """ def __init__(self, whiteboard): EventHandler.__init__(self, whiteboard) def handle_mouse_motion(self): """ Gere les mouvements de souris : l'utilisateur a le clic enfonce le rendu du trait est en direct """ if self.whiteboard.is_drawing(): self.whiteboard.mouse_position = pygame.mouse.get_pos() if self.whiteboard.mouse_position[1] <= self.whiteboard.get_config(["toolbar_y"]): self.whiteboard.pen_up() elif self.whiteboard.last_pos is not None: to_draw = Line(self.whiteboard.get_config(["active_color"]), self.whiteboard.last_pos, self.whiteboard.mouse_position, self.whiteboard.get_config(["font_size"])) now = datetime.now() timestamp = datetime.timestamp(now) self.whiteboard.draw(to_draw, timestamp) self.whiteboard.update_last_pos() def handle_mouse_button_up(self): """ Gere la levee du doigt sur le clic : on effectue un pen up """ self.whiteboard.mouse_position = (0, 0) self.whiteboard.pen_up() self.whiteboard.reset_last_pos() def handle_mouse_button_down(self): """ Gere le clic de l'utilisateur : pen down """ self.whiteboard.pen_down() def handle_all(self, event): """ Gere tous les evenements avec la methode associe via un arbre de if """ handled = self.handle(event) if handled: return elif event.type == pygame.MOUSEMOTION: self.handle_mouse_motion() elif event.type == pygame.MOUSEBUTTONUP: self.handle_mouse_button_up() elif event.type == pygame.MOUSEBUTTONDOWN: self.handle_mouse_button_down() pygame.display.flip() class HandleText(EventHandler): """ Classe du gestionnaire d'evenement en mode textbox """ def __init__(self, whiteboard): EventHandler.__init__(self, whiteboard) def box_selection(self, event): """ Gere les clics utilisateur S'il s'agit d'un clic droit, on cree une nouvelle box S'il s'agit d'un clic gauche on regarde si cela selectionne une zone d une ancienne box qui deviendra la box active """ if event.dict["button"] == 3: coord = event.dict['pos'] text_box = TextBox(*coord, self.whiteboard.get_config(["text_box", "textbox_width"]), self.whiteboard.get_config(["text_box", "textbox_length"]), self.whiteboard.get_config(["text_box", "active_color"]), self.whiteboard.get_config(["text_box", "font"]), self.whiteboard.get_config(["text_box", "font_size"]), "", self.whiteboard.get_config(["active_color"])) self.whiteboard.append_text_box(text_box) now = datetime.now() timestamp = datetime.timestamp(now) self.whiteboard.draw(text_box, timestamp) self.whiteboard.set_active_box(text_box) elif event.dict["button"] == 1: for box in self.whiteboard.get_text_boxes(): if box.rect.collidepoint(event.pos): self.whiteboard.set_active_box(box, new=False) def write_in_box(self, event): """ Gere les entrees clavier de l'utilisateur Si une box est selectionnee cela modifie le texte en consequence """ if self.whiteboard.active_box is not None: # on efface un caractere if event.key == pygame.K_BACKSPACE: self.whiteboard.active_box.delete_char_from_text(self.whiteboard) # pour modifier la box il est malheureusement necessaire de re-render tout le tableau self.whiteboard.clear_screen() self.whiteboard.load_actions(self.whiteboard.get_hist()) elif event.key == pygame.K_TAB or event.key == pygame.K_RETURN: pass else: self.whiteboard.active_box.add_character_to_text(event.unicode, self.whiteboard) # on re-render tout aussi ici pour éviter de superposer des écritures self.whiteboard.clear_screen() self.whiteboard.load_actions(self.whiteboard.get_hist()) if self.whiteboard.active_box is not None: # Re-render the text. self.whiteboard.active_box.set_txt_surface(self.whiteboard.active_box.render_font( self.whiteboard.active_box.get_textbox_text(), self.whiteboard.active_box.get_textbox_color())) def handle_all(self, event): """ Gere tous les evenements avec la methode associée via un arbre de if """ handled = self.handle(event) if handled: return if event.type == pygame.MOUSEBUTTONDOWN: self.box_selection(event) if event.type == pygame.KEYDOWN: self.write_in_box(event) pygame.display.flip() class HandleRect(EventHandler): """ Classe du gestionnaire d'evenement en mode rectangle Nous avons decidé de faire un systeme de clic drag pour tracer un rectangle """ def __init__(self, whiteboard): EventHandler.__init__(self, whiteboard) self.c1 = None def handle_mouse_button_up(self, coord): """ Recupere la deuxieme coordonee d'un coin du rectangle a tracer quand l'utilisateur arrete de cliquer """ if self.c1 is not None: coord = list(coord) # on ne veut pas depasser sur la toolbar coord[1] = max(self.whiteboard.get_config(["toolbar_y"]), coord[1]) to_draw = Rectangle(self.c1, coord, self.whiteboard.get_config(["active_color"])) now = datetime.now() timestamp = datetime.timestamp(now) self.whiteboard.draw(to_draw, timestamp) self.c1 = None def handle_mouse_button_down(self, event): """ Recupere une coordonee d'un coin du rectangle a tracer quand l'utilisateur démarre un clic """ if event.dict["button"] != 1: return self.c1 = event.dict['pos'] def handle_all(self, event): """ Gere tous les evenements avec la methode associe via un arbre de if """ handled = self.handle(event) if handled: return elif event.type == pygame.MOUSEBUTTONUP: self.handle_mouse_button_up(coord=event.dict['pos']) elif event.type == pygame.MOUSEBUTTONDOWN: self.handle_mouse_button_down(event) pygame.display.flip() class HandleCircle(EventHandler): """ Classe du gestionnaire d'evenement en mode Cercle Nous avons decidé de faire un systeme de clic drag la-encore pour tracer un cercle """ def __init__(self, whiteboard): EventHandler.__init__(self, whiteboard) self.center = None def handle_mouse_button_up(self, coord): """ Recupere la coordonee d'un point sur le cercle quand l'utilisateur arrete de cliquer """ if self.center is not None: coord = list(coord) to_draw = Circle(self.center, coord, self.whiteboard.get_config(["active_color"]), self.whiteboard.get_config(["toolbar_y"])) now = datetime.now() timestamp = datetime.timestamp(now) self.whiteboard.draw(to_draw, timestamp) self.center = None def handle_mouse_button_down(self, event): """ Recupere la coordonnee du centre du cercle quand l'utilisateur demarre un clic """ if event.dict["button"] != 1: return self.center = event.dict['pos'] def handle_all(self, event): """ Gere tous les evenements avec la methode associe via un arbre de if """ handled = self.handle(event) if handled: return elif event.type == pygame.MOUSEBUTTONUP: self.handle_mouse_button_up(coord=event.dict['pos']) elif event.type == pygame.MOUSEBUTTONDOWN: self.handle_mouse_button_down(event) pygame.display.flip()
Python
431
36.016243
116
/src/tools.py
0.564749
0.558418
riadghorra/whiteboard-oop-project
refs/heads/master
import pygame import pygame.draw import json import sys from functools import reduce import operator from figures import TextBox, draw_line, draw_point, draw_textbox, draw_rect, draw_circle from tools import Mode, ColorBox, Auth, Save, FontSizeBox, HandlePoint, HandleLine, HandleText, HandleRect, HandleCircle import copy ''' Ouverture de la configuration initiale ''' def dict_to_binary(the_dict): str = json.dumps(the_dict) return bytes(str, 'utf-8') def binary_to_dict(binary): try: jsn = ''.join(binary.decode("utf-8")) d = json.loads(jsn) except (TypeError, json.decoder.JSONDecodeError) as e: if e == TypeError: print("Le message reçu n'est pas du format attendu") else: print('Un paquet a été perdu') return {"actions": [], "message": [], "auth": []} return d class WhiteBoard: def __init__(self, client_name, start_config, start_hist=None): """ Whiteboard initialization : we build the GUI using the config file and the potential history of actions made by other users. Returns a Whiteboard window ready to use. :param client_name: Name of the client who just opened a new whiteboard window (str) :param start_config: Whiteboard configuration stored in config.json and loaded as a dict (dict) :param start_hist: History of actions by other users (dict) """ pygame.init() if not isinstance(client_name, str): raise TypeError("Client name must be a string") if not isinstance(start_config, dict): raise TypeError("Starting configuration file must be a dictionary") if start_hist is None: start_hist = {"actions": [], "message": [], "auth": []} elif not isinstance(start_hist, dict): raise TypeError("Starting history file must be a dictionary") self._done = False self._config = start_config self._name = client_name self._hist = start_hist self.__screen = pygame.display.set_mode([self._config["width"], self._config["length"]]) self.__screen.fill(self._config["board_background_color"]) self.__handler = {"line": HandleLine(self), "point": HandlePoint(self), "text": HandleText(self), "rect": HandleRect(self), "circle": HandleCircle(self)} pygame.draw.line(self.__screen, self._config["active_color"], [0, self._config["toolbar_y"]], [self._config["width"], self._config["toolbar_y"]], 1) # We create a global variable to keep track of the position of the last mode box we create in order to make # sure that there is no overlapping between left and right boxes on the toolbar on the toolbar """ Tracé de la box auth, qui permet de donner l'autorisation de modification des textbox """ last_left_position = 0 last_right_position = self._config["width"] - self._config["mode_box_size"][0] self._erasing_auth = False try: assert last_left_position < last_right_position + 1, "Too many tools to fit in the Whiteboard " \ "toolbar, please increase width in config.json" self.__auth_box = Auth((last_left_position, 0), tuple(self._config["auth_box_size"])) last_left_position += self._config["mode_box_size"][0] self.__auth_box.add(self.__screen) except AssertionError as e: print(e) pygame.quit() sys.exit() """ Tracé de la boite save qui permet d'enregistrer l'image """ try: assert last_left_position < last_right_position + 1, "Too many tools to fit in the Whiteboard " \ "toolbar, please increase width in config.json" self.__save_box = Save((last_left_position, 0), tuple(self._config["auth_box_size"])) last_left_position += self._config["mode_box_size"][0] self.__save_box.add(self.__screen) except AssertionError as e: print(e) pygame.quit() sys.exit() self.__modes = [Mode("point", (2 * self._config["mode_box_size"][0], 0), tuple(self._config["mode_box_size"])), Mode("line", (3 * self._config["mode_box_size"][0], 0), tuple(self._config["mode_box_size"])), Mode("text", (4 * self._config["mode_box_size"][0], 0), tuple(self._config["mode_box_size"])), Mode("rect", (5 * self._config["mode_box_size"][0], 0), tuple(self._config["mode_box_size"])), Mode("circle", (6 * self._config["mode_box_size"][0], 0), tuple(self._config["mode_box_size"])) ] # If right and left boxes overlap, raise an error and close pygame try: for mod in self.__modes: assert last_left_position < last_right_position + 1, "Too many tools to fit in the Whiteboard " \ "toolbar, please increase width in config.json" mod.add(self.__screen) last_left_position += self._config["mode_box_size"][0] except AssertionError as e: print(e) pygame.quit() sys.exit() """ Choix des couleurs """ self.__colors = [] try: for key, value in self._config["color_palette"].items(): assert last_left_position < last_right_position + 1, "Too many tools to fit in the Whiteboard " \ "toolbar, please increase width in config.json" color_box = ColorBox(value, (last_right_position, 0), tuple(self._config["mode_box_size"])) last_right_position -= self._config["mode_box_size"][0] self.__colors.append(color_box) color_box.add(self.__screen) except AssertionError as e: print(e) pygame.quit() sys.exit() """ Choix des épaisseurs """ self.__font_sizes = [] try: for size in self._config["pen_sizes"]: assert last_left_position < last_right_position + 1, "Too many tools to fit in the Whiteboard " \ "toolbar, please increase width in config.json" font_size_box = FontSizeBox(size, (last_right_position, 0), tuple(self._config["mode_box_size"])) last_right_position -= self._config["mode_box_size"][0] self.__font_sizes.append(font_size_box) font_size_box.add(self.__screen) except AssertionError as e: print(e) pygame.quit() sys.exit() """ initialisation des variables de dessin """ pygame.display.flip() self._draw = False self._last_pos = None self._mouse_position = (0, 0) """ Initialisation des paramètres des text boxes """ self._text_boxes = [] # Cette liste contiendra les objets de type Textbox self.active_box = None self.load_actions(self._hist) self.__modification_allowed = copy.deepcopy(self._hist["auth"]) # if some client names are in this list, you will have the authorisation to edit their textboxes for action in self._hist["actions"]: if action["type"] == "Text_box": self.append_text_box(TextBox(**action["params"])) """ Encapsulation """ def is_done(self): return self._done def end(self): self._done = True def get_config(self, maplist): """ Getter of config file. Uses a list of keys to traverse the config dict :param maplist: list of keys from parent to child to get the wanted value (list) :return: value of a key in the config file (object) """ if not type(maplist) == list: maplist = list(maplist) try: return reduce(operator.getitem, maplist, self._config) except (KeyError, TypeError): return None def set_config(self, maplist, value): """ Setter of config file. Uses the getter and assigns value to a key :param maplist: list of keys from parent to child to get the wanted value (list) :param value: value to set (object) :return: None if failed """ if not type(maplist) == list: maplist = list(maplist) try: self.get_config(maplist[:-1])[maplist[-1]] = value except (KeyError, TypeError): return None def get_hist(self, key=None): if key is None: return self._hist else: return self._hist[key] def add_to_hist(self, value): self._hist["actions"].append(value) @property def screen(self): return self.__screen def clear_screen(self): """ Clear the screen by coloring it to background color. Does not color the toolbar :return: """ self.__screen.fill(self.get_config(["board_background_color"]), (0, self.get_config(["toolbar_y"]) + 1, self.get_config(["width"]), self.get_config(["length"]) - self.get_config( ["toolbar_y"]) + 1)) def is_drawing(self): return self._draw def pen_up(self): self._draw = False def pen_down(self): self._draw = True @property def name(self): return self._name @property def modification_allowed(self): return self.__modification_allowed @property def last_pos(self): return self._last_pos def reset_last_pos(self): self._last_pos = None def update_last_pos(self): self._last_pos = self._mouse_position def __get_mouse_position(self): return self._mouse_position def __set_mouse_position(self, value): self._mouse_position = value mouse_position = property(__get_mouse_position, __set_mouse_position) def get_text_boxes(self): return self._text_boxes def append_text_box(self, textbox): self._text_boxes.append(textbox) def del_text_box(self, textbox): self._text_boxes.remove(textbox) def draw(self, obj, timestamp): """ Method to draw figures defined in figures.py. Also adds drawn objects to history. :param obj: class of figure to draw :param timestamp: timestamp at which the drawing happens :return: None """ # Draw object on screen obj.draw(self.__screen) # Create dict containing object parameters and right timestamp to add to history hist_obj = {"type": obj.type, "timestamp": timestamp, "params": obj.fetch_params(), "client": self._name} # Special case if it's a Text_box object, we need to get the correct box id if hist_obj["type"] == "Text_box": hist_obj["id"] = obj.id_counter hist_obj["owner"] = self._name self.add_to_hist(hist_obj) def switch_config(self, event): """ Switch between different modes :param event: Action by the user : a mouse click on either modes, colors or font sizes :return: None """ if event == "quit": self.set_config(["mode"], "quit") # We go through each mode, color and font size to see if that mode should be triggered by the event else: for mod in self.__modes: if mod.is_triggered(event): self.set_config(["mode"], mod.name) for col in self.__colors: if col.is_triggered(event): self.set_config(["text_box", "text_color"], col.color) self.set_config(["active_color"], col.color) for font_size_ in self.__font_sizes: if font_size_.is_triggered(event): self.set_config(["font_size"], font_size_.font_size) if self.__auth_box.is_triggered(event): self._erasing_auth = not self._erasing_auth self.__auth_box.switch(self.__screen, self._erasing_auth, self.__modification_allowed, self._name) self._hist["auth"] = [self._name, self._erasing_auth] if self.