Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,11 +2,11 @@ import gradio as gr
|
|
| 2 |
from sentence_transformers import SentenceTransformer
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
# Cache loaded models
|
| 6 |
loaded_models = {}
|
| 7 |
|
| 8 |
def load_model(model_name):
|
| 9 |
-
"""Load and cache a model."""
|
| 10 |
if model_name in loaded_models:
|
| 11 |
return loaded_models[model_name]
|
| 12 |
model = SentenceTransformer(model_name)
|
|
@@ -20,16 +20,16 @@ def find_similar_documents(query, documents, model_name):
|
|
| 20 |
return "⚠️ Please enter a query."
|
| 21 |
if not documents.strip():
|
| 22 |
return "⚠️ Please enter documents (one per line)."
|
| 23 |
-
|
| 24 |
model = load_model(model_name)
|
| 25 |
doc_list = [d.strip() for d in documents.split("\n") if d.strip()]
|
| 26 |
if not doc_list:
|
| 27 |
return "⚠️ Please enter at least one valid document."
|
| 28 |
-
|
| 29 |
query_emb = model.encode_query(query)
|
| 30 |
doc_emb = model.encode_document(doc_list)
|
| 31 |
similarities = model.similarity(query_emb, doc_emb)
|
| 32 |
-
|
| 33 |
sorted_idx = torch.argsort(similarities[0], descending=True)
|
| 34 |
results = []
|
| 35 |
for i, idx in enumerate(sorted_idx):
|
|
@@ -44,7 +44,7 @@ def compare_models(query, documents, tarka_model, open_model):
|
|
| 44 |
return "⚠️ Please enter a query.", ""
|
| 45 |
if not documents.strip():
|
| 46 |
return "⚠️ Please enter documents (one per line).", ""
|
| 47 |
-
|
| 48 |
tarka = load_model(tarka_model)
|
| 49 |
openm = load_model(open_model)
|
| 50 |
|
|
@@ -52,7 +52,6 @@ def compare_models(query, documents, tarka_model, open_model):
|
|
| 52 |
if not doc_list:
|
| 53 |
return "⚠️ Please enter at least one valid document.", ""
|
| 54 |
|
| 55 |
-
# Compute similarities for both models
|
| 56 |
tq = tarka.encode_query(query)
|
| 57 |
td = tarka.encode_document(doc_list)
|
| 58 |
tsim = tarka.similarity(tq, td)
|
|
@@ -61,31 +60,40 @@ def compare_models(query, documents, tarka_model, open_model):
|
|
| 61 |
od = openm.encode_document(doc_list)
|
| 62 |
osim = openm.similarity(oq, od)
|
| 63 |
|
| 64 |
-
# Sort for each model
|
| 65 |
tsorted = torch.argsort(tsim[0], descending=True)
|
| 66 |
osorted = torch.argsort(osim[0], descending=True)
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
|
| 75 |
-
return
|
| 76 |
|
| 77 |
|
| 78 |
-
#
|
| 79 |
with gr.Blocks(
|
| 80 |
title="Document Similarity Explorer",
|
| 81 |
-
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo", neutral_hue="zinc")
|
| 82 |
) as demo:
|
| 83 |
|
| 84 |
-
gr.Markdown(
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
with gr.Tabs():
|
| 88 |
-
#
|
| 89 |
with gr.Tab("Single Model Search"):
|
| 90 |
with gr.Row():
|
| 91 |
with gr.Column(scale=1):
|
|
@@ -100,21 +108,21 @@ with gr.Blocks(
|
|
| 100 |
value="Tarka-AIR/Tarka-Embedding-150M-V1"
|
| 101 |
)
|
| 102 |
loading_msg = gr.Markdown(visible=False)
|
| 103 |
-
|
| 104 |
