Spaces:
Running
Running
File size: 11,316 Bytes
6f8b70f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# srd_engine_final.py
# ============================================================
# CedroPass SRD – Final RAG Engine (Stable, Section-Aware)
# ============================================================
import os
import re
import io
import base64
import time
import shutil
import warnings
from typing import List, Dict, Any, Optional
from dotenv import load_dotenv
load_dotenv()
# -------------------- Data Processing --------------------
import pdfplumber
import camelot
from pdf2image import convert_from_path
import pytesseract
from PIL import Image
# -------------------- NLP & Retrieval --------------------
import spacy
from sentence_transformers import CrossEncoder
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.retrievers import BM25Retriever
from langchain_core.documents import Document
from rapidfuzz import process as fuzz_process
# -------------------- Claude --------------------
try:
from anthropic import Anthropic
except ImportError:
Anthropic = None
# -------------------- CONFIG --------------------
warnings.filterwarnings("ignore")
Image.MAX_IMAGE_PIXELS = None
POPPLER_PATH = os.getenv("POPPLER_PATH")
TESSERACT_PATH = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
if os.path.exists(TESSERACT_PATH):
pytesseract.pytesseract.tesseract_cmd = TESSERACT_PATH
# -------------------- NLP MODEL --------------------
print("[SYSTEM] Loading NLP pipelines...")
try:
NLP_EN = spacy.load("en_core_web_sm")
except OSError:
from spacy.cli import download
download("en_core_web_sm")
NLP_EN = spacy.load("en_core_web_sm")
# ============================================================
# TEXT UTILS
# ============================================================
def normalize_text(text: str) -> str:
return re.sub(r"\s+", " ", text).strip()
def lemmatize_text(text: str) -> str:
doc = NLP_EN(text[:50000])
return " ".join(
t.lemma_.lower()
for t in doc
if not t.is_space and not t.is_punct
)
# ============================================================
# SECTION-AWARE SRD SPLITTER (CRITICAL FIX)
# ============================================================
class SmartSRDSplitter:
"""
Guarantees that ALL child paragraphs inherit the correct
section_type until a new header appears.
"""
HEADER_REGEX = re.compile(
r"^(\d+(\.\d+)*|FR-\d+|NFR-\d+|[A-Z][A-Za-z\s]{3,}:)",
re.IGNORECASE,
)
def split_text(self, text: str) -> List[Document]:
docs: List[Document] = []
lines = text.splitlines()
buffer: List[str] = []
current_section_title = "General"
current_section_type = "general"
for raw in lines:
line = raw.strip()
if not line:
continue
if self.HEADER_REGEX.match(line):
# Flush previous chunk
if buffer:
docs.append(
Document(
page_content="\n".join(buffer),
metadata={
"type": "text",
"section": current_section_title,
"section_type": current_section_type,
"source": "SRD_Main",
},
)
)
buffer = [line]
current_section_title = line[:80]
lowered = line.lower()
if "functional requirement" in lowered or "fr-" in lowered:
current_section_type = "functional"
elif "non-functional" in lowered or "nfr-" in lowered:
current_section_type = "nonfunctional"
else:
current_section_type = "general"
else:
buffer.append(line)
# Final flush
if buffer:
docs.append(
Document(
page_content="\n".join(buffer),
metadata={
"type": "text",
"section": current_section_title,
"section_type": current_section_type,
"source": "SRD_Main",
},
)
)
return docs
# ============================================================
# PDF EXTRACTORS
# ============================================================
def extract_pdf_text(path: str) -> str:
text = ""
with pdfplumber.open(path) as pdf:
for p in pdf.pages:
t = p.extract_text()
if t:
text += t + "\n"
return text
def extract_tables(path: str) -> List[Document]:
docs: List[Document] = []
try:
tables = camelot.read_pdf(path, pages="all", flavor="stream")
for i, t in enumerate(tables):
md = t.df.to_markdown(index=False)
if len(md) > 30:
docs.append(
Document(
page_content=md,
metadata={
"type": "table",
"section_type": "general",
"source": "SRD_Table",
},
)
)
except Exception:
pass
return docs
# ============================================================
# DIAGRAM INTERPRETER (TEXT-ONLY SAFE)
# ============================================================
class DiagramInterpreter:
def __init__(self):
self.client = (
Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
if Anthropic and os.getenv("ANTHROPIC_API_KEY")
else None
)
def describe(self, image: Image.Image, label: str) -> str:
if not self.client:
return pytesseract.image_to_string(image)
buf = io.BytesIO()
image.convert("RGB").save(buf, format="JPEG", quality=85)
b64 = base64.b64encode(buf.getvalue()).decode()
resp = self.client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=600,
temperature=0.2,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": f"Explain this {label} diagram for an SRD."},
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": b64,
},
},
],
}
],
)
return resp.content[0].text
# ============================================================
# CORE RAG ENGINE
# ============================================================
class SRDChatbotEngine:
def __init__(self, chroma_dir: str = "chroma_db_final"):
print("[ENGINE] Initializing retrievers...")
