File size: 8,931 Bytes
dab52ad
 
 
2c70432
 
2fe91c7
bc28cbe
2c70432
a24182d
2c70432
bc28cbe
2c70432
bc28cbe
dab52ad
2c70432
dab52ad
2c70432
d521ae9
2c70432
dab52ad
2c70432
d521ae9
2c70432
d521ae9
2c70432
 
 
dab52ad
2c70432
 
 
2fe91c7
3f3a9d1
91d83af
3f3a9d1
 
bc28cbe
 
2c70432
 
 
bc28cbe
2c70432
bc28cbe
2c70432
 
bc28cbe
2c70432
 
 
 
 
d521ae9
bc28cbe
2c70432
 
2fe91c7
bc28cbe
 
 
2c70432
bc28cbe
 
0cb2c79
a24182d
bc28cbe
 
 
 
 
 
d521ae9
2c70432
 
 
d521ae9
2c70432
 
d521ae9
2c70432
 
2fe91c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c70432
 
bc28cbe
2fe91c7
bc28cbe
 
 
 
a24182d
0cb2c79
bc28cbe
 
a24182d
bc28cbe
 
 
2c70432
bc28cbe
 
 
 
2c70432
bc28cbe
2c70432
bc28cbe
 
2c70432
 
 
bc28cbe
 
2c70432
 
 
 
 
 
 
 
 
2fe91c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c70432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc28cbe
d521ae9
2fe91c7
 
 
dab52ad
2c70432
2fe91c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
from sentence_transformers import SentenceTransformer
import torch
# ----------------------------- Load Models on Demand -----------------------------
_loaded_models = {}
tab_state = "single"
def load_model(model_name):
    if model_name not in _loaded_models:
        _loaded_models[model_name] = SentenceTransformer(model_name,trust_remote_code=True)
    return _loaded_models[model_name]

# ----------------------------- Core Functions -----------------------------
def find_similar_documents(query, documents, model_name):
    if not query.strip():
        return "Please enter a query."
    if not documents.strip():
        return "Please enter documents (one per line)."

    doc_list = [d.strip() for d in documents.split('\n') if d.strip()]
    if not doc_list:
        return "Please enter at least one document."

    model = load_model(model_name)

    query_embeddings = model.encode(query, convert_to_tensor=True)
    doc_embeddings = model.encode(doc_list, convert_to_tensor=True)
    similarities = torch.nn.functional.cosine_similarity(query_embeddings, doc_embeddings)

    sorted_indices = torch.argsort(similarities, descending=True)
    results = []
    for i, idx in enumerate(sorted_indices):
        score = similarities[idx].item()
        doc = doc_list[idx]
        results.append(f"{i+1}. Score: {score:.4f}  \n  Document: {doc}")
    
    return "\n\n".join(results)

def compare_models(query, documents, tarka_model, open_model):
    tarka_result = find_similar_documents(query, documents, tarka_model)
    open_result = find_similar_documents(query, documents, open_model)
    return tarka_result, open_result

# ----------------------------- UI Layout -----------------------------
with gr.Blocks(
    title="Tarka Embedding Explorer",
    theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo", font=["Poppins", "sans-serif"])
) as demo:

    gr.Markdown("""
    # 🌌 Tarka Embedding Explorer
    Experiment with Tarka Embedding models for semantic similarity search, or compare them with top open-source baselines.
    """)

    with gr.Tabs():
        # ---------------- Single Model Tab ----------------
        with gr.Tab("πŸ”Ή Single Model Search"):
            tab_state="single"
            with gr.Row():
                with gr.Column(scale=1):
                    model_selector = gr.Dropdown(
                        label="Select Model",
                        choices=[
                            "Tarka-AIR/Tarka-Embedding-150M-V1",
                            "Tarka-AIR/Tarka-Embedding-250M-V1",
                            "Tarka-AIR/Tarka-Embedding-350M-V1",
                            "sentence-transformers/all-MiniLM-L6-v2",
                            "intfloat/e5-base-v2",
                            "BAAI/bge-small-en-v1.5"
                        ],
                        value="Tarka-AIR/Tarka-Embedding-150M-V1"
                    )

                    query_input = gr.Textbox(label="Query", placeholder="Enter your query...", lines=2)
                    docs_input = gr.Textbox(label="Documents", placeholder="Enter one document per line...", lines=10)
                    search_btn = gr.Button("πŸ” Search", variant="primary")

                with gr.Column(scale=1):
                    result_box = gr.Markdown(label="Results")