query_input = gr.Textbox(
|
| 105 |
label="Query",
|
| 106 |
placeholder="Enter your search query...",
|
| 107 |
lines=2
|
| 108 |
)
|
| 109 |
-
|
| 110 |
docs_input = gr.Textbox(
|
| 111 |
label="Documents",
|
| 112 |
placeholder="Enter one document per line...",
|
| 113 |
lines=10
|
| 114 |
)
|
| 115 |
-
|
| 116 |
search_btn = gr.Button("🔎 Search", variant="primary")
|
| 117 |
-
|
| 118 |
with gr.Column(scale=1):
|
| 119 |
result_box = gr.Markdown(label="Results", elem_id="results-box")
|
| 120 |
|
|
@@ -122,7 +130,7 @@ with gr.Blocks(
|
|
| 122 |
loading_msg.update(value=f"⏳ Loading **{model_name}**...", visible=True)
|
| 123 |
load_model(model_name)
|
| 124 |
return gr.update(value=f"✅ {model_name} loaded and ready!", visible=True)
|
| 125 |
-
|
| 126 |
model_selector.change(fn=on_model_change, inputs=[model_selector], outputs=[loading_msg])
|
| 127 |
|
| 128 |
search_btn.click(fn=find_similar_documents,
|
|
@@ -133,16 +141,16 @@ with gr.Blocks(
|
|
| 133 |
inputs=[query_input, docs_input, model_selector],
|
| 134 |
outputs=result_box)
|
| 135 |
|
| 136 |
-
#
|
| 137 |
with gr.Tab("Compare Models"):
|
|
|
|
|
|
|
| 138 |
with gr.Row():
|
| 139 |
with gr.Column(scale=1):
|
| 140 |
tarka_selector = gr.Dropdown(
|
| 141 |
label="Tarka Model",
|
| 142 |
choices=[
|
| 143 |
"Tarka-AIR/Tarka-Embedding-150M-V1",
|
| 144 |
-
"Tarka-AIR/Tarka-Embedding-200M-V1",
|
| 145 |
-
"Tarka-AIR/Tarka-Embedding-300M-V1"
|
| 146 |
],
|
| 147 |
value="Tarka-AIR/Tarka-Embedding-150M-V1"
|
| 148 |
)
|
|
@@ -173,9 +181,10 @@ with gr.Blocks(
|
|
| 173 |
compare_btn = gr.Button("⚖️ Compare Models", variant="primary")
|
| 174 |
|
| 175 |
with gr.Column(scale=2):
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
| 179 |
|
| 180 |
def on_compare_models_load(tarka_model, open_model):
|
| 181 |
compare_loading.update(value=f"⏳ Loading **{tarka_model}** and **{open_model}**...", visible=True)
|
|
@@ -198,16 +207,15 @@ with gr.Blocks(
|
|
| 198 |
inputs=[query_compare, docs_compare, tarka_selector, open_selector],
|
| 199 |
outputs=[tarka_output, open_output])
|
| 200 |
|
| 201 |
-
# Example
|
| 202 |
gr.Examples(
|
| 203 |
examples=[
|
| 204 |
[
|
| 205 |
"Which planet is known as the Red Planet?",
|
| 206 |
-
"Venus is Earth's twin.\nMars, the Red Planet.\nJupiter is the biggest.\nSaturn has rings."
|
| 207 |
-
"Tarka-AIR/Tarka-Embedding-150M-V1"
|
| 208 |
]
|
| 209 |
],
|
| 210 |
-
inputs=[query_input, docs_input
|
| 211 |
label="Try Example"
|
| 212 |
)
|
| 213 |
|
|
|
|
| 2 |
from sentence_transformers import SentenceTransformer
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
# Cache loaded models
|
| 6 |
loaded_models = {}
|
| 7 |
|
| 8 |
def load_model(model_name):
|
| 9 |
+
"""Load and cache a SentenceTransformer model."""
|
| 10 |
if model_name in loaded_models:
|
| 11 |
return loaded_models[model_name]
|
| 12 |
model = SentenceTransformer(model_name)
|
|
|
|
| 20 |
return "⚠️ Please enter a query."