__save_box.is_triggered(event): self.__save_box.save(self.__screen, self) print("Le dessin a été sauvegardé dans le dossier") def set_active_box(self, box, new=True): """ A method specific to text boxes : select an existing box or one that has just been created to edit. This box is thus said to be "active" :param box: instance of the TextBox class :param new: boolean to specify if the box was just created or already existed :return: """ # If the selected box is already the active one, do nothing if box == self.active_box: return # If there is a box that is active we must turn it into "inactive" if self.active_box is not None: # Change its color to the "inactive color" self.active_box.set_textbox_color(self.get_config(["text_box", "inactive_color"])) # Select the id of previous active box id_counter = self.active_box.id_counter # Find the previous active box and change its color in history for action in [x for x in self.get_hist('actions') if x['type'] == 'Text_box']: if action['id'] == id_counter: action["params"]["text"] = self.active_box.get_textbox_text() action['params']["box_color"] = self.get_config(["text_box", "inactive_color"]) # Render it self.active_box.draw(self.__screen) # If selected box already exists on the whiteboard we must turn it into "active" if not new: id_counter = box.id_counter for action in [x for x in self.get_hist('actions') if x['type'] == 'Text_box']: if action['id'] == id_counter: action['params']["box_color"] = self.get_config(["text_box", "active_color"]) # Draw the newly activated box self.active_box = box self.active_box.draw(self.__screen) pygame.display.flip() def draw_action(self, action): """ Draw the result of an action by the user on the whiteboard :param action: usually a mouse action by the user :return: """ if action["type"] == "Point": draw_point(action["params"], self.__screen) if action["type"] == "Line": draw_line(action["params"], self.__screen) if action["type"] == "Text_box": draw_textbox(action["params"], self.__screen) if action["type"] == "rect": draw_rect(action["params"], self.__screen) if action["type"] == "circle": draw_circle(action["params"], self.__screen) def load_actions(self, hist): """ Load actions from history :param hist: list of dict representing the history of actions in the whiteboard session :return: """ # Sort actions chronologically sred = sorted(hist["actions"], key=lambda value: value["timestamp"]) # Go through each action and draw it for action in sred: self.draw_action(action) pygame.display.flip() def start(self, connexion_avec_serveur): """ Start and run a whiteboard window :param connexion_avec_serveur: socket to connect with server (socket.socket) :return: """ # Initialize timestamp last_timestamp_sent = 0 while not self.is_done(): # Browse all events done by user for event in pygame.event.get(): # If user closes the window, quit the whiteboard if self.get_config(["mode"]) == "quit": self.end() break # Use specific handling method for current drawing mode self.__handler[self.get_config(["mode"])].handle_all(event) # msg_a_envoyer["message"] = "CARRY ON" # Send dict history to server if self._hist["auth"] != [self._name, self._erasing_auth]: self._hist["auth"] = [] new_modifs = [modif for modif in self.get_hist()["actions"] if (modif["timestamp"] > last_timestamp_sent and self._name == modif["client"])] message_a_envoyer = {"message": "", 'actions': new_modifs, "auth": self._hist["auth"]} connexion_avec_serveur.send(dict_to_binary(message_a_envoyer)) self._hist["auth"] = [] # Update last timestamp sent if new_modifs: last_timestamp_sent = max([modif["timestamp"] for modif in new_modifs]) # Dict received from server try: new_hist = binary_to_dict(connexion_avec_serveur.recv(2 ** 24)) except (ConnectionResetError, ConnectionAbortedError) as e: print("Le serveur a été éteint, veuillez le relancer") self._done = True pass # Consider actions made by another client after new_last_timestamp new_actions = [action for action in new_hist["actions"] if action["client"] != self._name] for action in new_actions: # Here there are two cases, a new figure (point, line, rect, circle, new text box) is created or an # existing text box is modified. For this second case, we use the variable "matched" as indicator matched = False if action["type"] == "Text_box": # Find the text box id for textbox in [x for x in self._hist["actions"] if x["type"] == "Text_box"]: if action["id"] == textbox["id"]: # Modify it with the newly acquired parameters from server textbox["params"]["text"], textbox["params"]["w"] = action["params"]["text"], \ action["params"]["w"] action_to_update_textbox = action for element in self.get_text_boxes(): if element.id_counter == action["id"]: self.del_text_box(element) self.append_text_box(TextBox(**action_to_update_textbox["params"])) # Draw the modified text box with updated parameters self.clear_screen() self.load_actions(self._hist) matched = True # If we are in the first case, we add the new actions to history and draw them if not matched: self.add_to_hist(action) if action["type"] == "Text_box": self.append_text_box(TextBox(**action["params"])) self.draw_action(action) if self._name in new_hist["auth"]: new_hist["auth"].remove(self._name) if new_hist["auth"] != self.__modification_allowed: self.__modification_allowed = copy.deepcopy(new_hist["auth"]) pygame.display.flip() # Once we are done, we quit pygame and send end message pygame.quit() print("Fermeture de la connexion") message_a_envoyer["message"] = "END" try: connexion_avec_serveur.send(dict_to_binary(message_a_envoyer)) except (ConnectionResetError, BrokenPipeError) as e: print("Il n'y a pas de message à envoyer au serveur") connexion_avec_serveur.close() def start_local(self): """ Starts Whiteboard locally. Used to test stuff and debug. :return: """ while not self.is_done(): for event in pygame.event.get(): if self.get_config(["mode"]) == "quit": self.end() break self.__handler[self.get_config(["mode"])].handle_all(event) pygame.display.flip() pygame.quit()
Python
515
39.850487
120
/src/white_board.py
0.542257
0.54007
mrpal39/ev_code
refs/heads/master
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: blogroll Description : Author : JHao date: 2020/10/9 ------------------------------------------------- Change Activity: 2020/10/9: ------------------------------------------------- """ __author__ = 'JHao' sites = [ {"url": "https://www.zaoshu.io/", "name": "造数", "desc": "智能云爬虫"}, {"url": "http://brucedone.com/", "name": "大鱼的鱼塘", "desc": "大鱼的鱼塘 - 一个总会有收获的地方"}, {"url": "http://www.songluyi.com/", "name": "灯塔水母", "desc": "灯塔水母"}, {"url": "http://blog.topspeedsnail.com/", "name": "斗大的熊猫", "desc": "本博客专注于技术,Linux,编程,Python,C,Ubuntu、开源软件、Github等"}, {"url": "https://www.urlteam.org/", "name": "URL-team", "desc": "URL-team"}, ]
Python
21
36.714287
121
/awssam/django-blog/src/django_blog/blogroll.py
0.42225
0.403287
mrpal39/ev_code
refs/heads/master
# -*- coding: utf-8 -*- from scrapy_redis.spiders import RedisSpider from scrapy.selector import Selector class testSpider(RedisSpider): name = 'testip' redis_key = 'testip' def parse(self,response): response_selector = Selector(response) code=response_selector.xpath(r'//div[contains(@class,"well")]/p[1]/code/text()') print code
Python
10
35.700001
88
/tc_zufang/tc_zufang-slave/tc_zufang/spiders/testip.py
0.673913
0.668478
mrpal39/ev_code
refs/heads/master
from django.db import models from tinymce.models import HTMLField from django.utils import timezone from django.contrib.auth.models import User from django.urls import reverse class Post(models.Model): title = models.CharField(max_length=100) content = models.TextField() description =HTMLField() date_posted = models.DateTimeField(default=timezone.now) author = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return self.title def get_absolute_url(self): return reverse('post-detail', kwargs={'pk': self.pk}) class feeds(models.Model): title = models.CharField(max_length=100) overview = models.TextField(max_length=20) timestamp = models.DateTimeField(auto_now_add=True) description =HTMLField() thumbnail = models.ImageField() featured = models.BooleanField() # content = HTMLField() def __str__(self): return self.title class Products(models.Model): title =models.CharField(max_length=100) description =models.TextField(blank=True) price =models.DecimalField(decimal_places=2,max_digits=1000) summary =models.TextField(blank=False, null=False) # featured =models.BooleanField() class MyModel(models.Model): ... content = HTMLField()
Python
56
22.214285
67
/awssam/ideablog/core/models.py
0.698999
0.686682
mrpal39/ev_code
refs/heads/master
import connection import queue from scrapy.utils.misc import load_object from scrapy.utils.job import job_dir SCHEDULER_PERSIST = False QUEUE_CLASS = 'queue.SpiderQueue' IDLE_BEFORE_CLOSE = 0 class Scheduler(object): def __init__(self, server, persist, queue_key, queue_cls, idle_before_close, stats, *args, **kwargs): self.server = server self.persist = persist self.queue_key = queue_key self.queue_cls = queue_cls self.idle_before_close = idle_before_close self.stats = stats def __len__(self): return len(self.queue) @classmethod def from_crawler(cls, crawler): if not crawler.spider.islinkgenerator: settings = crawler.settings persist = settings.get('SCHEDULER_PERSIST', SCHEDULER_PERSIST) queue_key = "%s:requests" % crawler.spider.name queue_cls = queue.SpiderQueue idle_before_close = settings.get('SCHEDULER_IDLE_BEFORE_CLOSE', IDLE_BEFORE_CLOSE) server = connection.from_settings(settings, crawler.spider.name) stats = crawler.stats return cls(server, persist, queue_key, queue_cls, idle_before_close, stats) else: settings = crawler.settings dupefilter_cls = load_object(settings['DUPEFILTER_CLASS']) dupefilter = dupefilter_cls.from_settings(settings) pqclass = load_object(settings['SCHEDULER_PRIORITY_QUEUE']) dqclass = load_object(settings['SCHEDULER_DISK_QUEUE']) mqclass = load_object(settings['SCHEDULER_MEMORY_QUEUE']) logunser = settings.getbool('LOG_UNSERIALIZABLE_REQUESTS', settings.getbool('SCHEDULER_DEBUG')) core_scheduler = load_object('scrapy.core.scheduler.Scheduler') return core_scheduler(dupefilter, jobdir=job_dir(settings), logunser=logunser, stats=crawler.stats, pqclass=pqclass, dqclass=dqclass, mqclass=mqclass) def open(self, spider): self.spider = spider self.queue = self.queue_cls(self.server, spider, self.queue_key) if len(self.queue): spider.log("Resuming crawl (%d requests scheduled)" % len(self.queue)) def close(self, reason): if not self.persist: self.queue.clear() connection.close(self.server) def enqueue_request(self, request): if self.stats: self.stats.inc_value('scheduler/enqueued/rabbitmq', spider=self.spider) self.queue.push(request) def next_request(self): request = self.queue.pop() if request and self.stats: self.stats.inc_value('scheduler/dequeued/rabbitmq', spider=self.spider) return request def has_pending_requests(self): return len(self) > 0
Python
73
37.698631
107
/Web-UI/scrapyproject/scrapy_packages/rabbitmq/scheduler.py
0.635752
0.635044
mrpal39/ev_code
refs/heads/master
import scrapy class MySpider(scrapy.Spider): name = 'myspider' start_urls = ['http://example.com'] def parse(self, response): print(f"Existing settings: {self.settings.attributes.keys()}") class MyExtension: def __init__(self, log_is_enabled=False): if log_is_enabled: print("log is enabled!") @classmethod def from_crawler(cls, crawler): settings = crawler.settings return cls(settings.getbool('LOG_ENABLED'))
Python
17
27.352942
70
/scrap/tutorial/scrap/spiders/testing.py
0.638254
0.638254
mrpal39/ev_code
refs/heads/master
# -*- coding: utf-8 -*- from scrapy_redis.spiders import RedisSpider from scrapy.selector import Selector from tc_zufang.utils.result_parse import list_first_item from scrapy.http import Request from tc_zufang.utils.InsertRedis import inserintotc,inserintota import re defaultencoding = 'utf-8' ''' 58同城的爬虫 ''' #继承自RedisSpider,则start_urls可以从redis读取 #继承自BaseSpider,则start_urls需要写出来 class TczufangSpider(RedisSpider): name='basic' start_urls=( 'http://dg.58.com/chuzu/', 'http://sw.58.com/chuzu/', 'http://sz.58.com/chuzu/', 'http://gz.58.com/chuzu/', # 'http://fs.58.com/chuzu/', # 'http://zs.58.com/chuzu/', # 'http://zh.58.com/chuzu/', # 'http://huizhou.58.com/chuzu/', # 'http://jm.58.com/chuzu/', # 'http://st.58.com/chuzu/', # 'http://zhanjiang.58.com/chuzu/', # 'http://zq.58.com/chuzu/', # 'http://mm.58.com/chuzu/', # 'http://jy.58.com/chuzu/', # 'http://mz.58.com/chuzu/', # 'http://qingyuan.58.com/chuzu/', # 'http://yj.58.com/chuzu/', # 'http://sg.58.com/chuzu/', # 'http://heyuan.58.com/chuzu/', # 'http://yf.58.com/chuzu/', # 'http://chaozhou.58.com/chuzu/', # 'http://taishan.58.com/chuzu/', # 'http://yangchun.58.com/chuzu/', # 'http://sd.58.com/chuzu/', # 'http://huidong.58.com/chuzu/', # 'http:// boluo.58.com/chuzu/', # ) # redis_key = 'tczufangCrawler:start_urls' #解析从start_urls下载返回的页面 #页面页面有两个目的: #第一个:解析获取下一页的地址,将下一页的地址传递给爬虫调度器,以便作为爬虫的下一次请求 #第二个:获取详情页地址,再对详情页进行下一步的解析 redis_key = 'start_urls' def parse(self, response): #获取所访问的地址 response_url=re.findall('^http\:\/\/\w+\.58\.com',response.url) response_selector = Selector(response) next_link=list_first_item(response_selector.xpath(u'//div[contains(@class,"pager")]/a[contains(@class,"next")]/@href').extract()) detail_link=response_selector.xpath(u'//div[contains(@class,"listBox")]/ul[contains(@class,"listUl")]/li/@logr').extract() if next_link: if detail_link: # print next_link # yield Request(next_link,callback=self.parse) inserintotc(next_link, 1) print '#########[success] the next link ' + next_link + ' is insert into the redis queue#########' for detail_link in response_selector.xpath(u'//div[contains(@class,"listBox")]/ul[contains(@class,"listUl")]/li/@logr').extract(): #gz_2_39755299868183_28191154595392_sortid:1486483205000 @ ses:busitime ^ desc @ pubid:5453707因为58同城的详情页做了爬取限制,所以由自己构造详情页id #构造详情页url # detail_link='http://dg.58.com/zufang/'+detail_link.split('_')[3]+'x.shtml' detail_link = response_url[0]+'/zufang/' + detail_link.split('_')[3] + 'x.shtml' #对详情页进行解析cd if detail_link: inserintota(detail_link,2) print '[success] the detail link ' + detail_link + ' is insert into the redis queue'
Python
71
42.478874
138
/tc_zufang/tc_zufang/tc_zufang/spiders/tczufang_detail_spider.py
0.582955
0.545366
mrpal39/ev_code
refs/heads/master
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class PropertiesPipeline(object): def process_item(self, item, spider): return item ITEM_PIPELINES = { 'scrapy.pipelines.images.ImagesPipeline': 1, 'properties.pipelines.geo.GeoPipeline': 400, } IMAGES_STORE = 'images' IMAGES_THUMBS = { 'small': (30, 30) }
Python
20
22.35
65
/scrap/properties/properties/pipelines.py
0.706009
0.686695
mrpal39/ev_code
refs/heads/master
from django import forms from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit from django.contrib.auth.forms import PasswordChangeForm class CreateProject(forms.Form): projectname = forms.SlugField(label="Enter project name", max_length=50, required=True) helper = FormHelper() helper.form_method = 'POST' helper.add_input(Submit('submit', 'Create Project')) helper.add_input(Submit('cancel', 'Cancel', css_class='btn-default')) class DeleteProject(forms.Form): helper = FormHelper() helper.form_method = 'POST' helper.add_input(Submit('submit', 'Confirm')) helper.add_input(Submit('cancel', 'Cancel', css_class='btn-default')) class CreatePipeline(forms.Form): pipelinename = forms.SlugField(label="Pipeline name", max_length=50, required=True) pipelineorder = forms.IntegerField(label="Order", required=True, min_value=1, max_value=900) pipelinefunction = forms.CharField(label="Pipeline function:", required=False, widget=forms.Textarea) helper = FormHelper() helper.form_tag = False class LinkGenerator(forms.Form): function = forms.CharField(label="Write your link generator function here:", required=False, widget=forms.Textarea) helper = FormHelper() helper.form_tag = False class Scraper(forms.Form): function = forms.CharField(label="Write your scraper function here:", required=False, widget=forms.Textarea) helper = FormHelper() helper.form_tag = False class ItemName(forms.Form): itemname = forms.SlugField(label="Enter item name", max_length=50, required=True) helper = FormHelper() helper.form_tag = False class FieldName(forms.Form): fieldname = forms.SlugField(label="Field 1", max_length=50, required=False) extra_field_count = forms.CharField(widget=forms.HiddenInput()) helper = FormHelper() helper.form_tag = False def __init__(self, *args, **kwargs): extra_fields = kwargs.pop('extra', 0) super(FieldName, self).__init__(*args, **kwargs) self.fields['extra_field_count'].initial = extra_fields for index in range(int(extra_fields)): # generate extra fields in the number specified via extra_fields self.fields['field_{index}'.format(index=index+2)] = forms.CharField(required=False) class ChangePass(PasswordChangeForm): helper = FormHelper() helper.form_method = 'POST' helper.add_input(Submit('submit', 'Change')) class Settings(forms.Form): settings = forms.CharField(required=False, widget=forms.Textarea) helper = FormHelper() helper.form_tag = False class ShareDB(forms.Form): username = forms.CharField(label="Enter the account name for the user with whom you want to share the database", max_length=150, required=True) helper = FormHelper() helper.form_method = 'POST' helper.add_input(Submit('submit', 'Share')) helper.add_input(Submit('cancel', 'Cancel', css_class='btn-default')) class ShareProject(forms.Form): username = forms.CharField(label="Enter the account name for the user with whom you want to share the project", max_length=150, required=True) helper = FormHelper() helper.form_method = 'POST' helper.add_input(Submit('submit', 'Share')) helper.add_input(Submit('cancel', 'Cancel', css_class='btn-default'))
