Spaces:
Running
Running
Hasan-Atris3
commited on
Commit
·
6f8b70f
1
Parent(s):
793f5d8
my first commitment
Browse files- .gitignore +72 -0
- app.py +263 -0
- chainlit.md +14 -0
- db.py +41 -0
- main_final.py +318 -0
- srd_engine_final.py +359 -0
- srd_engine_v2.py +463 -0
.gitignore
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual Environment
|
| 24 |
+
venv/
|
| 25 |
+
ENV/
|
| 26 |
+
env/
|
| 27 |
+
.venv
|
| 28 |
+
|
| 29 |
+
# Environment variables
|
| 30 |
+
.env
|
| 31 |
+
.env.local
|
| 32 |
+
.env.*.local
|
| 33 |
+
|
| 34 |
+
# IDE
|
| 35 |
+
.vscode/
|
| 36 |
+
.idea/
|
| 37 |
+
*.swp
|
| 38 |
+
*.swo
|
| 39 |
+
*~
|
| 40 |
+
.DS_Store
|
| 41 |
+
|
| 42 |
+
# Chainlit
|
| 43 |
+
.chainlit/
|
| 44 |
+
|
| 45 |
+
# ChromaDB
|
| 46 |
+
chroma_db*/
|
| 47 |
+
chroma_*/
|
| 48 |
+
|
| 49 |
+
# Database files
|
| 50 |
+
*.db
|
| 51 |
+
*.sqlite
|
| 52 |
+
*.sqlite3
|
| 53 |
+
cedropass.db
|
| 54 |
+
|
| 55 |
+
# Data files (uncomment if you don't want to track these)
|
| 56 |
+
# *.csv
|
| 57 |
+
# *.xlsx
|
| 58 |
+
# *.pdf
|
| 59 |
+
# *.jpg
|
| 60 |
+
# *.png
|
| 61 |
+
|
| 62 |
+
# Logs
|
| 63 |
+
*.log
|
| 64 |
+
logs/
|
| 65 |
+
|
| 66 |
+
# Temporary files
|
| 67 |
+
.files/
|
| 68 |
+
*.tmp
|
| 69 |
+
*.temp
|
| 70 |
+
|
| 71 |
+
# Results and outputs
|
| 72 |
+
results.txt
|
app.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import time
|
| 3 |
+
import chainlit as cl
|
| 4 |
+
|
| 5 |
+
from srd_engine_v2 import SmartKnowledgeBase, ClaudeAnswerer
|
| 6 |
+
from db import SessionLocal, User, Chat, Message
|
| 7 |
+
|
| 8 |
+
claude = ClaudeAnswerer()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@cl.on_chat_start
|
| 12 |
+
async def start():
|
| 13 |
+
session = cl.user_session
|
| 14 |
+
db = SessionLocal()
|
| 15 |
+
try:
|
| 16 |
+
# -----------------------
|
| 17 |
+
# USER IDENTIFICATION
|
| 18 |
+
# -----------------------
|
| 19 |
+
if not session.get("user_id"):
|
| 20 |
+
user = User()
|
| 21 |
+
db.add(user)
|
| 22 |
+
db.commit()
|
| 23 |
+
session.set("user_id", user.id)
|
| 24 |
+
|
| 25 |
+
user_id = session.get("user_id")
|
| 26 |
+
|
| 27 |
+
# -----------------------
|
| 28 |
+
# CHAT SELECTION
|
| 29 |
+
# -----------------------
|
| 30 |
+
chats = db.query(Chat).filter(Chat.user_id == user_id).all()
|
| 31 |
+
|
| 32 |
+
actions = [cl.Action(name="new_chat", payload={}, label="➕ New Project Chat")]
|
| 33 |
+
for c in chats[-5:]:
|
| 34 |
+
actions.append(
|
| 35 |
+
cl.Action(
|
| 36 |
+
name="resume_chat",
|
| 37 |
+
payload={"chat_id": c.id},
|
| 38 |
+
label=f"📂 {c.project_name}"
|
| 39 |
+
)
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
res = await cl.AskActionMessage(
|
| 43 |
+