|
| 21 |
if not documents.strip():
|
| 22 |
return "⚠️ Please enter documents (one per line)."
|
| 23 |
+
|
| 24 |
model = load_model(model_name)
|
| 25 |
doc_list = [d.strip() for d in documents.split("\n") if d.strip()]
|
| 26 |
if not doc_list:
|
| 27 |
return "⚠️ Please enter at least one valid document."
|
| 28 |
+
|
| 29 |
query_emb = model.encode_query(query)
|
| 30 |
doc_emb = model.encode_document(doc_list)
|
| 31 |
similarities = model.similarity(query_emb, doc_emb)
|
| 32 |
+
|
| 33 |
sorted_idx = torch.argsort(similarities[0], descending=True)
|
| 34 |
results = []
|
| 35 |
for i, idx in enumerate(sorted_idx):
|
|
|
|
| 44 |
return "⚠️ Please enter a query.", ""
|
| 45 |
if not documents.strip():
|
| 46 |
return "⚠️ Please enter documents (one per line).", ""
|
| 47 |
+
|
| 48 |
tarka = load_model(tarka_model)
|
| 49 |
openm = load_model(open_model)
|
| 50 |
|
|
|
|
| 52 |
if not doc_list:
|
| 53 |
return "⚠️ Please enter at least one valid document.", ""
|
| 54 |
|
|
|
|
| 55 |
tq = tarka.encode_query(query)
|
| 56 |
td = tarka.encode_document(doc_list)
|
| 57 |
tsim = tarka.similarity(tq, td)
|
|
|
|
| 60 |
od = openm.encode_document(doc_list)
|
| 61 |
osim = openm.similarity(oq, od)
|
| 62 |
|
|
|
|
| 63 |
tsorted = torch.argsort(tsim[0], descending=True)
|
| 64 |
osorted = torch.argsort(osim[0], descending=True)
|
| 65 |
|
| 66 |
+
# Make them look like cards
|
| 67 |
+
def format_result(sorted_indices, sims, model_label):
|
| 68 |
+
res = [
|
| 69 |
+
f"<div style='background-color:#f9fafb;border-radius:12px;padding:10px 14px;margin-bottom:10px;border:1px solid #e5e7eb;'>"
|
| 70 |
+
f"<b>{i+1}. (Score: {sims[0][idx]:.4f})</b><br>{doc_list[idx]}"
|
| 71 |
+
f"</div>"
|
| 72 |
+
for i, idx in enumerate(sorted_indices)
|
| 73 |
+
]
|
| 74 |
+
return f"<div style='font-family:Inter,sans-serif;font-size:15px;line-height:1.5;'>{''.join(res)}</div>"
|
| 75 |
|
| 76 |
+
tarka_html = format_result(tsorted, tsim, "Tarka Model")
|
| 77 |
+
open_html = format_result(osorted, osim, "Open Model")
|
| 78 |
|
| 79 |
+
return tarka_html, open_html
|
| 80 |
|
| 81 |
|
| 82 |
+
# --------------------------- UI ---------------------------
|
| 83 |
with gr.Blocks(
|
| 84 |
title="Document Similarity Explorer",
|
| 85 |
+
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo", neutral_hue="zinc", font=[gr.themes.GoogleFont("Inter"), "Inter", "sans-serif"]),
|
| 86 |
) as demo:
|
| 87 |
|
| 88 |
+
gr.Markdown(
|
| 89 |
+
"""
|
| 90 |
+
# 🧠 Tarka Embedding Model Playground
|
| 91 |
+
Experiment with Tarka-AIR’s embedding family for semantic search and compare performance with open-source baselines.