Python
90
36.077778
147
/Web-UI/scrapyproject/forms.py
0.706535
0.70024
mrpal39/ev_code
refs/heads/master
# Generated by Django 3.1.3 on 2020-11-13 06:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0003_auto_20201113_0620'), ] operations = [ migrations.AddField( model_name='feeds', name='description', field=models.TextField(blank=True), ), migrations.AlterField( model_name='feeds', name='overview', field=models.TextField(max_length=20), ), ]
Python
23
22.304348
50
/awssam/ideablog/core/migrations/0004_auto_20201113_0633.py
0.559702
0.498134
mrpal39/ev_code
refs/heads/master
from django.conf.urls import url, include import oauth2_provider.views as oauth2_views from django.conf import settings from .views import ApiEndpoint from django.urls import include, path # OAuth2 provider endpoints oauth2_endpoint_views = [ path('authorize/', oauth2_views.AuthorizationView.as_view(), name="authorize"), path('token/', oauth2_views.TokenView.as_view(), name="token"), path('revoke-token/', oauth2_views.RevokeTokenView.as_view(), name="revoke-token"), ] if settings.DEBUG: # OAuth2 Application Management endpoints oauth2_endpoint_views += [ path('applications/', oauth2_views.ApplicationList.as_view(), name="list"), path('applications/register/', oauth2_views.ApplicationRegistration.as_view(), name="register"), path('applications/<pk>/', oauth2_views.ApplicationDetail.as_view(), name="detail"), path('applications/<pk>/delete/', oauth2_views.ApplicationDelete.as_view(), name="delete"), path('applications/<pk>/update/', oauth2_views.ApplicationUpdate.as_view(), name="update"), ] # OAuth2 Token Management endpoints oauth2_endpoint_views += [ path('authorized-tokens/', oauth2_views.AuthorizedTokensListView.as_view(), name="authorized-token-list"), path('authorized-tokens/<pk>/delete/', oauth2_views.AuthorizedTokenDeleteView.as_view(), name="authorized-token-delete"), ] urlpatterns = [ # OAuth 2 endpoints: path('o/', include(oauth2_endpoint_views, namespace="oauth2_provider")), path('api/hello', ApiEndpoint.as_view()), # an example resource endpoint ]
Python
35
44.857143
114
/awssam/iam/users/urls.py
0.702181
0.689097
mrpal39/ev_code
refs/heads/master
from django.http import HttpResponse, Http404 from django.shortcuts import render import datetime from django.http import HttpResponseRedirect from django.core.mail import send_mail from django.contrib.auth.views import login as loginview from registration.backends.simple import views from django.contrib.auth import authenticate, get_user_model, login from registration import signals from scrapyproject.views import mongodb_user_creation, linux_user_creation from scrapyproject.scrapy_packages import settings try: # Python 3 from urllib.parse import urlparse except ImportError: # Python 2 from urlparse import urlparse try: from urllib.parse import quote except: from urllib import quote User = get_user_model() class MyRegistrationView(views.RegistrationView): def register(self, form): new_user = form.save() new_user = authenticate( username=getattr(new_user, User.USERNAME_FIELD), password=form.cleaned_data['password1'] ) #perform additional account creation here (MongoDB, local Unix accounts, etc.) mongodb_user_creation(getattr(new_user, User.USERNAME_FIELD), form.cleaned_data['password1']) if settings.LINUX_USER_CREATION_ENABLED: try: linux_user_creation(getattr(new_user, User.USERNAME_FIELD), form.cleaned_data['password1']) except: pass login(self.request, new_user) signals.user_registered.send(sender=self.__class__, user=new_user, request=self.request) return new_user def get_success_url(self, user): return "/project" def custom_login(request): if request.user.is_authenticated(): return HttpResponseRedirect('/project') else: return loginview(request) def custom_register(request): if request.user.is_authenticated(): return HttpResponseRedirect('/project') else: register = MyRegistrationView.as_view() return register(request)
Python
67
30.194031
107
/Web-UI/mysite/views.py
0.677033
0.673684
mrpal39/ev_code
refs/heads/master
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('scrapyproject', '0004_pipeline_pipeline_function'), ] operations = [ migrations.RemoveField( model_name='project', name='settings', ), migrations.AddField( model_name='project', name='settings_link_generator', field=models.TextField(blank=True), ), migrations.AddField( model_name='project', name='settings_scraper', field=models.TextField(blank=True), ), ]
Python
28
23.785715
61
/Web-UI/scrapyproject/migrations/0005_auto_20170213_1053.py
0.56196
0.554755
mrpal39/ev_code
refs/heads/master
# Generated by Django 3.1.3 on 2020-11-14 04:52 from django.db import migrations, models import tinymce.models class Migration(migrations.Migration): dependencies = [ ('core', '0005_feeds_content'), ] operations = [ migrations.CreateModel( name='MyModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', tinymce.models.HTMLField()), ], ), migrations.RemoveField( model_name='feeds', name='content', ), migrations.RemoveField( model_name='feeds', name='description', ), ]
Python
29
24.379311
114
/awssam/ideablog/core/migrations/0006_auto_20201114_0452.py
0.540761
0.514946
mrpal39/ev_code
refs/heads/master
# This script is written under the username admin, with project name Retrofm # Change the class name AdminRetrofmSpider accordingly import datetime _start_date = datetime.date(2012, 12, 25) _initial_date = datetime.date(2012, 12, 25) _priority = 0 start_urls = ['http://retrofm.ru'] def parse(self, response): while AdminRetrofmSpider._start_date < self.datetime.date.today(): AdminRetrofmSpider._priority -= 1 AdminRetrofmSpider._start_date += self.datetime.timedelta(days=1) theurlstart = 'http://retrofm.ru/index.php?go=Playlist&date=%s' % ( AdminRetrofmSpider._start_date.strftime("%d.%m.%Y")) theurls = [] theurls.append(theurlstart + '&time_start=17%3A00&time_stop=23%3A59') theurls.append(theurlstart + '&time_start=11%3A00&time_stop=17%3A01') theurls.append(theurlstart + '&time_start=05%3A00&time_stop=11%3A01') theurls.append(theurlstart + '&time_start=00%3A00&time_stop=05%3A01') for theurl in theurls: request = Request(theurl, method="GET", dont_filter=True, priority=(AdminRetrofmSpider._priority), callback=self.parse) self.insert_link(request)
Python
26
45.23077
109
/Web-UI/examples/link_generator.py
0.669442
0.620316
mrpal39/ev_code
refs/heads/master
from django import forms #Building a search view class SearchForm(forms.Form): query =forms.CharField() class uploadForm(forms.ModelForm): images=forms.ImageField() # # from .forms import EmailPostForm, CommentForm , SearchForm # User Repositories='https://libraries.io/api/github/:login/repositories?api_key=306cf1684a42e4be5ec0a1c60362c2ef' # user=' https://libraries.io/api/github/andrew?api_key=306cf1684a42e4be5ec0a1c60362c2ef' # Repository=' https://libraries.io/api/github/:owner/:name?api_key=306cf1684a42e4be5ec0a1c60362c2ef' # =' https://libraries.io/api/github/gruntjs/grunt/projects?api_key=306cf1684a42e4be5ec0a1c60362c2ef ' # ProjectSearch=' https://libraries.io/api/search?q=grunt&api_key=306cf1684a42e4be5ec0a1c60362c2ef' # Platforms= ' GET https://libraries.io/api/platforms?api_key=306cf1684a42e4be5ec0a1c60362c2ef ' # https://libraries.io/api/NPM/base62?api_key=306cf1684a42e4be5ec0a1c60362c2ef ' # ProjectDependen https://libraries.io/api/:platform/:name/:version/dependencies?api_key=306cf1684a42e4be5ec0a1c60362c2ef' # ' https://libraries.io/api/NPM/base62/2.0.1/dependencies?api_key=306cf1684a42e4be5ec0a1c60362c2ef ' # DependentReposito= https://libraries.io/api/NPM/base62/dependent_repositories?api_key=306cf1684a42e4be5ec0a1c60362c2ef ' # ProjectContributo= https://libraries.io/api/NPM/base62/contributors?api_key=306cf1684a42e4be5ec0a1c60362c2ef ' # ProjectSourceRank='https://libraries.io/api/NPM/base62/sourcerank?api_key=306cf1684a42e4be5ec0a1c60362c2ef'
Python
30
51.833332
125
/myapi/devfile/core/forms.py
0.768939
0.616793
mrpal39/ev_code
refs/heads/master
# -*- coding: utf-8 -*- #如果没有下一页的地址则返回none list_first_item = lambda x:x[0] if x else None
Python
4
21.75
46
/tc_zufang/tc_zufang-slave/tc_zufang/utils/result_parse.py
0.659341
0.637363
mrpal39/ev_code
refs/heads/master
from django import forms from core.models import Comment #Building a search view class SearchForm(forms.Form): query =forms.CharField() class EmailPostForm(forms.Form): name = forms.CharField(max_length=25) email = forms.EmailField() to = forms.EmailField() comments = forms.CharField(required=False, widget=forms.Textarea) class CommentForm(forms.ModelForm): url = forms.URLField(label='网址', required=False) email = forms.EmailField(label='电子邮箱', required=True) name = forms.CharField( label='姓名', widget=forms.TextInput( attrs={ 'value': "", 'size': "30", 'maxlength': "245", 'aria-required': 'true'})) parent_comment_id = forms.IntegerField( widget=forms.HiddenInput, required=False) class Meta: model = Comment fields = ['body']
Python
35
25.542856
57
/myapi/fullfeblog/blog/forms.py
0.59375
0.586207
mrpal39/ev_code
refs/heads/master
# -*- coding: utf-8 -*- # Create your views here. import json from django.http import JsonResponse from django_blog.util import PageInfo from blog.models import Article, Comment from django.views.decorators.csrf import csrf_exempt from django.shortcuts import render, get_object_or_404 def get_page(request): page_number = request.GET.get("page") return 1 if not page_number or not page_number.isdigit() else int(page_number) def index(request): _blog_list = Article.objects.all().order_by('-date_time')[0:5] _blog_hot = Article.objects.all().order_by('-view')[0:6] return render(request, 'blog/index.html', {"blog_list": _blog_list, "blog_hot": _blog_hot}) def blog_list(request): """ 列表 :param request: :return: """ page_number = get_page(request) blog_count = Article.objects.count() page_info = PageInfo(page_number, blog_count) _blog_list = Article.objects.all()[page_info.index_start: page_info.index_end] return render(request, 'blog/list.html', {"blog_list": _blog_list, "page_info": page_info}) def category(request, name): """ 分类 :param request: :param name: :return: """ page_number = get_page(request) blog_count = Article.objects.filter(category__name=name).count() page_info = PageInfo(page_number, blog_count) _blog_list = Article.objects.filter(category__name=name)[page_info.index_start: page_info.index_end] return render(request, 'blog/category.html', {"blog_list": _blog_list, "page_info": page_info, "category": name}) def tag(request, name): """ 标签 :param request: :param name :return: """ page_number = get_page(request) blog_count = Article.objects.filter(tag__tag_name=name).count() page_info = PageInfo(page_number, blog_count) _blog_list = Article.objects.filter(tag__tag_name=name)[page_info.index_start: page_info.index_end] return render(request, 'blog/tag.html', {"blog_list": _blog_list, "tag": name, "page_info": page_info}) def archive(request): """ 文章归档 :param request: :return: """ _blog_list = Article.objects.values("id", "title", "date_time").order_by('-date_time') archive_dict = {} for blog in _blog_list: pub_month = blog.get("date_time").strftime("%Y年%m月") if pub_month in archive_dict: archive_dict[pub_month].append(blog) else: archive_dict[pub_month] = [blog] data = sorted([{"date": _[0], "blogs": _[1]} for _ in archive_dict.items()], key=lambda item: item["date"], reverse=True) return render(request, 'blog/archive.html', {"data": data}) def message(request): return render(request, 'blog/message_board.html', {"source_id": "message"}) @csrf_exempt def get_comment(request): """ 接收畅言的评论回推, post方式回推 :param request: :return: """ arg = request.POST data = arg.get('data') data = json.loads(data) title = data.get('title') url = data.get('url') source_id = data.get('sourceid') if source_id not in ['message']: article = Article.objects.get(pk=source_id) article.commenced() comments = data.get('comments')[0] content = comments.get('content') user = comments.get('user').get('nickname') Comment(title=title, source_id=source_id, user_name=user, url=url, comment=content).save() return JsonResponse({"status": "ok"}) def detail(request, pk): """ 博文详情 :param request: :param pk: :return: """ blog = get_object_or_404(Article, pk=pk) blog.viewed() return render(request, 'blog/detail.html', {"blog": blog}) def search(request): """ 搜索 :param request: :return: """ key = request.GET['key'] page_number = get_page(request) blog_count = Article.objects.filter(title__icontains=key).count() page_info = PageInfo(page_number, blog_count) _blog_list = Article.objects.filter(title__icontains=key)[page_info.index_start: page_info.index_end] return render(request, 'blog/search.html', {"blog_list": _blog_list, "pages": page_info, "key": key}) def page_not_found_error(request, exception): return render(request, "404.html", status=404) def page_error(request): return render(request, "404.html", status=500)
Python
144
29.847221
111
/awssam/django-blog/src/blog/views.py
0.61819
0.612112
mrpal39/ev_code
refs/heads/master
