Deep Generative Models-Assisted Automated Labeling for Electron Microscopy Images Segmentation
Paper
•
2407.19544
•
Published
For detailed training procedures and source code, please refer to our GitHub repository:
EMcopilot GitHub Repository
00_01_sam_binary_masking.py - Generates coarse masks using the SAM model.02_01_sam_mask_analysis.py - Analyzes SAM mask properties and extracts morphology prior.02_02_random_mask_generate.py - Generates synthetic masks by augmenting existing masks.03_01_p2p_train.py - Trains a Pix2Pix model for mask-to-EMimage translation.04_01_pix2pix_predict.py - Runs inference using the trained Pix2Pix model.05_01_domain_adaptation.py - Applies domain adaptation, including noise and contrast augmentation.06_01_unet++_train.py - Trains a CBAM-enhanced UNet++ model for segmentation.07_01_unet++_predict.py - Performs inference using the trained UNet++ model.08_01_in_situ_analysis.py - Analyze HAADF-STEM images of supported nanoparticles in real time.Install required packages using:
pip install -r requirements.txt
If you find our code or data useful in your research, please cite our paper:
@misc{yuan2024deepgenerativemodelsassistedautomated,
title={Deep Generative Models-Assisted Automated Labeling for Electron Microscopy Images Segmentation},
author={Wenhao Yuan and Bingqing Yao and Shengdong Tan and Fengqi You and Qian He},
year={2024},
eprint={2407.19544},
archivePrefix={arXiv},
primaryClass={cond-mat.mtrl-sci},
url={https://arxiv.org/abs/2407.19544},
}
Copyright | 2025 Qian's Lab@NUS