self.embedding_model = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
self.reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
self.chroma_dir = chroma_dir
self.vectorstore: Optional[Chroma] = None
self.chroma_retriever = None
self.bm25_retriever: Optional[BM25Retriever] = None
self.vocab = set()
# -------------------- BUILD INDEX --------------------
def build_index(
self,
pdf_path: str,
diagrams: Optional[List[str]] = None,
):
if os.path.exists(self.chroma_dir):
shutil.rmtree(self.chroma_dir)
splitter = SmartSRDSplitter()
docs = splitter.split_text(extract_pdf_text(pdf_path))
docs.extend(extract_tables(pdf_path))
for d in docs:
d.metadata["lemma"] = lemmatize_text(d.page_content)
for w in d.page_content.split():
if w.isalnum():
self.vocab.add(w.lower())
self.vectorstore = Chroma.from_documents(
docs,
embedding=self.embedding_model,
persist_directory=self.chroma_dir,
collection_name="srd_final",
)
self.chroma_retriever = self.vectorstore.as_retriever(search_kwargs={"k": 20})
self.bm25_retriever = BM25Retriever.from_documents(docs)
self.bm25_retriever.k = 20
print(f"✅ Indexed {len(docs)} SRD chunks")
# -------------------- INTENT --------------------
def detect_intent(self, q: str) -> str:
q = q.lower()
if any(w in q for w in ["list", "enumerate", "all functional", "requirements of"]):
return "enumeration"
return "qa"
# -------------------- ENUMERATION (NO SIM SEARCH) --------------------
def list_functional_requirements(self) -> List[str]:
data = self.vectorstore.get(
where={"section_type": "functional"}
)
return data.get("documents", [])
# -------------------- QUERY --------------------
def answer(self, query: str, claude) -> str:
intent = self.detect_intent(query)
if intent == "enumeration":
items = self.list_functional_requirements()
if not items:
return "I could not find sufficient information in the provided SRD."
prompt = f"""
You are a Senior Project Architect.
List ALL functional requirements below.
Do not merge, summarize, or invent anything.
REQUIREMENTS:
{chr(10).join(items)}
"""
return claude.generate_raw(prompt)
# ---------- Normal QA ----------
dense = self.chroma_retriever.invoke(query)
sparse = self.bm25_retriever.invoke(query)
pool = dense + sparse
pairs = [[query, d.page_content] for d in pool]
scores = self.reranker.predict(pairs)
top = [
d.page_content
for d, s in sorted(zip(pool, scores), key=lambda x: x[1], reverse=True)
if s > -6
][:8]
if not top:
return "I could not find sufficient information in the provided SRD."
ctx = "\n---\n".join(top[:4000])
prompt = f"""
Answer using ONLY the SRD context below.
If unsupported, say so explicitly.
CONTEXT:
{ctx}
QUESTION:
{query}
"""
return claude.generate_raw(prompt)
# ============================================================
# CLAUDE ANSWERER
# ============================================================
class ClaudeAnswerer:
def __init__(self):
if Anthropic is None:
raise RuntimeError("anthropic not installed")
self.client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
self.model = "claude-sonnet-4-5-20250929"
def generate_raw(self, prompt: str) -> str:
resp = self.client.messages.create(
model=self.model,
max_tokens=1200,
temperature=0.2,
messages=[{"role": "user", "content": prompt}],
)
return resp.content[0].text
|