from django.db import models from django.utils import timezone from django.contrib.auth.models import User from taggit.managers import TaggableManager from django.urls import reverse import logging from abc import ABCMeta, abstractmethod, abstractproperty from django.db import models from django.urls import reverse from django.conf import settings from uuslug import slugify from django.core.exceptions import ValidationError from django.utils.translation import gettext_lazy as _ from webdev.utils import get_current_site from webdev.utils import cache_decorator, cache from django.utils.timezone import now from mdeditor . fields import MDTextField # logger = logging.getLogger(__name__) class LinkShowType(models.TextChoices): I=('i','Homepage' ) L=('l','list page' ) P=('p','article page' ) A=('a','full station' ) S=('s','Friendly Link Page' ) class BaseModel(models.Model): id = models.AutoField(primary_key=True) created_time = models.DateTimeField( 'Creation Time' , default = now ) last_mod_time = models.DateTimeField( 'modification time' , default = now ) def save(self, *args, **kwargs): is_update_views = isinstance( self, Article) and 'update_fields' in kwargs and kwargs['update_fields'] == ['views'] if is_update_views: Article.objects.filter(pk=self.pk).update(views=self.views) else: if 'slug' in self.__dict__: slug = getattr( self, 'title') if 'title' in self.__dict__ else getattr( self, 'name') setattr(self, 'slug', slugify(slug)) super().save(*args, **kwargs) def get_full_url(self): site = get_current_site().domain url = "https://{site}{path}".format(site=site, path=self.get_absolute_url()) return url class Meta: abstract = True @abstractmethod def get_absolute_url(self): pass class Article(BaseModel): """文章""" STATUS_CHOICES = ( ( 'd' , 'draft' ), ( 'p' , 'publish' ), ) COMMENT_STATUS = ( ( 'o' , 'open' ), ( 'c' , 'close' ), ) TYPE = ( ( 'a' , 'article' ), ( 'p' , 'page' ), ) title = models.CharField('title', max_length=200, unique=True) body = MDTextField('body') pub_time = models.DateTimeField( 'Release time', blank=False, null=False, default=now) status = models.CharField( 'Article status', max_length=1, choices=STATUS_CHOICES, default='p') comment_status = models.CharField( ' Comment Status' , max_length=1, choices=COMMENT_STATUS, default='o') type = models . CharField ( '类型' , max_length = 1 , choices = TYPE , default = 'a' ) views = models . PositiveIntegerField ( 'Views' , default = 0 ) author = models . ForeignKey ( settings . AUTH_USER_MODEL , verbose_name = 'Author' , blank = False , null = False , on_delete = models . CASCADE ) article_order = models . IntegerField ( 'Sorting, the larger the number, the more advanced' , blank = False , null = False , default = 0 ) category = models . ForeignKey ( 'Category' , verbose_name = 'Classification' , on_delete = models . CASCADE , blank = False , null = False ) tags = models . ManyToManyField ( 'Tag' , verbose_name = 'tag collection' , blank = True ) def body_to_string ( self ): return self . body def __str__ ( self ): return self . title class Meta : ordering = [ '-article_order' , '-pub_time' ] verbose_name = "article" verbose_name_plural = verbose_name get_latest_by = 'id' def get_absolute_url ( self ): return reverse ( 'blog:detailbyid' , kwargs = { 'article_id' : self . id , 'year' : self . created_time . year , 'month' : self . created_time . month , 'day' : self . created_time . day }) @cache_decorator(60 * 60 * 10) def get_category_tree(self): tree = self.category.get_category_tree() names = list(map(lambda c: (c.name, c.get_absolute_url()), tree)) return names def save(self, *args, **kwargs): super().save(*args, **kwargs) def viewed(self): self.views += 1 self.save(update_fields=['views']) def comment_list(self): cache_key = 'article_comments_{id}'.format(id=self.id) value = cache.get(cache_key) if value: logger.info('get article comments:{id}'.format(id=self.id)) return value else: comments = self.comment_set.filter(is_enable=True) cache.set(cache_key, comments, 60 * 100) logger.info('set article comments:{id}'.format(id=self.id)) return comments def get_admin_url(self): info = (self._meta.app_label, self._meta.model_name) return reverse('admin:%s_%s_change' % info, args=(self.pk,)) @cache_decorator(expiration=60 * 100) def next_article(self): # 下一篇 return Article.objects.filter( id__gt=self.id, status='p').order_by('id').first() @cache_decorator(expiration=60 * 100) def prev_article(self): # 前一篇 return Article.objects.filter(id__lt=self.id, status='p').first() class Category( BaseModel ): """Article Classification""" name = models . CharField ( 'Category name' , max_length = 30 , unique = True ) parent_category = models . ForeignKey ( 'self' , verbose_name = "Parent Category" , blank = True , null = True , on_delete = models . CASCADE ) slug = models . SlugField ( default = 'no-slug' , max_length = 60 , blank = True ) class Meta : ordering = [ 'name' ] verbose_name = "Category" verbose_name_plural = verbose_name def get_absolute_url ( self ): return reverse ( 'blog:category_detail' , kwargs = { 'category_name' : self . slug }) def __str__ ( self ): return self . name @cache_decorator(60 * 60 * 10) def get_category_tree(self): """ 递归获得分类目录的父级 :return: """ categorys = [] def parse(category): categorys.append(category) if category.parent_category: parse(category.parent_category) parse(self) return categorys @cache_decorator(60 * 60 * 10) def get_sub_categorys(self): """ 获得当前分类目录所有子集 :return: """ categorys = [] all_categorys = Category.objects.all() def parse(category): if category not in categorys: categorys.append(category) childs = all_categorys.filter(parent_category=category) for child in childs: if category not in categorys: categorys.append(child) parse(child) parse(self) return categorys class Tag( BaseModel ): """Article Tags""" name = models . CharField ( 'Labelname ' , max_length = 30 , unique = True ) slug = models . SlugField ( default = 'no-slug' , max_length = 60 , blank = True ) def __str__ ( self ): return self . name def get_absolute_url ( self ): return reverse ( 'blog:tag_detail' , kwargs = { 'tag_name' : self . slug }) @ cache_decorator ( 60 * 60 * 10 ) def get_article_count ( self ): return Article . objects . filter ( tags__name = self . name ). distinct (). count () class Meta : ordering = [ 'name' ] verbose_name = "label" verbose_name_plural = verbose_name class Links( models.Model ): """Links""" name = models . CharField ( 'Link name' , max_length = 30 , unique = True ) link = models . URLField ( 'Link address' ) sequence = models . IntegerField ( '排序' , unique = True ) is_enable = models . BooleanField ( 'Whether to display' , default = True , blank = False , null = False ) show_type = models . CharField ( 'Display Type' , max_length = 1 , choices = LinkShowType . choices , default = LinkShowType . I ) created_time = models . DateTimeField ( 'Creation Time' , default = now ) last_mod_time = models . DateTimeField ( 'modification time' , default = now ) class Meta : ordering = [ 'sequence' ] verbose_name = 'Friendly link' verbose_name_plural = verbose_name def __str__ ( self ): return self . name class SideBar ( models . Model ): """The sidebar can display some html content""" name = models . CharField ( 'title' , max_length = 100 ) content = models . TextField ( "content" ) sequence = models . IntegerField ( '排序' , unique = True ) is_enable = models . BooleanField ( 'Whether to enable' , default = True ) created_time = models . DateTimeField ( 'Creation Time' , default = now ) last_mod_time = models . DateTimeField ( 'modification time' , default = now ) class Meta : ordering = [ 'sequence' ] verbose_name = 'Sidebar' verbose_name_plural = verbose_name def __str__ ( self ): return self . name class BlogSettings ( models . Model ): '''Site Settings''' sitename = models . CharField ( "Site Name" , max_length = 200 , null = False , blank = False , default = '' ) site_description = models . TextField ( "Site Description" , max_length = 1000 , null = False , blank = False , default = '' ) site_seo_description = models . TextField ( "SEO description of the site" , max_length = 1000 , null = False , blank = False , default = '' ) site_keywords = models . TextField ( "Website Keywords" , max_length = 1000 , null = False , blank = False , default = '' ) article_sub_length = models . IntegerField ( "Article summary length" , default = 300 ) sidebar_article_count = models . IntegerField ( "The number of sidebar articles" , default = 10 ) sidebar_comment_count = models . IntegerField ( "The number of sidebar comments" , default = 5 ) show_google_adsense = models . BooleanField ( 'Whether to display Google ads' , default = False ) google_adsense_codes = models . TextField ( 'Ad content' , max_length = 2000 , null = True , blank = True , default = '' ) open_site_comment = models . BooleanField ( 'Whether to open website comment function' , default = True ) beiancode = models . CharField ( 'Record number' , max_length = 2000 , null = True , blank = True , default = '' ) analyticscode = models . TextField ( "Website Statistics Code" , max_length = 1000 , null = False , blank = False , default = '' ) show_gongan_code = models . BooleanField ( 'Whether to display the public security record number' , default = False , null = False ) gongan_beiancode = models . TextField ( 'Public Security Record Number' , max_length = 2000 , null = True , blank = True , default = '' ) resource_path = models . CharField ( "Static file storage address" , max_length = 300 , null = False , default = '/var/www/resource/' ) class Meta: verbose_name = 'Websiteconfiguration' verbose_name_plural = verbose_name def __str__(self): return self.sitename def clean(self): if BlogSettings.objects.exclude(id=self.id).count(): raise ValidationError(_('There can only be one configuration')) def save(self, *args, **kwargs): super().save(*args, **kwargs) from webdev.utils import cache cache.clear() class PublishedManager(models.Manager): def get_queryset(self): return super(PublishedManager, self).get_queryset()\ .filter(status='published') class Post(models.Model): tags = TaggableManager() objects = models.Manager() # The default manager. published = PublishedManager() # Our custom manager. STATUS_CHOICES = ( ('draft', 'Draft'), ('published', 'Published'), ) title = models.CharField(max_length=250) slug = models.SlugField(max_length=250, unique_for_date='publish') author = models.ForeignKey(User, on_delete=models.CASCADE, related_name='blog_posts') body = models.TextField() publish = models.DateTimeField(default=timezone.now) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) status = models.CharField(max_length=10, choices=STATUS_CHOICES, default='draft') class Meta: ordering = ('-publish',) def __str__(self): return self.title def get_absolute_url(self): return reverse('post-detail', kwargs={'pk': self.pk})
Python
407
32.624077
112
/myapi/fullfeblog/blog/models.py
0.559664
0.551626
mrpal39/ev_code
refs/heads/master
import os from django.urls import reverse_lazy # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRET_KEY = 'vsfygxju9)=k8qxmc9!__ng%dooyn-w7il_z+w)grvkz4ks!)u' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ "django.contrib.humanize.apps.HumanizeConfig", "django.contrib.auth.apps.AuthConfig", "django.contrib.contenttypes.apps.ContentTypesConfig", "django.contrib.sessions.apps.SessionsConfig", "django.contrib.sites.apps.SitesConfig", "django.contrib.messages.apps.MessagesConfig", "django.contrib.staticfiles.apps.StaticFilesConfig", "django.contrib.admin.apps.AdminConfig", "django.contrib.admindocs.apps.AdminDocsConfig", "sekizai", "sorl.thumbnail", "django_nyt.apps.DjangoNytConfig", "wiki.apps.WikiConfig", "wiki.plugins.macros.apps.MacrosConfig", "wiki.plugins.help.apps.HelpConfig", "wiki.plugins.links.apps.LinksConfig", "wiki.plugins.images.apps.ImagesConfig", "wiki.plugins.attachments.apps.AttachmentsConfig", "wiki.plugins.notifications.apps.NotificationsConfig", "wiki.plugins.editsection.apps.EditSectionConfig", "wiki.plugins.globalhistory.apps.GlobalHistoryConfig", "mptt", ] MIDDLEWARE = [ "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "django.middleware.security.SecurityMiddleware", ] SITE_ID=1 ROOT_URLCONF = 'wikidj.urls' TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [ os.path.join(BASE_DIR, "templates"), ], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.contrib.auth.context_processors.auth", "django.template.context_processors.debug", "django.template.context_processors.i18n", "django.template.context_processors.request", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages", "sekizai.context_processors.sekizai", ], "debug": DEBUG, }, }, ] WSGI_APPLICATION = 'wikidj.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = "/static/" STATIC_ROOT = os.path.join(BASE_DIR, "static") MEDIA_ROOT = os.path.join(BASE_DIR, "media") MEDIA_URL = "/media/" WIKI_ANONYMOUS_WRITE = True WIKI_ANONYMOUS_CREATE = False LOGIN_REDIRECT_URL = reverse_lazy('wiki:get', kwargs={'path': ''}) # urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
Python
140
27.185715
91
/awssam/wikidj/wikidj/settings.py
0.68145
0.676635
mrpal39/ev_code
refs/heads/master
from django.db import models from blog.models import Post # Creating a comment systems class Comment(models.Model): post = models.ForeignKey(Post, on_delete=models.CASCADE, related_name='comments') name=models.CharField(max_length=200) email=models.EmailField() body=models.TextField() created=models.DateTimeField(auto_now_add=True) updated=models.DateTimeField(auto_now_add=True) active=models.BooleanField(default=True) class Meta: ordering=('created',) def __str__(self): return f'comment by {self.name}on{self.post}'
Python
19
31.31579
53
/awssam/fullfeblog/core/models.py
0.661316
0.656501
mrpal39/ev_code
refs/heads/master
# -*- coding: utf-8 -*- from __future__ import unicode_literals from mongoengine import * from django.db import models # Create your models here. class ItemInfo(Document): # 帖子名称 title = StringField() # 租金 money = StringField() # 租赁方式 method = StringField() # 所在区域 area = StringField() # 所在小区 community = StringField() # 帖子详情url targeturl = StringField() # 帖子发布时间 pub_time = StringField() # 所在城市 city = StringField() phone = StringField() img1= StringField() img2 = StringField() #指定是数据表格 meta={'collection':'zufang_detail'}
Python
28
20.785715
39
/tc_zufang/django_web/datashow/models.py
0.619672
0.614754
mrpal39/ev_code
refs/heads/master
from django.urls import path from . import views urlpatterns = [ path('', views.api, name='api'), path('t/', views.simple_upload, name='test'), ]
Python
10
15.2
49
/myapi/devfile/gitapi/urls.py
0.611111
0.611111
mrpal39/ev_code
refs/heads/master
# -*- coding: utf-8 -*- #定义需要抓取存进数据库的字段 from scrapy.item import Item,Field class TcZufangItem(Item): #帖子名称 title=Field() #租金 money=Field() #租赁方式 method=Field() #所在区域 area=Field() #所在小区 community=Field() #帖子详情url targeturl=Field() #帖子发布时间 pub_time=Field() #所在城市 city=Field() # 联系电话 phone= Field() # 图片1 img1 = Field() # 图片2 img2 = Field()
Python
26
15.384615
34
/tc_zufang/tc_zufang-slave/tc_zufang/items.py
0.550117
0.538462
mrpal39/ev_code
refs/heads/master
from scrapy.loader.processors import MapCompose, Join from scrapy.loader import ItemLoader from properties.items import PropertiesItem import datetime from urllib.parse import urlparse import socket import scrapy class BasicSpider(scrapy.Spider): name = "basictest" allowed_domains = ["web"] start_urls=( 'https://developers.facebook.com/blog/post/2021/01/26/introducing-instagram-content-publishing-api/?utm_source=email&utm_medium=fb4d-newsletter-february21&utm_campaign=organic&utm_offering=business-tools&utm_product=instagram&utm_content=body-button-instagram-graph-API&utm_location=2', ) def parse (self,response): """ @url https://developers.facebook.com/blog/post/2021/01/26/introducing-instagram-content-publishing-api/?utm_source=email&utm_medium=fb4d-newsletter-february21&utm_campaign=organic&utm_offering=business-tools&utm_product=instagram&utm_content=body-button-instagram-graph-API&utm_location=2 @return item 1 @scrapes title price @scrapes url project""" l = ItemLoader(item=PropertiesItem(), response=response) # Load fields using XPath expressions l.add_xpath('title', '/html/body/div[1]/div[5]/div[2]/div/div/div/div[2]/div[2]/div[2]/div[1]/div/div/div[2]/div/div/p[1]/text()', MapCompose(unicode.strip, unicode.title)) # l.add_xpath('price', './/*[@itemprop="price"][1]/text()', # MapCompose(lambda i: i.replace(',', ''), # float), # re='[,.0-9]+') # l.add_xpath('description', '//*[@itemprop="description"]' # '[1]/text()', # MapCompose(unicode.strip), Join()) # Housekeeping fields l.add_value('url', response.url) l.add_value('project', self.settings.get('BOT_NAME')) l.add_value('spider', self.name) l.add_value('server', socket.gethostname()) l.add_value('date', datetime.datetime.now()) return l.load_item()
Python
42
44.023811
299
/scrap/properties/properties/spiders/basictest.py
0.690476
0.67037
mrpal39/ev_code
refs/heads/master
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html import logging # import MySQLdb # import MySQLdb.cursors import copy import pymysql from twisted.enterprise import adbapi # class ArticlesPipeline(object): # def process_item(self, item, spider): # return item class MysqlTwistedPipeline(object): def __init__(self, dbpool): self.dbpool = dbpool @classmethod def from_settings(cls, settings): # 函数名固定,会被scrapy调用,直接可用settings的值 """ 数据库建立连接 :param settings: 配置参数 :return: 实例化参数 """ adbparams = dict( host=settings['MYSQL_HOST'], db=settings['MYSQL_DBNAME'], user=settings['MYSQL_USER'], password=settings['MYSQL_PASSWORD'], cursorclass=pymysql.cursors.DictCursor # 指定cursor类型 ) # 连接数据池ConnectionPool,使用pymysql或者Mysqldb连接 dbpool = adbapi.ConnectionPool('pymysql', **adbparams) # 返回实例化参数 return cls(dbpool) def process_item(self, item, spider): """ 使用twisted将MySQL插入变成异步执行。通过连接池执行具体的sql操作,返回一个对象 """ # 防止入库速度过慢导致数据重复 item = copy.deepcopy(item) query = self.dbpool.runInteraction(self.do_insert, item) # 指定操作方法和操作数据 # 添加异常处理 query.addCallback(self.handle_error) # 处理异常 def do_insert(self, cursor, item): # 对数据库进行插入操作,并不需要commit,twisted会自动commit insert_sql = """ insert into pm_article(title, create_date, url, content, view, tag, url_id) VALUES (%s, %s, %s, %s, %s, %s, %s) """ cursor.execute(insert_sql, (item['title'], item['create_date'], item['url'], item['content'], item['view'], item['tag'], item['url_id'])) def handle_error(self, failure): if failure: # 打印错误信息 print(failure) class ElasticsearchPipeline(object): # 将数据写入到es中 def process_item(self, item, spider): # 将item转换为es的数据 item.save_to_es() return item