|
| 92 |
+
""",
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
with gr.Tabs():
|
| 96 |
+
# ---------------- SINGLE MODEL SEARCH ----------------
|
| 97 |
with gr.Tab("Single Model Search"):
|
| 98 |
with gr.Row():
|
| 99 |
with gr.Column(scale=1):
|
|
|
|
| 108 |
value="Tarka-AIR/Tarka-Embedding-150M-V1"
|
| 109 |
)
|
| 110 |
loading_msg = gr.Markdown(visible=False)
|
| 111 |
+
|
| 112 |
query_input = gr.Textbox(
|
| 113 |
label="Query",
|
| 114 |
placeholder="Enter your search query...",
|
| 115 |
lines=2
|
| 116 |
)
|
| 117 |
+
|
| 118 |
docs_input = gr.Textbox(
|
| 119 |
label="Documents",
|
| 120 |
placeholder="Enter one document per line...",
|
| 121 |
lines=10
|
| 122 |
)
|
| 123 |
+
|
| 124 |
search_btn = gr.Button("🔎 Search", variant="primary")
|
| 125 |
+
|
| 126 |
with gr.Column(scale=1):
|
| 127 |
result_box = gr.Markdown(label="Results", elem_id="results-box")
|
| 128 |
|
|
|
|
| 130 |
loading_msg.update(value=f"⏳ Loading **{model_name}**...", visible=True)
|
| 131 |
load_model(model_name)
|
| 132 |
return gr.update(value=f"✅ {model_name} loaded and ready!", visible=True)
|
| 133 |
+
|
| 134 |
model_selector.change(fn=on_model_change, inputs=[model_selector], outputs=[loading_msg])
|
| 135 |
|
| 136 |
search_btn.click(fn=find_similar_documents,
|
|
|
|
| 141 |
inputs=[query_input, docs_input, model_selector],
|
| 142 |
outputs=result_box)
|
| 143 |
|
| 144 |
+
# ---------------- MODEL COMPARISON ----------------
|
| 145 |
with gr.Tab("Compare Models"):
|
| 146 |
+
gr.Markdown("### ⚖️ Compare how different models rank the same documents")
|
| 147 |
+
|
| 148 |
with gr.Row():
|
| 149 |
with gr.Column(scale=1):
|
| 150 |
tarka_selector = gr.Dropdown(
|
| 151 |
label="Tarka Model",
|
| 152 |
choices=[
|
| 153 |
"Tarka-AIR/Tarka-Embedding-150M-V1",
|
|
|
|
|
|
|
| 154 |
],
|
| 155 |
value="Tarka-AIR/Tarka-Embedding-150M-V1"
|
| 156 |
)
|
|
|
|
| 181 |
compare_btn = gr.Button("⚖️ Compare Models", variant="primary")
|
| 182 |
|
| 183 |
with gr.Column(scale=2):
|
| 184 |
+
gr.Markdown("#### 📊 Comparison Results")
|
| 185 |
+
with gr.Row(equal_height=True):
|
| 186 |
+
tarka_output = gr.HTML(label="Tarka Model Results")
|
| 187 |
+
open_output = gr.HTML(label="Open Source Model Results")
|
| 188 |
|
| 189 |
def on_compare_models_load(tarka_model, open_model):
|
| 190 |
compare_loading.update(value=f"⏳ Loading **{tarka_model}** and **{open_model}**...", visible=True)
|
|
|
|
| 207 |
inputs=[query_compare, docs_compare, tarka_selector, open_selector],
|
| 208 |
outputs=[tarka_output, open_output])
|
| 209 |
|
| 210 |
+
# ---------------- Example Section ----------------
|
| 211 |
gr.Examples(
|
| 212 |
examples=[
|
| 213 |
[
|
| 214 |
"Which planet is known as the Red Planet?",
|
| 215 |
+
"Venus is Earth's twin.\nMars, the Red Planet.\nJupiter is the biggest.\nSaturn has rings."
|
|
|
|
| 216 |
]
|
| 217 |
],
|
| 218 |
+
inputs=[query_input, docs_input],
|
| 219 |
label="Try Example"
|
| 220 |
)
|
| 221 |
|