            search_btn.click(find_similar_documents, [query_input, docs_input, model_selector], result_box)
            query_input.submit(find_similar_documents, [query_input, docs_input, model_selector], result_box)
            examples = [
                [
                    "Which planet is known as the Red Planet?",
                    "Venus is often called Earth's twin because of its similar size.\nMars, known for its reddish hue, is called the Red Planet.\nJupiter, the largest planet, has a red spot.\nSaturn has iconic rings."
                ],
                [
                    "What causes seasons on Earth?",
                    "The tilt of Earth's axis causes different sunlight distribution.\nThe moon affects tides but not seasons.\nEarth's orbit has minimal effect on seasons.\nRotation causes day and night."
                ],
                [
                    "What gas do plants release during photosynthesis?",
                    "Plants use sunlight to convert COβ‚‚ into glucose and release oxygen.\nAnimals inhale oxygen and exhale COβ‚‚.\nPhotosynthesis occurs mainly in leaves."
                ]
            ]
            
            
            gr.Examples(
                examples=examples,
                inputs=[query_input, docs_input],
                label="Try Examples"
            )
        # ---------------- Comparison Tab ----------------
        with gr.Tab("βš–οΈ Model Comparison"):
            with gr.Row():
                tab_state="comparsion"
                with gr.Column(scale=1):
                    tarka_selector = gr.Dropdown(
                        label="Tarka Model",
                        choices=[
                            "Tarka-AIR/Tarka-Embedding-350M-V1",
                            "Tarka-AIR/Tarka-Embedding-250M-V1",
                            "Tarka-AIR/Tarka-Embedding-150M-V1",
                        ],
                        value="Tarka-AIR/Tarka-Embedding-350M-V1"
                    )

                    open_selector = gr.Dropdown(
                        label="Open-Source Model",
                        choices=[
                            "sentence-transformers/all-MiniLM-L6-v2",
                            "intfloat/e5-base-v2",
                            "BAAI/bge-small-en-v1.5",
                            "sentence-transformers/paraphrase-mpnet-base-v2"
                        ],
                        value="intfloat/e5-base-v2"
                    )

                    cmp_query = gr.Textbox(label="Query", placeholder="Enter your search query...", lines=2)
                    cmp_docs = gr.Textbox(label="Documents", placeholder="Enter one document per line...", lines=10)
                    cmp_btn = gr.Button("βš–οΈ Compare Models", variant="primary")

                with gr.Column(scale=2):
                    gr.Markdown("### 🧩 Comparison Results")

                    with gr.Row(visible=False) as comparison_results:
                        with gr.Column():
                            tarka_label = gr.Markdown(visible=False)
                            tarka_output = gr.Markdown(visible=False)
                        with gr.Column():
                            open_label = gr.Markdown(visible=False)
                            open_output = gr.Markdown(visible=False)
            examples = [
                [
                    "Which planet is known as the Red Planet?",
                    "Venus is often called Earth's twin because of its similar size.\nMars, known for its reddish hue, is called the Red Planet.\nJupiter, the largest planet, has a red spot.\nSaturn has iconic rings."
                ],
                [
                    "What causes seasons on Earth?",
                    "The tilt of Earth's axis causes different sunlight distribution.\nThe moon affects tides but not seasons.\nEarth's orbit has minimal effect on seasons.\nRotation causes day and night."
                ],
                [
                    "What gas do plants release during photosynthesis?",
                    "Plants use sunlight to convert COβ‚‚ into glucose and release oxygen.\nAnimals inhale oxygen and exhale COβ‚‚.\nPhotosynthesis occurs mainly in leaves."
                ]
            ]
            
            
            gr.Examples(
                examples=examples,
                inputs=[cmp_query, cmp_docs],
                label="Try Examples"
            )
            def run_comparison(query, docs, tarka_model, open_model):
                tarka_res, open_res = compare_models(query, docs, tarka_model, open_model)
                return (
                    gr.update(visible=True),
                    gr.update(value=f"### 🧠 {tarka_model}", visible=True),
                    gr.update(value=tarka_res, visible=True),
                    gr.update(value=f"### 🌍 {open_model}", visible=True),
                    gr.update(value=open_res, visible=True)
                )

            cmp_btn.click(
                fn=run_comparison,
                inputs=[cmp_query, cmp_docs, tarka_selector, open_selector],
                outputs=[comparison_results, tarka_label, tarka_output, open_label, open_output]
            )

            cmp_query.submit(
                fn=run_comparison,
                inputs=[cmp_query, cmp_docs, tarka_selector, open_selector],
                outputs=[comparison_results, tarka_label, tarka_output, open_label, open_output]
            )

    # ---------------- Example Section ----------------

    
      

# Launch the app
demo.launch()