Python
75
27.933332
117
/eswork/articles/articles/pipelines.py
0.605069
0.604608
mrpal39/ev_code
refs/heads/master
# import requests # url = "https://proxy-orbit1.p.rapidapi.com/v1/" # headers = { # 'x-rapidapi-key': "b188eee73cmsha4c027c9ee4e2b7p1755ebjsn1e0e0b615bcf", # 'x-rapidapi-host': "proxy-orbit1.p.rapidapi.com" # } # # response = requests.request("GET", url, headers=headers) # print(response.text) import requests url= "https://libraries.io/api/" headers={'?api_key':'306cf1684a42e4be5ec0a1c60362c2ef', # 'platform':'NPM/base62/dependent_repositories' } response = requests.request("GET", url, headers=headers) print(response.text) Example: https://libraries.io/api/NPM/base62/dependent_repositories?api_key=306cf1684a42e4be5ec0a1c60362c2ef import requests url = "https://scrapingant.p.rapidapi.com/post" payload = "{\"cookies\": \"cookie_name_1=cookie_value_1;cookie_name_2=cookie_value_2\"\"return_text\": false,\"url\": \"https://example.com\"}" headers = { 'content-type': "application/json", 'x-rapidapi-key': "b188eee73cmsha4c027c9ee4e2b7p1755ebjsn1e0e0b615bcf", 'x-rapidapi-host': "scrapingant.p.rapidapi.com" } response = requests.request("POST", url, data=payload, headers=headers) print(response.text)
Python
47
23.659575
143
/myapi/devfile/request/api.py
0.714901
0.633075
mrpal39/ev_code
refs/heads/master
from django.urls import path from . import views from django.conf.urls import include, url from django.views import generic from material.frontend import urls as frontend_urls urlpatterns = [ path('', views.home, name='home'), path('$/', generic.RedirectView.as_view(url='/workflow/', permanent=False)), path('/', include(frontend_urls)), ] # Viewflow PRO Feature Set # Celery integration # django-guardian integration # Flow graph visualization # Flow BPMN export # Material Frontend # Process dashboard view # Flow migration support # Subprocess support # REST API support
Python
25
24.440001
80
/awssam/devfile/core/urls.py
0.690738
0.690738
mrpal39/ev_code
refs/heads/master
# You need to create an Item name 'played' for running this script # item['ack_signal'] = int(response.meta['ack_signal']) - this line is used for sending ack signal to RabbitMQ def parse(self, response): item = played() songs = response.xpath('//li[@class="player-in-playlist-holder"]') indexr = response.url.find('date=') indexr = indexr + 5 date = response.url[indexr:indexr + 10] for song in songs: item['timeplayed'] = song.xpath('.//span[@class="time"]/text()').extract()[0] item['artist'] = song.xpath('.//div[@class="jp-title"]/strong//span//text()').extract()[0] item['song'] = song.xpath('.//div[@class="jp-title"]/strong//em//text()').extract()[0] item['dateplayed'] = date item['ack_signal'] = int(response.meta['ack_signal']) yield item
Python
16
50.4375
110
/Web-UI/examples/scraper.py
0.619221
0.611922
mrpal39/ev_code
refs/heads/master
# from __future__ import unicode_literals # from django.utils.encoding import python_2_unicode_compatible # from django.db import models # from django.db.models.signals import pre_delete # from django.dispatch import receiver # from scrapy_djangoitem import DjangoItem # from dynamic_scraper.models import Scraper, SchedulerRuntime # @python_2_unicode_compatible # class NewsWebsite(models.Model): # name = models.CharField(max_length=200) # url = models.URLField() # scraper = models.ForeignKey(Scraper, blank=True, null=True, on_delete=models.SET_NULL) # scraper_runtime = models.ForeignKey(SchedulerRuntime, blank=True, null=True, on_delete=models.SET_NULL) # def __str__(self): # return self.name # @python_2_unicode_compatible # class Article(models.Model): # title = models.CharField(max_length=200) # news_website = models.ForeignKey(NewsWebsite) # description = models.TextField(blank=True) # url = models.URLField(blank=True) # thumbnail = models.CharField(max_length=200, blank=True) # checker_runtime = models.ForeignKey(SchedulerRuntime, blank=True, null=True, on_delete=models.SET_NULL) # def __str__(self): # return self.title # class ArticleItem(DjangoItem): # django_model = Article # @receiver(pre_delete) # def pre_delete_handler(sender, instance, using, **kwargs): # if isinstance(instance, NewsWebsite): # if instance.scraper_runtime: # instance.scraper_runtime.delete() # if isinstance(instance, Article): # if instance.checker_runtime: # instance.checker_runtime.delete() # pre_delete.connect(pre_delete_handler)
Python
48
34.166668
109
/awssam/myscrapyproject/scrapyapi/srp/models.py
0.696503
0.689389
mrpal39/ev_code
refs/heads/master
from django.shortcuts import render from .forms import SearchForm import requests def base(request): # import requests # # url = "https://gplaystore.p.rapidapi.com/newFreeApps" # url="https://libraries.io/api/" # querystring = {"platforms":"NPM/base62"} # headers = {'x-rapidapi-key': "?api_key=306cf1684a42e4be5ec0a1c60362c2ef'" } # response = requests.request("GET", url, headers=headers, params=querystring) # print(response.text) return render(request, 'base.html' ) def home(request): # Platforms=(' https://libraries.io/api/platforms?api_key=306cf1684a42e4be5ec0a1c60362c2ef') # Project=('https://libraries.io/api/NPM/base62?api_key=306cf1684a42e4be5ec0a1c60362c2ef') # url=requests() # url='https://libraries.io/api/:platform/:name/dependent_repositories?api_key=306cf1684a42e4be5ec0a1c60362c2ef' # url=requests.get('https://libraries.io/api/github/librariesio/repositories?api_key=306cf1684a42e4be5ec0a1c60362c2ef') url=requests.get('https://libraries.io/api/platforms?api_key=306cf1684a42e4be5ec0a1c60362c2ef') form=url.json() return render(request, 'index.html',{ 'form':form } ) def Search(request): # form= SearchForm() # query=None # results=[] # # if 'query' in requests.GET: # # form=SearchForm(request.GET) # # if form.is_valid(): # # query=form.cleaned_data['query'] # # results=Post.published.annotate( # # search =SearchVector('title','body'), # # ).filter(search=query) r=requests.get('https://libraries.io/api/search?q=&api_key=306cf1684a42e4be5ec0a1c60362c2ef') dr=r.json() return render(request, 'Search.html',{ 'search':dr } ) # def post_search(request): # form= SearchForm() # payload={'key1':'search?q=','key2':['form','&api_key=306cf1684a42e4be5ec0a1c60362c2ef']} # url=requests.get=('https://libraries.io/api/get',params=payload) # # results=[] # # if 'query' in request.GET: # # form=SearchForm( # # if form.is_valid(): # # query=form.cleaned_data['query'] # # results=Post.published.annotate( # # search =SearchVector('title','body'), # # ).filter(search=query) # return render(request,'search.html',{ # 'url':url, # # 'query':query, # # 'results':results # })
Python
79
29.772152
123
/myapi/devfile/core/views.py
0.621677
0.557055
mrpal39/ev_code
refs/heads/master
from django.http import response from django.shortcuts import render from .forms import DocumentForm import requests from django.shortcuts import render from django.conf import settings from django.core.files.storage import FileSystemStorage def simple_upload(request): if request.method == 'POST': myfile = DocumentForm(request.POST, request.FILES) myfile = request.FILES['file'] fs = FileSystemStorage() filename = fs.save(myfile.name, myfile) uploaded_file_url = fs.url(filename) return render(request, 'imple_upload.html', { 'uploaded_file_url': uploaded_file_url }) return render(request, 'simple_upload.html') def model_form_upload(request): if request.method == 'POST': form = DocumentForm(request.POST, request.FILES) if form.is_valid(): form.save() return redirect('home') else: form = DocumentForm() return render(request, 'core/model_form_upload.html', { 'form': form }) def api(request): api_key ='306cf1684a42e4be5ec0a1c60362c2ef' name='npm' api_url="https://libraries.io/api/search?q={}&api_key={}".format(name ,api_key) response=requests.get(api_url) response_dict = response.json() return render(request, 'api.html',{'api': response_dict, } ) # return render(request,'search.html',{ # 'url':url, # # 'query':query, # # 'results':results # })
Python
67
21.328358
82
/myapi/devfile/gitapi/views.py
0.626915
0.614257
mrpal39/ev_code
refs/heads/master
from django.shortcuts import render from django.contrib.auth.decorators import login_required from django.contrib.auth import update_session_auth_hash from .forms import CreateProject, DeleteProject, ItemName, FieldName, CreatePipeline, LinkGenerator, Scraper, Settings, ShareDB, ChangePass, ShareProject from django.http import HttpResponseRedirect from django.http import HttpResponse, HttpResponseNotFound, JsonResponse from .models import Project, Item, Pipeline, Field, LinkgenDeploy, ScrapersDeploy, Dataset from django.forms.util import ErrorList from itertools import groupby from django.core.urlresolvers import reverse import os import shutil from string import Template from .scrapy_packages import settings from pymongo import MongoClient import glob import subprocess import requests import json import datetime import dateutil.parser import socket from django.contrib.auth.models import User from bson.json_util import dumps import threading import crypt try: # Python 3 from urllib.parse import urlparse except ImportError: # Python 2 from urlparse import urlparse try: from urllib.parse import quote except: from urllib import quote def generate_default_settings(): settings = """# Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'unknown' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'""" return settings @login_required def main_page(request): projects = Project.objects.filter(user=request.user) datasets = Dataset.objects.filter(user=request.user) userprojects = [] databases = [] for project in projects: singleproject = {} singleproject['name'] = project.project_name userprojects.append(singleproject) for dataset in datasets: databases.append(dataset.database) return render(request, template_name="mainpage.html", context={'username': request.user.username, 'projects': userprojects, 'databases': databases}) @login_required def create_new(request): if request.method == 'GET': form = CreateProject() return render(request, 'createproject.html', {'username': request.user.username, 'form': form}) if request.method == 'POST': if 'cancel' in request.POST: return HttpResponseRedirect(reverse("mainpage")) elif 'submit' in request.POST: form = CreateProject(request.POST) if form.is_valid(): allprojects =[] userprojects = Project.objects.filter(user=request.user) for project in userprojects: allprojects.append(project.project_name) if form.cleaned_data['projectname'] in allprojects: errors = form._errors.setdefault("projectname", ErrorList()) errors.append('Project named %s already exists. Please choose another name' % form.cleaned_data['projectname']) return render(request, 'createproject.html', {'username': request.user.username, 'form': form}) else: project = Project() project.project_name = form.cleaned_data['projectname'] project.user = request.user project.settings_scraper = generate_default_settings() project.settings_link_generator = generate_default_settings() project.scraper_function = '''def parse(self, response):\n pass''' project.link_generator = '''start_urls = [""]\ndef parse(self, response):\n pass''' project.save() # project data will be saved in username_projectname database, so we need to # give the current user ownership of that database mongodbname = request.user.username + "_" + project.project_name mongouri = "mongodb://" + settings.MONGODB_USER + ":" + quote(settings.MONGODB_PASSWORD) + "@" + settings.MONGODB_URI + "/admin" connection = MongoClient(mongouri) connection.admin.command('grantRolesToUser', request.user.username, roles=[{'role': 'dbOwner', 'db': mongodbname}]) connection.close() dataset = Dataset() dataset.user = request.user dataset.database = mongodbname dataset.save() return HttpResponseRedirect(reverse("manageproject", args=(project.project_name,))) else: return render(request, 'createproject.html', {'username': request.user.username, 'form': form}) else: return HttpResponseNotFound('Nothing is here.') @login_required def manage_project(request, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') projectdata = {} projectdata['settings_scraper'] = project.settings_scraper projectdata['settings_link_generator'] = project.settings_link_generator projectdata['items'] = [] projectdata['pipelines'] = [] if len(project.link_generator) == 0: projectdata['link_generator'] = False else: projectdata['link_generator'] = True if len(project.scraper_function) == 0: projectdata['scraper_function'] = False else: projectdata['scraper_function'] = True items = Item.objects.filter(project=project) pipelines = Pipeline.objects.filter(project=project) for item in items: projectdata['items'].append(item) for pipeline in pipelines: projectdata['pipelines'].append(pipeline) return render(request, 'manageproject.html', {'username': request.user.username, 'project': project.project_name, 'projectdata': projectdata}) @login_required def delete_project(request, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') if request.method == 'GET': form = DeleteProject() return render(request, 'deleteproject.html', {'username': request.user.username, 'form': form, 'projectname': projectname}) if request.method == 'POST': if 'cancel' in request.POST: return HttpResponseRedirect(reverse("mainpage")) elif 'submit' in request.POST: project.delete() return HttpResponseRedirect(reverse("mainpage")) else: return HttpResponseNotFound('Nothing is here.') @login_required def create_item(request, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') if request.method == 'GET': form1 = ItemName() form2 = FieldName() return render(request, 'additem.html', {'username': request.user.username, 'form1': form1, 'form2': form2, 'project': project.project_name}) if request.method == 'POST': if 'submit' in request.POST: form1 = ItemName(request.POST) form2 = FieldName(request.POST, extra=request.POST.get('extra_field_count')) if form1.is_valid() and form2.is_valid(): item = Item.objects.filter(project=project, item_name=form1.cleaned_data['itemname']) if len(item): errors = form1._errors.setdefault("itemname", ErrorList()) errors.append( 'Item named %s already exists. Please choose another name' % form1.cleaned_data['itemname']) return render(request, 'additem.html', {'username': request.user.username, 'form1': form1, 'form2': form2, 'project': project.project_name}) allfields =[] valuetofield = {} for field in form2.fields: if form2.cleaned_data[field]: if field != 'extra_field_count': valuetofield[form2.cleaned_data[field]] = field allfields.append(form2.cleaned_data[field]) duplicates = [list(j) for i, j in groupby(allfields)] for duplicate in duplicates: if len(duplicate) > 1: errors = form2._errors.setdefault(valuetofield[duplicate[0]], ErrorList()) errors.append('Duplicate fields are not allowed.') return render(request, 'additem.html', {'username': request.user.username, 'form1': form1, 'form2': form2, 'project': project.project_name}) item = Item() item.item_name = form1.cleaned_data['itemname'] item.project = project item.save() for field in allfields: onefield = Field() onefield.item = item onefield.field_name = field onefield.save() return HttpResponseRedirect(reverse("listitems", args=(project.project_name,))) else: return render(request, 'additem.html', {'username': request.user.username, 'form1': form1, 'form2': form2, 'project': project.project_name}) elif 'cancel' in request.POST: return HttpResponseRedirect(reverse("listitems", args=(project.project_name,))) else: form1 = ItemName(request.POST) form2 = FieldName(request.POST, extra=request.POST.get('extra_field_count')) return render(request, 'additem.html', {'username': request.user.username, 'form1': form1, 'form2': form2, 'project': project.project_name}) @login_required def itemslist(request, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') itemtracker = 0 items = Item.objects.filter(project=project) itemdata = [] for item in items: itemdata.append([]) itemdata[itemtracker].append(item.item_name) fields = Field.objects.filter(item=item) if fields: itemdata[itemtracker].append([]) for field in fields: itemdata[itemtracker][1].append(field.field_name) itemtracker += 1 return render(request, 'itemslist.html', {'username': request.user.username, 'project': project.project_name, 'items': itemdata}) @login_required def deleteitem(request, projectname, itemname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') try: item = Item.objects.get(project=project, item_name=itemname) except Item.DoesNotExist: return HttpResponseNotFound('Nothing is here.') if request.method == 'GET': # using the form that was used for deleting the project form = DeleteProject() return render(request, 'deleteitem.html', {'username': request.user.username, 'form': form, 'projectname': projectname, 'itemname': itemname}) elif request.method == 'POST': if 'cancel' in request.POST: return HttpResponseRedirect(reverse("listitems", args=(projectname,))) elif 'submit' in request.POST: item.delete() return HttpResponseRedirect(reverse("listitems", args=(projectname,))) @login_required def edititem(request, projectname, itemname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') try: item = Item.objects.get(project=project, item_name=itemname) except Item.DoesNotExist: return HttpResponseNotFound('Nothing is here.') if request.method == 'GET': fields = Field.objects.filter(item=item) fieldcounter = 0 fieldlist = [] fielddata = {} for field in fields: fieldlist.append(field.field_name) fieldcounter += 1 if fieldcounter == 1: fielddata['fieldname'] = fieldlist[0] fielddata['extra_field_count'] = 0 elif fieldcounter > 1: fielddata['fieldname'] = fieldlist[0] fielddata['extra_field_count'] = fieldcounter - 1 for i in range(1,fieldcounter): fielddata['field_%d' % (i+1)] = fieldlist[i] form1 = ItemName({'itemname': itemname}) form2 = FieldName(initial=fielddata, extra=fielddata['extra_field_count']) return render(request, 'edititem.html', {'username': request.user.username, 'form1': form1, 'form2': form2, 'project': project.project_name}) elif request.method == 'POST': if 'submit' in request.POST: form1 = ItemName(request.POST) form2 = FieldName(request.POST, extra=request.POST.get('extra_field_count')) if form1.is_valid() and form2.is_valid(): newitemname = Item.objects.filter(project=project, item_name=form1.cleaned_data['itemname']) if len(newitemname): for oneitem in newitemname: if oneitem.item_name != item.item_name: errors = form1._errors.setdefault('itemname', ErrorList()) errors.append('Item named %s already exists. Please choose another name' % form1.cleaned_data['itemname']) return render(request, 'edititem.html', {'username': request.user.username, 'form1': form1, 'form2': form2, 'project': project.project_name}) allfields = [] valuetofield = {} for field in form2.fields: if form2.cleaned_data[field]: if field != 'extra_field_count': valuetofield[form2.cleaned_data[field]] = field allfields.append(form2.cleaned_data[field]) duplicates = [list(j) for i, j in groupby(allfields)] for duplicate in duplicates: if len(duplicate) > 1: errors = form2._errors.setdefault(valuetofield[duplicate[0]], ErrorList()) errors.append('Duplicate fields are not allowed.') return render(request, 'edititem.html', {'username': request.user.username, 'form1': form1, 'form2': form2, 'project': project.project_name}) deletefield = Field.objects.filter(item=item) for field in deletefield: field.delete() item.item_name = form1.cleaned_data['itemname'] item.save() for field in allfields: onefield = Field() onefield.item = item onefield.field_name = field onefield.save() return HttpResponseRedirect(reverse("listitems", args=(project.project_name,))) elif 'cancel' in request.POST: return HttpResponseRedirect(reverse("listitems", args=(project.project_name,))) else: form1 = ItemName(request.POST) form2 = FieldName(request.POST, extra=request.POST.get('extra_field_count')) return render(request, 'edititem.html', {'username': request.user.username, 'form1': form1, 'form2': form2, 'project': project.project_name}) @login_required def addpipeline(request, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') defined_items = {} items = Item.objects.filter(project=project) for item in items: defined_items[item.item_name] = [] fields = Field.objects.filter(item=item) for field in fields: defined_items[item.item_name].append(field.field_name) if request.method == 'GET': initial_code = '''def process_item(self, item, spider):\n return item ''' form = CreatePipeline(initial={'pipelinefunction': initial_code}) return render(request, "addpipeline.html", {'username': request.user.username, 'form': form, 'project': project.project_name, 'items': defined_items}) elif request.method == 'POST': if 'cancel' in request.POST: return HttpResponseRedirect(reverse("listpipelines", args=(project.project_name,))) if 'submit' in request.POST: form = CreatePipeline(request.POST) if form.is_valid(): names = [] orders =[] pipelines = Pipeline.objects.filter(project=project) for pipeline in pipelines: names.append(pipeline.pipeline_name) orders.append(pipeline.pipeline_order) if form.cleaned_data['pipelinename'] in names: errors = form._errors.setdefault('pipelinename', ErrorList()) errors.append( 'Pipeline named %s already exists. Please choose another name' % form.cleaned_data['pipelinename']) return render(request, "addpipeline.html", {'username': request.user.username, 'form': form, 'project': project.project_name, 'items': defined_items}) if int(form.cleaned_data['pipelineorder']) in orders: errors = form._errors.setdefault('pipelineorder', ErrorList()) errors.append( 'Pipeline order %s already exists for another pipeline function. Enter a different order' % form.cleaned_data['pipelineorder']) return render(request, "addpipeline.html", {'username': request.user.username, 'form': form, 'project': project.project_name, 'items': defined_items}) pipeline = Pipeline() pipeline.pipeline_name = form.cleaned_data['pipelinename'] pipeline.pipeline_order = form.cleaned_data['pipelineorder'] pipeline.pipeline_function = form.cleaned_data['pipelinefunction'] pipeline.project = project pipeline.save() return HttpResponseRedirect(reverse("listpipelines", args=(project.project_name,))) else: return render(request, "addpipeline.html", {'username': request.user.username, 'form': form, 'project': project.project_name, 'items': defined_items}) @login_required def pipelinelist(request, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') itemtracker = 0 pipelines = Pipeline.objects.filter(project=project) pipelinedata = [] for pipeline in pipelines: pipelinedata.append([]) pipelinedata[itemtracker].append(pipeline.pipeline_name) pipelinedata[itemtracker].append(pipeline.pipeline_order) itemtracker += 1 return render(request, 'pipelinelist.html', {'username': request.user.username, 'project': project.project_name, 'items': pipelinedata}) @login_required def editpipeline(request, projectname, pipelinename): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') try: pipeline = Pipeline.objects.get(project=project, pipeline_name=pipelinename) except Pipeline.DoesNotExist: return HttpResponseNotFound('Nothing is here.') defined_items = {} items = Item.objects.filter(project=project) for item in items: defined_items[item.item_name] = [] fields = Field.objects.filter(item=item) for field in fields: defined_items[item.item_name].append(field.field_name) if request.method == 'GET': form = CreatePipeline(initial={'pipelinename': pipeline.pipeline_name, 'pipelineorder': pipeline.pipeline_order, 'pipelinefunction': pipeline.pipeline_function}) return render(request, "editpipeline.html", {'username': request.user.username, 'form': form, 'project': project.project_name, 'items': defined_items}) elif request.method == 'POST': if 'cancel' in request.POST: return HttpResponseRedirect(reverse("listpipelines", args=(project.project_name,))) if 'submit' in request.POST: form = CreatePipeline(request.POST) if form.is_valid(): newpipelinename = Pipeline.objects.filter(project=project, pipeline_name=form.cleaned_data['pipelinename']) if len(newpipelinename): for oneitem in newpipelinename: if oneitem.pipeline_name != pipeline.pipeline_name: errors = form._errors.setdefault('pipelinename', ErrorList()) errors.append( 'Pipeline named %s already exists. Please choose another name' % form.cleaned_data[ 'pipelinename']) return render(request, 'editpipeline.html', {'username': request.user.username, 'form': form, 'project': project.project_name, 'items': defined_items}) newpipelineorder = Pipeline.objects.filter(project=project, pipeline_order=form.cleaned_data['pipelineorder']) if len(newpipelineorder): for oneitem in newpipelineorder: if oneitem.pipeline_order != pipeline.pipeline_order: errors = form._errors.setdefault('pipelineorder', ErrorList()) errors.append( 'Pipeline order %s already exists for another pipeline function. Enter a different order' % form.cleaned_data['pipelineorder']) return render(request, 'editpipeline.html', {'username': request.user.username, 'form': form, 'project': project.project_name, 'items': defined_items}) pipeline.pipeline_name = form.cleaned_data['pipelinename'] pipeline.pipeline_order = form.cleaned_data['pipelineorder'] pipeline.pipeline_function = form.cleaned_data['pipelinefunction'] pipeline.save() return HttpResponseRedirect(reverse("listpipelines", args=(project.project_name,))) else: return render(request, "editpipeline.html", {'username': request.user.username, 'form': form, 'project': project.project_name, 'items': defined_items}) @login_required def deletepipeline(request, projectname, pipelinename): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') try: pipeline = Pipeline.objects.get(project=project, pipeline_name=pipelinename) except Pipeline.DoesNotExist: return HttpResponseNotFound('Nothing is here.') if request.method == 'GET': form = DeleteProject() return render(request, 'deletepipeline.html', {'username': request.user.username, 'form': form, 'projectname': project.project_name, 'pipelinename': pipeline.pipeline_name}) elif request.method == 'POST': if 'cancel' in request.POST: return HttpResponseRedirect(reverse("listpipelines", args=(project.project_name,))) elif 'submit' in request.POST: pipeline.delete() return HttpResponseRedirect(reverse("listpipelines", args=(project.project_name,))) @login_required def linkgenerator(request, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') spiderclassnamelabel = "class " + request.user.username.title() + project.project_name.title() + "Spider:" if request.method == 'GET': form = LinkGenerator(initial={'function': project.link_generator}) form.fields['function'].label = spiderclassnamelabel return render(request, 'addlinkgenerator.html', {'username': request.user.username, 'form': form, 'project': project.project_name}) elif request.method == 'POST': if 'cancel' in request.POST: return HttpResponseRedirect(reverse("manageproject", args=(project.project_name,))) if 'submit' in request.POST: form = LinkGenerator(request.POST) form.fields['function'].label = spiderclassnamelabel if form.is_valid(): project.link_generator = form.cleaned_data['function'] project.save() return HttpResponseRedirect(reverse("manageproject", args=(project.project_name,))) else: return render(request, 'addlinkgenerator.html', {'username': request.user.username, 'form': form, 'project': project.project_name}) @login_required def scraper(request, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') spiderclassnamelabel = "class " + request.user.username.title() + project.project_name.title() + "Spider:" if request.method == 'GET': form = Scraper(initial={'function': project.scraper_function}) form.fields['function'].label = spiderclassnamelabel return render(request, 'addscraper.html', {'username': request.user.username, 'form': form, 'project': project.project_name}) elif request.method == 'POST': if 'cancel' in request.POST: return HttpResponseRedirect(reverse("manageproject", args=(projectname,))) if 'submit' in request.POST: form = Scraper(request.POST) form.fields['function'].label = spiderclassnamelabel if form.is_valid(): project.scraper_function = form.cleaned_data['function'] project.save() return HttpResponseRedirect(reverse("manageproject", args=(projectname,))) else: return render(request, 'addscraper.html', {'username': request.user.username, 'form': form, 'project': project.project_name}) def create_folder_tree(tree): d = os.path.abspath(tree) if not os.path.exists(d): os.makedirs(d) else: shutil.rmtree(d) os.makedirs(d) @login_required def change_password(request): if request.method == 'POST': form = ChangePass(request.user, request.POST) if form.is_valid(): user = form.save() update_session_auth_hash(request, user) mongodb_user_password_change(request.user.username, form.cleaned_data['new_password1']) if settings.LINUX_USER_CREATION_ENABLED: try: linux_user_pass_change(request.user.username, form.cleaned_data['new_password1']) except: pass return HttpResponseRedirect(reverse("mainpage")) else: return render(request, 'changepassword.html', { 'username': request.user.username, 'form': form }) else: form = ChangePass(request.user) return render(request, 'changepassword.html', { 'username': request.user.username, 'form': form }) @login_required def deploy(request, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') projectitems = Item.objects.filter(project=project) projectlinkgenfunction = project.link_generator projectscraperfunction = project.scraper_function if not projectitems or not projectlinkgenfunction or not projectscraperfunction: return HttpResponseNotFound('Not all required project parts are present for deployment. Please review your project and deploy again.') basepath = os.path.dirname(os.path.abspath(__file__)) #we are giving a project and its folders a unique name on disk, so that no name conflicts occur when deploying the projects projectnameonfile = request.user.username + '_' + projectname #removing the project folder, if exists create_folder_tree(basepath + "/projects/%s/%s" % (request.user.username, projectname)) #Create project folder structure folder1 = basepath + "/projects/%s/%s/%s/%s/%s" % (request.user.username, projectname, 'scraper', projectnameonfile, 'spiders') folder2 = basepath + "/projects/%s/%s/%s/%s/%s" % (request.user.username, projectname, 'linkgenerator', projectnameonfile, 'spiders') #Link generator folders linkgenouterfolder = basepath + "/projects/%s/%s/%s" % (request.user.username, projectname, 'linkgenerator') linkgenprojectfolder = basepath + "/projects/%s/%s/%s/%s" % (request.user.username, projectname, 'linkgenerator', projectnameonfile) linkgenspiderfolder = basepath + "/projects/%s/%s/%s/%s/%s" % (request.user.username, projectname, 'linkgenerator', projectnameonfile, 'spiders') #Scraper folders scraperouterfolder = basepath + "/projects/%s/%s/%s" % (request.user.username, projectname, 'scraper') scraperprojectfolder = basepath + "/projects/%s/%s/%s/%s" % (request.user.username, projectname, 'scraper', projectnameonfile) scraperspiderfolder = basepath + "/projects/%s/%s/%s/%s/%s" % (request.user.username, projectname, 'scraper', projectnameonfile, 'spiders') #Link generator files linkgencfgfile = linkgenouterfolder + "/scrapy.cfg" linkgensettingsfile = linkgenprojectfolder + "/settings.py" linkgenspiderfile = linkgenspiderfolder + "/%s_%s.py" % (request.user.username, projectname) #Scraper files scrapercfgfile = scraperouterfolder + "/scrapy.cfg" scrapersettingsfile = scraperprojectfolder + "/settings.py" scraperspiderfile = scraperspiderfolder + "/%s_%s.py" % (request.user.username, projectname) scraperitemsfile = scraperprojectfolder + "/items.py" scraperpipelinefile = scraperprojectfolder + "/pipelines.py" #Create needed folders create_folder_tree(folder1) create_folder_tree(folder2) #putting __init.py__ files in linkgenerator shutil.copy(basepath + '/scrapy_packages/__init__.py', linkgenprojectfolder) shutil.copy(basepath + '/scrapy_packages/__init__.py', linkgenspiderfolder) #putting rabbitmq folder alongside project shutil.copytree(basepath + '/scrapy_packages/rabbitmq', linkgenprojectfolder + '/rabbitmq') #creating a cfg for link generator scrapycfg = '''[settings]\n default = %s.settings [deploy:linkgenerator] url = %s project = %s ''' % (projectnameonfile, settings.LINK_GENERATOR, projectnameonfile) with open(linkgencfgfile, 'w') as f: f.write(scrapycfg) #creating a settings.py file for link generator with open(basepath + '/scrapy_templates/settings.py.tmpl', 'r') as f: settingspy = Template(f.read()).substitute(project_name=projectnameonfile) settingspy += '\n' + project.settings_link_generator settingspy += '\nSCHEDULER = "%s"' % (projectnameonfile + settings.SCHEDULER) settingspy += '\nSCHEDULER_PERSIST = %s' % settings.SCHEDULER_PERSIST settingspy += '\nRABBITMQ_HOST = "%s"' % settings.RABBITMQ_HOST settingspy += '\nRABBITMQ_PORT = %s' % settings.RABBITMQ_PORT settingspy += '\nRABBITMQ_USERNAME = "%s"' % settings.RABBITMQ_USERNAME settingspy += '\nRABBITMQ_PASSWORD = "%s"' % settings.RABBITMQ_PASSWORD with open(linkgensettingsfile, 'w') as f: f.write(settingspy) #creating a spider file for link generator with open(basepath + '/scrapy_templates/linkgenspider.py.tmpl', 'r') as f: spider = Template(f.read()).substitute(spider_name=request.user.username + "_" + projectname, SpiderClassName=request.user.username.title() + projectname.title() + "Spider") spider += '\n' linkgenlines = project.link_generator.splitlines() for lines in linkgenlines: spider += ' ' + lines + '\n' with open(linkgenspiderfile, 'w') as f: f.write(spider) # putting __init.py__ files in scraper shutil.copy(basepath + '/scrapy_packages/__init__.py', scraperprojectfolder) shutil.copy(basepath + '/scrapy_packages/__init__.py', scraperspiderfolder) # putting rabbitmq folder alongside project shutil.copytree(basepath + '/scrapy_packages/rabbitmq', scraperprojectfolder + '/rabbitmq') # putting mongodb folder alongside project shutil.copytree(basepath + '/scrapy_packages/mongodb', scraperprojectfolder + '/mongodb') # creating a cfg for scraper scrapycfg = '''[settings]\n default = %s.settings\n\n''' % (projectnameonfile) workercount = 1 for worker in settings.SCRAPERS: scrapycfg += '[deploy:worker%d]\nurl = %s\n' % (workercount, worker) workercount += 1 scrapycfg += '\nproject = %s' % (projectnameonfile) with open(scrapercfgfile, 'w') as f: f.write(scrapycfg) # creating a spider file for scraper with open(basepath + '/scrapy_templates/scraperspider.py.tmpl', 'r') as f: spider = Template(f.read()).substitute(spider_name=request.user.username + "_" + projectname, SpiderClassName=request.user.username.title() + projectname.title() + "Spider", project_name=projectnameonfile) spider += '\n' scraperlines = project.scraper_function.splitlines() for lines in scraperlines: spider += ' ' + lines + '\n' with open(scraperspiderfile, 'w') as f: f.write(spider) #creating items file for scraper items = Item.objects.filter(project=project) itemsfile = 'import scrapy\n' fieldtemplate = ' %s = scrapy.Field()\n' for item in items: itemsfile += 'class %s(scrapy.Item):\n' % item.item_name fields = Field.objects.filter(item=item) for field in fields: itemsfile += fieldtemplate % field.field_name itemsfile += fieldtemplate % 'ack_signal' itemsfile += '\n' with open(scraperitemsfile, 'w') as f: f.write(itemsfile) #creating pipelines file for scraper pipelinesfile = '' pipelinedict = {} pipelines = Pipeline.objects.filter(project=project) for pipeline in pipelines: pipelinedict[pipeline.pipeline_name] = pipeline.pipeline_order pipelinesfile += 'class %s(object):\n' % pipeline.pipeline_name pipfunctionlines = pipeline.pipeline_function.splitlines() for lines in pipfunctionlines: pipelinesfile += ' ' + lines + '\n' with open(scraperpipelinefile, 'w') as f: f.write(pipelinesfile) # creating a settings.py file for scraper with open(basepath + '/scrapy_templates/settings.py.tmpl', 'r') as f: settingspy = Template(f.read()).substitute(project_name=projectnameonfile) settingspy += '\n' + project.settings_scraper settingspy += '\nSCHEDULER = "%s"' % (projectnameonfile + settings.SCHEDULER) settingspy += '\nSCHEDULER_PERSIST = %s' % settings.SCHEDULER_PERSIST settingspy += '\nRABBITMQ_HOST = "%s"' % settings.RABBITMQ_HOST settingspy += '\nRABBITMQ_PORT = %s' % settings.RABBITMQ_PORT settingspy += '\nRABBITMQ_USERNAME = "%s"' % settings.RABBITMQ_USERNAME settingspy += '\nRABBITMQ_PASSWORD = "%s"' % settings.RABBITMQ_PASSWORD settingspy += '\nMONGODB_URI = "%s"' % settings.MONGODB_URI settingspy += '\nMONGODB_SHARDED = %s' % settings.MONGODB_SHARDED settingspy += '\nMONGODB_BUFFER_DATA = %s' % settings.MONGODB_BUFFER_DATA settingspy += '\nMONGODB_USER = "%s"' % settings.MONGODB_USER settingspy += '\nMONGODB_PASSWORD = "%s"' % settings.MONGODB_PASSWORD settingspy += '\nITEM_PIPELINES = { "%s.mongodb.scrapy_mongodb.MongoDBPipeline": 999, \n' % projectnameonfile for key in pipelinedict: settingspy += '"%s.pipelines.%s": %s, \n' % (projectnameonfile, key, pipelinedict[key]) settingspy += '}' with open(scrapersettingsfile, 'w') as f: f.write(settingspy) #putting setup.py files in appropriate folders with open(basepath + '/scrapy_templates/setup.py', 'r') as f: setuppy = Template(f.read()).substitute(projectname=projectnameonfile) with open(linkgenouterfolder + '/setup.py', 'w') as f: f.write(setuppy) with open(scraperouterfolder + '/setup.py', 'w') as f: f.write(setuppy) class cd: """Context manager for changing the current working directory""" def __init__(self, newPath): self.newPath = os.path.expanduser(newPath) def __enter__(self): self.savedPath = os.getcwd() os.chdir(self.newPath) def __exit__(self, etype, value, traceback): os.chdir(self.savedPath) with cd(linkgenouterfolder): os.system("python setup.py bdist_egg") with cd(scraperouterfolder): os.system("python setup.py bdist_egg") linkgeneggfile = glob.glob(linkgenouterfolder + "/dist/*.egg") scrapereggfile = glob.glob(scraperouterfolder + "/dist/*.egg") linkgenlastdeploy = LinkgenDeploy.objects.filter(project=project).order_by('-version')[:1] if linkgenlastdeploy: linkgenlastdeploy = linkgenlastdeploy[0].version else: linkgenlastdeploy = 0 scraperslastdeploy = ScrapersDeploy.objects.filter(project=project).order_by('-version')[:1] if scraperslastdeploy: scraperslastdeploy = scraperslastdeploy[0].version else: scraperslastdeploy = 0 try: with open(linkgeneggfile[0], 'rb') as f: files = {'egg': f} payload = {'project': '%s' % (projectnameonfile), 'version': (linkgenlastdeploy + 1)} r = requests.post('%s/addversion.json' % settings.LINK_GENERATOR, data=payload, files=files, timeout=(3, None)) result = r.json() deploylinkgen = LinkgenDeploy() deploylinkgen.project = project deploylinkgen.version = linkgenlastdeploy + 1 if result["status"] != "ok": deploylinkgen.success = False else: deploylinkgen.success = True deploylinkgen.save() except: deploylinkgen = LinkgenDeploy() deploylinkgen.project = project deploylinkgen.version = linkgenlastdeploy + 1 deploylinkgen.success = False deploylinkgen.save() with open(scrapereggfile[0], 'rb') as f: eggfile = f.read() files = {'egg' : eggfile} payload = {'project': '%s' % (projectnameonfile), 'version': (scraperslastdeploy + 1)} deployscraper = ScrapersDeploy() deployscraper.project = project deployscraper.version = scraperslastdeploy + 1 deployedscraperslist = [] scrapercounter = 1 for onescraper in settings.SCRAPERS: try: r = requests.post('%s/addversion.json' % onescraper, data=payload, files=files, timeout=(3, None)) result = r.json() if result['status'] == 'ok': deployedscraperslist.append("worker%s" %scrapercounter) except: pass scrapercounter += 1 deployscraper.success = json.dumps(deployedscraperslist) deployscraper.save() return HttpResponseRedirect(reverse('deploystatus', args=(projectname,))) @login_required def deployment_status(request, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') workers = [] counter = 1 workers.append({'name': 'linkgenerator', 'status': 'Loading...', 'version': 'Loading...'}) for worker in settings.SCRAPERS: workers.append({'name': 'worker%s' % counter, 'status': 'Loading...', 'version': 'Loading...'}) counter += 1 return render(request, "deployment_status.html", {'project': projectname, 'username': request.user.username, 'workers': workers}) @login_required def get_project_status_from_all_workers(request, projectname): uniqueprojectname = request.user.username + '_' + projectname try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') counter = 1 if request.method == 'POST': allworkers = [] workerstatus = {} workerstatus['name'] = 'linkgenerator' try: r = requests.get('%s/listprojects.json' % settings.LINK_GENERATOR,timeout=(3, None)) result = r.json() if uniqueprojectname in result['projects']: workerstatus['status'] = 'ready' try: q = requests.get('%s/listversions.json' % settings.LINK_GENERATOR, params={'project': uniqueprojectname},timeout=(3, None)) qresult = q.json() version = qresult['versions'][-1] workerstatus['version'] = version except: workerstatus['version'] = 'unknown' try: s = requests.get('%s/listjobs.json' % settings.LINK_GENERATOR, params={'project': uniqueprojectname}, timeout=(3, None)) sresult = s.json() if sresult['finished']: workerstatus['status'] = 'finished' if sresult['pending']: workerstatus['status'] = 'pending' if sresult['running']: workerstatus['status'] = 'running' except: workerstatus['status'] = 'unknown' else: workerstatus['status'] = 'not delpoyed' workerstatus['version'] = 'unknown' except: workerstatus['status'] = 'unreachable' workerstatus['version'] = 'unknown' allworkers.append(workerstatus) for worker in settings.SCRAPERS: workerstatus = {} workerstatus['name'] = 'worker%s' % counter try: r = requests.get('%s/listprojects.json' % worker, timeout=(3, None)) result = r.json() if uniqueprojectname in result['projects']: workerstatus['status'] = 'ready' try: q = requests.get('%s/listversions.json' % worker, params={'project': uniqueprojectname}, timeout=(3, None)) qresult = q.json() version = qresult['versions'][-1] workerstatus['version'] = version except: workerstatus['version'] = 'unknown' try: s = requests.get('%s/listjobs.json' % worker, params={'project': uniqueprojectname}, timeout=(3, None)) sresult = s.json() if sresult['finished']: workerstatus['status'] = 'finished' if sresult['pending']: workerstatus['status'] = 'pending' if sresult['running']: workerstatus['status'] = 'running' except: workerstatus['status'] = 'unknown' else: workerstatus['status'] = 'not delpoyed' workerstatus['version'] = 'unknown' except: workerstatus['status'] = 'unreachable' workerstatus['version'] = 'unknown' allworkers.append(workerstatus) counter += 1 return JsonResponse(allworkers, safe=False) @login_required def start_project(request, projectname, worker): uniqueprojectname = request.user.username + '_' + projectname try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') if request.method == 'POST': if 'linkgenerator' in worker: linkgenaddress = settings.LINK_GENERATOR try: r = requests.post('%s/schedule.json' % linkgenaddress, data={'project': uniqueprojectname, 'spider': uniqueprojectname}, timeout=(3, None)) except: pass elif 'worker' in worker: workernumber = ''.join(x for x in worker if x.isdigit()) workernumber = int(workernumber) workeraddress = settings.SCRAPERS[workernumber - 1] try: r = requests.post('%s/schedule.json' % workeraddress, data={'project': uniqueprojectname, 'spider': uniqueprojectname}, timeout=(3, None)) except: pass return HttpResponse('sent start signal') @login_required def stop_project(request, projectname, worker): uniqueprojectname = request.user.username + '_' + projectname try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') if request.method == 'POST': if 'linkgenerator' in worker: linkgenaddress = settings.LINK_GENERATOR try: r = requests.get('%s/listjobs.json' % linkgenaddress, params={'project': uniqueprojectname}, timeout=(3, None)) result = r.json() jobid = result['running'][0]['id'] s = requests.post('%s/cancel.json' % linkgenaddress, params={'project': uniqueprojectname, 'job': jobid}, timeout=(3, None)) except: pass elif 'worker' in worker: workernumber = ''.join(x for x in worker if x.isdigit()) workernumber = int(workernumber) workeraddress = settings.SCRAPERS[workernumber - 1] try: r = requests.get('%s/listjobs.json' % workeraddress, params={'project': uniqueprojectname}, timeout=(3, None)) result = r.json() jobid = result['running'][0]['id'] s = requests.post('%s/cancel.json' % workeraddress, params={'project': uniqueprojectname, 'job': jobid}, timeout=(3, None)) except: pass return HttpResponse('sent stop signal') @login_required def see_log_file(request, projectname, worker): uniqueprojectname = request.user.username + '_' + projectname try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') if request.method == 'GET': if 'linkgenerator' in worker: linkgenaddress = settings.LINK_GENERATOR try: r = requests.get('%s/listjobs.json' % linkgenaddress, params={'project': uniqueprojectname}, timeout=(3, None)) result = r.json() jobid = result['finished'][-1]['id'] log = requests.get('%s/logs/%s/%s/%s.log' % (linkgenaddress, uniqueprojectname, uniqueprojectname, jobid)) except: return HttpResponse('could not retrieve the log file') elif 'worker' in worker: workernumber = ''.join(x for x in worker if x.isdigit()) workernumber = int(workernumber) workeraddress = settings.SCRAPERS[workernumber - 1] try: r = requests.get('%s/listjobs.json' % workeraddress, params={'project': uniqueprojectname}, timeout=(3, None)) result = r.json() jobid = result['finished'][-1]['id'] log = requests.get('%s/logs/%s/%s/%s.log' % (workeraddress, uniqueprojectname, uniqueprojectname, jobid)) except: return HttpResponse('could not retrieve the log file') return HttpResponse(log.text, content_type='text/plain') @login_required def gather_status_for_all_projects(request): projectsdict = {} workers = [] for worker in settings.SCRAPERS: workers.append(worker) workers.append(settings.LINK_GENERATOR) projects = Project.objects.filter(user=request.user) for project in projects: projectsdict[project.project_name] = [] project_items = Item.objects.filter(project=project) for item in project_items: projectsdict[project.project_name].append(item.item_name) if request.method == 'POST': if projectsdict: allprojectdata = {} for key in projectsdict: workerstatus = {} earliest_start_time = None earliest_finish_time = None latest_start_time = None latest_finish_time = None uniqueprojectname = request.user.username + '_' + key for worker in workers: try: log = requests.get('%s/logs/%s/%s/stats.log' % (worker, uniqueprojectname, uniqueprojectname), timeout=(3, None)) if log.status_code == 200: result = json.loads(log.text.replace("'", '"')) if result.get('project_stopped', 0): workerstatus['finished'] = workerstatus.get('finished', 0) + 1 else: workerstatus['running'] = workerstatus.get('running', 0) + 1 if result.get('log_count/ERROR', 0): workerstatus['errors'] = workerstatus.get('errors', 0) + result.get('log_count/ERROR', 0) for item in projectsdict[key]: if result.get(item, 0): workerstatus['item-%s' % item] = workerstatus.get('item-%s' % item, 0) + result.get(item, 0) if result.get('start_time', False): start_time = dateutil.parser.parse(result['start_time']) if earliest_start_time is None: earliest_start_time = start_time else: if start_time < earliest_start_time: earliest_start_time = start_time if latest_start_time is None: latest_start_time = start_time else: if start_time > latest_start_time: latest_start_time = start_time if result.get('finish_time', False): finish_time = dateutil.parser.parse(result['finish_time']) if earliest_finish_time is None: earliest_finish_time = finish_time else: if finish_time < earliest_finish_time: earliest_finish_time = finish_time if latest_finish_time is None: latest_finish_time = finish_time else: if finish_time > latest_finish_time: latest_finish_time = finish_time elif log.status_code == 404: workerstatus['hasntlaunched'] = workerstatus.get('hasntlaunched', 0) + 1 else: workerstatus['unknown'] = workerstatus.get('unknown', 0) + 1 except: workerstatus['unknown'] = workerstatus.get('unknown', 0) + 1 if earliest_start_time is not None: workerstatus['earliest_start_time'] = earliest_start_time.strftime("%B %d, %Y %H:%M:%S") if earliest_finish_time is not None: workerstatus['earliest_finish_time'] = earliest_finish_time.strftime("%B %d, %Y %H:%M:%S") if latest_start_time is not None: workerstatus['latest_start_time'] = latest_start_time.strftime("%B %d, %Y %H:%M:%S") if latest_finish_time is not None: workerstatus['latest_finish_time'] = latest_finish_time.strftime("%B %d, %Y %H:%M:%S") allprojectdata[key] = workerstatus return JsonResponse(allprojectdata, safe=True) return HttpResponse('{}') @login_required def editsettings(request, settingtype, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') if request.method == 'GET': if settingtype == 'linkgenerator': settingtext = project.settings_link_generator form = Settings(initial={'settings': settingtext}) return render(request, "editsettings.html", {'username': request.user.username, 'project': projectname, 'form': form, 'settingtype': settingtype}) if settingtype == 'scraper': settingtext = project.settings_scraper form = Settings(initial={'settings': settingtext}) return render(request, "editsettings.html", {'username': request.user.username, 'project': projectname, 'form': form, 'settingtype': settingtype}) if request.method == 'POST': if 'cancel' in request.POST: return HttpResponseRedirect(reverse("manageproject", args=(projectname,))) if 'submit' in request.POST: form = Settings(request.POST) if form.is_valid(): if settingtype == "linkgenerator": project.settings_link_generator = form.cleaned_data['settings'] project.save() if settingtype == "scraper": project.settings_scraper = form.cleaned_data['settings'] project.save() return HttpResponseRedirect(reverse("manageproject", args=(projectname,))) else: return render(request, "editsettings.html", {'username': request.user.username, 'project': projectname, 'form': form, 'settingtype': settingtype}) @login_required def start_project_on_all(request, projectname): uniqueprojectname = request.user.username + '_' + projectname try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') workers = [] workers.append(settings.LINK_GENERATOR) for worker in settings.SCRAPERS: workers.append(worker) if request.method == 'POST': for worker in workers: try: r = requests.post('%s/schedule.json' % worker, data={'project': uniqueprojectname, 'spider': uniqueprojectname}, timeout=(3, None)) except: pass return HttpResponse('sent start signal') @login_required def stop_project_on_all(request, projectname): uniqueprojectname = request.user.username + '_' + projectname try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') workers = [] workers.append(settings.LINK_GENERATOR) for worker in settings.SCRAPERS: workers.append(worker) if request.method == 'POST': for worker in workers: try: r = requests.get('%s/listjobs.json' % worker, params={'project': uniqueprojectname}, timeout=(3, None)) result = r.json() jobid = result['running'][0]['id'] s = requests.post('%s/cancel.json' % worker, params={'project': uniqueprojectname, 'job': jobid}, timeout=(3, None)) except: pass return HttpResponse('sent stop signal') @login_required def get_global_system_status(request): status = {} workers = [] for worker in settings.SCRAPERS: workers.append(worker) worker_count = 0 for worker in workers: try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(3) host = urlparse(worker).hostname port = int(urlparse(worker).port) result = sock.connect_ex((host, port)) if result == 0: worker_count += 1 except: pass finally: sock.close() status['scrapers'] = worker_count try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(3) host = urlparse(settings.LINK_GENERATOR).hostname port = int(urlparse(settings.LINK_GENERATOR).port) result = sock.connect_ex((host, port)) if result == 0: status['linkgenerator'] = True else: status['linkgenerator'] = False except: status['linkgenerator'] = False finally: sock.close() try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(3) result = sock.connect_ex((settings.RABBITMQ_HOST, settings.RABBITMQ_PORT)) if result == 0: status['queue'] = True else: status['queue'] = False except: status['queue'] = False finally: sock.close() try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(3) host = urlparse("http://" + settings.MONGODB_URI).hostname port = int(urlparse("http://" + settings.MONGODB_URI).port) result = sock.connect_ex((host, port)) if result == 0: status['database'] = True else: status['database'] = False except: status['database'] = False finally: sock.close() status['databaseaddress'] = settings.MONGODB_PUBLIC_ADDRESS return JsonResponse(status, safe=False) @login_required def share_db(request, projectname): uniqueprojectname = request.user.username + '_' + projectname try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') if request.method == 'GET': form = ShareDB() return render(request, 'sharedb.html', {'username': request.user.username, 'form': form, 'projectname': projectname}) if request.method == 'POST': if 'cancel' in request.POST: return HttpResponseRedirect(reverse("mainpage")) elif 'submit' in request.POST: form = ShareDB(request.POST) if form.is_valid(): uname = form.cleaned_data['username'] if uname == request.user.username: errors = form._errors.setdefault("username", ErrorList()) errors.append('User name %s is your own account name.' % uname) return render(request, 'sharedb.html', {'username': request.user.username, 'form': form, 'projectname': projectname}) try: username = User.objects.get(username=uname) except User.DoesNotExist: errors = form._errors.setdefault("username", ErrorList()) errors.append('User %s does not exist in the system.' % uname) return render(request, 'sharedb.html', {'username': request.user.username, 'form': form, 'projectname': projectname}) #start thread here thr = threading.Thread(target=sharing_db, args=(uniqueprojectname, username.username, projectname, request.user.username), kwargs={}) thr.start() return render(request, 'sharedb_started.html', {'username': request.user.username}) else: return render(request, 'sharedb.html', {'username': request.user.username, 'form': form, 'projectname': projectname}) @login_required def share_project(request, projectname): try: project = Project.objects.get(user=request.user, project_name=projectname) except Project.DoesNotExist: return HttpResponseNotFound('Nothing is here.') if request.method == 'GET': form = ShareProject() return render(request, 'shareproject.html', {'username': request.user.username, 'form': form, 'projectname': projectname}) if request.method == 'POST': if 'cancel' in request.POST: return HttpResponseRedirect(reverse("mainpage")) elif 'submit' in request.POST: form = ShareProject(request.POST) if form.is_valid(): uname = form.cleaned_data['username'] if uname == request.user.username: errors = form._errors.setdefault("username", ErrorList()) errors.append('User name %s is your own account name.' % uname) return render(request, 'shareproject.html', {'username': request.user.username, 'form': form, 'projectname': projectname}) try: username = User.objects.get(username=uname) except User.DoesNotExist: errors = form._errors.setdefault("username", ErrorList()) errors.append('User %s does not exist in the system.' % uname) return render(request, 'shareproject.html', {'username': request.user.username, 'form': form, 'projectname': projectname}) #start thread here thr = threading.Thread(target=sharing_project, args=(username.username, projectname, request.user.username), kwargs={}) thr.start() return HttpResponseRedirect(reverse("mainpage")) else: return render(request, 'shareproject.html', {'username': request.user.username, 'form': form, 'projectname': projectname}) def sharing_db(dbname, target_user, projectname, username): target_db_name = '%s_sharedby_%s' % (projectname, username) targetuser = User.objects.get(username=target_user) mongouri = "mongodb://" + settings.MONGODB_USER + ":" + quote( settings.MONGODB_PASSWORD) + "@" + settings.MONGODB_URI + "/admin" connection = MongoClient(mongouri) existing_dbs = connection.database_names() checked_all_database_names = 0 db_version = 1 while not checked_all_database_names: checked_all_database_names = 1 for onedbname in existing_dbs: if str(onedbname) == target_db_name: target_db_name += str(db_version) db_version += 1 checked_all_database_names = 0 existing_dbs = connection.database_names() database = connection[dbname] if settings.MONGODB_SHARDED: try: connection.admin.command('enableSharding', target_db_name) except: pass collections = database.collection_names() for i, collection_name in enumerate(collections): if collection_name != u'system.indexes': if settings.MONGODB_SHARDED: try: connection.admin.command('shardCollection', '%s.%s' % (target_db_name, collection_name), key={'_id': "hashed"}) except: pass col = connection[dbname][collection_name] insertcol = connection[target_db_name][collection_name] skip = 0 collection = col.find(filter={}, projection={'_id': False}, limit=100, skip=skip*100) items = [] for item in collection: items.append(item) while len(items) > 0: skip += 1 insertcol.insert_many(items) collection = col.find(filter={}, projection={'_id': False}, limit=100, skip=skip * 100) items = [] for item in collection: items.append(item) connection.admin.command('grantRolesToUser', target_user, roles=[{'role': 'dbOwner', 'db': target_db_name}]) dataset = Dataset() dataset.user = targetuser dataset.database = target_db_name dataset.save() connection.close() def sharing_project(target_user, projectname, username): target_project_name = '%s_sharedby_%s' % (projectname, username) targetuser = User.objects.get(username=target_user) project = Project.objects.get(user=User.objects.get(username=username), project_name=projectname) newproject = Project(user=targetuser, project_name=target_project_name, link_generator=project.link_generator, scraper_function=project.scraper_function, settings_scraper=project.settings_scraper, settings_link_generator=project.settings_link_generator) newproject.save() items = Item.objects.filter(project=project) for item in items: newitem = Item(item_name=item.item_name, project=newproject) newitem.save() fields = Field.objects.filter(item=item) for field in fields: newfield = Field(item=newitem, field_name=field.field_name) newfield.save() pipelines = Pipeline.objects.filter(project=project) for pipeline in pipelines: newpipeline = Pipeline(project=newproject, pipeline_function=pipeline.pipeline_function, pipeline_name=pipeline.pipeline_name, pipeline_order=pipeline.pipeline_order) newpipeline.save() mongouri = "mongodb://" + settings.MONGODB_USER + ":" + quote( settings.MONGODB_PASSWORD) + "@" + settings.MONGODB_URI + "/admin" connection = MongoClient(mongouri) connection.admin.command('grantRolesToUser', target_user, roles=[{'role': 'dbOwner', 'db': target_user + '_' + target_project_name}]) dataset = Dataset() dataset.user = targetuser dataset.database = target_user + '_' + target_project_name dataset.save() connection.close() def mongodb_user_creation(username, password): mongouri = "mongodb://" + settings.MONGODB_USER + ":" + quote( settings.MONGODB_PASSWORD) + "@" + settings.MONGODB_URI + "/admin" connection = MongoClient(mongouri) connection.admin.command('createUser', username, pwd=password, roles=[]) connection.close() def mongodb_user_password_change(username, password): mongouri = "mongodb://" + settings.MONGODB_USER + ":" + quote( settings.MONGODB_PASSWORD) + "@" + settings.MONGODB_URI + "/admin" connection = MongoClient(mongouri) connection.admin.command('updateUser', username, pwd=password) connection.close() def linux_user_creation(username, password): encpass = crypt.crypt(password, "2424") os.system("useradd -p " + encpass + " %s" % username) os.system("mkdir /home/%s" % username) os.system("chown %s:%s /home/%s" % (username, username, username)) def linux_user_pass_change(username, password): encpass = crypt.crypt(password, "2424") os.system("usermod -p " + encpass + " %s" % username) @login_required def database_preview(request, db): datasets = Dataset.objects.filter(user=request.user) databases = [] for dataset in datasets: databases.append(dataset.database) if db not in databases: return HttpResponseNotFound('Nothing is here.') mongouri = "mongodb://" + settings.MONGODB_USER + ":" + quote( settings.MONGODB_PASSWORD) + "@" + settings.MONGODB_URI + "/admin" connection = MongoClient(mongouri) database = connection[db] preview_data = {} collections = database.collection_names() for i, collection_name in enumerate(collections): if collection_name != u'system.indexes': col = database[collection_name] collection = col.find(filter={}, projection={'_id': False}, limit=10, skip=0) items = [] for item in collection: items.append(item) preview_data[collection_name] = json.dumps(items, ensure_ascii=False) return render(request, template_name="databasepreview.html", context={'username': request.user.username, 'databases': databases, 'preview_data': preview_data})
Python
1,663
42.61335
181
/Web-UI/scrapyproject/views.py
0.59794
0.594783
mrpal39/ev_code
refs/heads/master
from django.contrib import admin from .models import Products,feeds,MyModel,Post # Register your models here. admin.site.register(Products) admin.site.register(feeds) admin.site.register(MyModel) admin.site.register(Post)
Python
9
23.888889
47
/awssam/ideablog/core/admin.py
0.8125
0.8125
mrpal39/ev_code
refs/heads/master
from django.contrib import admin # Register your models here. from blog.models import Tag, Article, Category @admin.register(Article) class ArticleAdmin(admin.ModelAdmin): date_hierarchy = 'date_time' list_display = ('title', 'category', 'author', 'date_time', 'view') list_filter = ('category', 'author') filter_horizontal = ('tag',) @admin.register(Category) class CategoryAdmin(admin.ModelAdmin): pass @admin.register(Tag) class TagAdmin(admin.ModelAdmin): pass
Python
24
19.75
71
/awssam/django-blog/src/blog/admin.py
0.706827
0.706827
mrpal39/ev_code
refs/heads/master
from django import template from django.db.models import Q from django.conf import settings from django.template.defaultfilters import stringfilter from django.utils.safestring import mark_safe import random from django.urls import reverse # from blog.models import Article, Category, Tag, Links, SideBar, LinkShowType from django.utils.encoding import force_text from django.shortcuts import get_object_or_404 import hashlib import urllib # from comments.models import Comment from DjangoBlog.utils import cache_decorator, cache from django.contrib.auth import get_user_model from oauth.models import OAuthUser from DjangoBlog.utils import get_current_site import logging logger = logging.getLogger(__name__) register = template.Library() @register.simple_tag def timeformat(data): try: return data.strftime(settings.TIME_FORMAT) # print(data.strftime(settings.TIME_FORMAT)) # return "ddd" except Exception as e: logger.error(e) return "" @register.simple_tag def datetimeformat(data): try: return data.strftime(settings.DATE_TIME_FORMAT) except Exception as e: logger.error(e) return "" @register.filter(is_safe=True) @stringfilter def custom_markdown(content): from DjangoBlog.utils import CommonMarkdown return mark_safe(CommonMarkdown.get_markdown(content))
Python
52
25.346153
78
/myapi/fullfeblog/blog/blog_tags.py
0.750547
0.748359
mrpal39/ev_code
refs/heads/master
import scrapy class DemoSpider(scrapy.Spider): name = 'demo' start_urls = ['http://www.something.com/users/login.php'] def parse(self, response): return scrapy.FormRequest.from_response( response, formdata = {'username': 'admin', 'password': 'confidential'}, callback = self.after_login ) def after_login(self, response): if "authentication failed" in response.body: self.logger.error("Login failed") return # You can continue scraping here
Python
16
32.875
69
/scrap/tuto/tuto/spiders/dataviaHTTPPOST.py
0.608133
0.608133
mrpal39/ev_code
refs/heads/master
from django.contrib import admin from django.urls import path,include from django.conf import settings from django.conf.urls.static import static from django.contrib.sitemaps.views import sitemap from blog.sitemaps import PostSitemap from django.conf.urls import url, include # from .. import core sitemaps={ 'posts':PostSitemap, } urlpatterns = [ path('admin/', admin.site.urls, ), path('',include('blog.urls')), path('core/',include('core.urls')), path('api/',include('api.urls')), # path('oauth/',include('oauth.urls')), path('accounts/', include('allauth.urls')), path('sitemap.xml', sitemap, {'sitemaps': sitemaps}, name='django.contrib.sitemaps.views.sitemap') ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
Python
24
31.416666
65
/myapi/fullfeblog/webdev/urls.py
0.70399
0.70399
mrpal39/ev_code
refs/heads/master
# -*- coding: utf-8 -*- import random import requests def GetIps(): li=[] global count url ='http://139.199.182.250:8000/?types=0&count=300' ips=requests.get(url) for ip in eval(ips.content): li.append(ip[0]+':'+ip[1]) return li GetIps()
Python
13
19.76923
56
/tc_zufang/tc_zufang-slave/tc_zufang/utils/GetProxyIp.py
0.592593
0.511111
mrpal39/ev_code
refs/heads/master
from .settings import * from .dev import * # Test codehilite with pygments WIKI_MARKDOWN_KWARGS = { "extensions": [ "codehilite", "footnotes", "attr_list", "headerid", "extra", ] }
Python
13
16.76923
31
/awssam/wikidj/wikidj/codehilite.py
0.541126
0.541126