content="Choose a chat or start a new one:",
|
| 44 |
+
actions=actions
|
| 45 |
+
).send()
|
| 46 |
+
|
| 47 |
+
if not res:
|
| 48 |
+
return
|
| 49 |
+
|
| 50 |
+
# -----------------------
|
| 51 |
+
# NEW CHAT
|
| 52 |
+
# -----------------------
|
| 53 |
+
if res["name"] == "new_chat":
|
| 54 |
+
project_res = await cl.AskUserMessage(
|
| 55 |
+
content="Enter **Project Name**:",
|
| 56 |
+
timeout=300
|
| 57 |
+
).send()
|
| 58 |
+
if not project_res:
|
| 59 |
+
return
|
| 60 |
+
project_name = project_res["output"]
|
| 61 |
+
|
| 62 |
+
learn_res = await cl.AskActionMessage(
|
| 63 |
+
content="Allow this chat to be saved/learned for improving the bot?",
|
| 64 |
+
actions=[
|
| 65 |
+
cl.Action(name="learn_yes", payload={"v": True}, label="✅ Yes (Enable Learning)"),
|
| 66 |
+
cl.Action(name="learn_no", payload={"v": False}, label="❌ No (Do Not Learn)"),
|
| 67 |
+
],
|
| 68 |
+
).send()
|
| 69 |
+
learning_enabled = bool(learn_res["payload"]["v"]) if learn_res else True
|
| 70 |
+
|
| 71 |
+
chat = Chat(user_id=user_id, project_name=project_name, learning_enabled=learning_enabled)
|
| 72 |
+
db.add(chat)
|
| 73 |
+
db.commit()
|
| 74 |
+
|
| 75 |
+
session.set("chat_id", chat.id)
|
| 76 |
+
session.set("learning_enabled", chat.learning_enabled)
|
| 77 |
+
|
| 78 |
+
engine = SmartKnowledgeBase(chroma_dir="chroma_global_db")
|
| 79 |
+
engine.set_current_project(project_name)
|
| 80 |
+
engine.set_current_chat(chat.id) # ✅ NEW
|
| 81 |
+
engine.set_current_user(user_id) # ✅ NEW
|
| 82 |
+
session.set("engine", engine)
|
| 83 |
+
|
| 84 |
+
await run_ingestion(engine)
|
| 85 |
+
|
| 86 |
+
# -----------------------
|
| 87 |
+
# RESUME CHAT
|
| 88 |
+
# -----------------------
|
| 89 |
+
else:
|
| 90 |
+
chat_id = res["payload"]["chat_id"]
|
| 91 |
+
chat = db.query(Chat).get(chat_id)
|
| 92 |
+
if not chat:
|
| 93 |
+
await cl.Message(content="⚠️ Chat not found.").send()
|
| 94 |
+
return
|
| 95 |
+
|
| 96 |
+
session.set("chat_id", chat.id)
|
| 97 |
+
session.set("learning_enabled", chat.learning_enabled)
|
| 98 |
+
|
| 99 |
+
engine = SmartKnowledgeBase(chroma_dir="chroma_global_db")
|
| 100 |
+
engine.set_current_project(chat.project_name)
|
| 101 |
+
engine.set_current_chat(chat.id) # ✅ NEW
|
| 102 |
+
engine.set_current_user(user_id) # ✅ NEW
|
| 103 |
+
session.set("engine", engine)
|
| 104 |
+
|
| 105 |
+
# Restore history
|
| 106 |
+
messages = (
|
| 107 |
+
db.query(Message)
|
| 108 |
+
.filter(Message.chat_id == chat_id)
|
| 109 |
+
.order_by(Message.created_at)
|
| 110 |
+
.all()
|
| 111 |
+
)
|
| 112 |
+
for m in messages:
|
| 113 |
+
await cl.Message(content=m.content, author=m.role).send()
|
| 114 |
+
|
| 115 |
+
finally:
|
| 116 |
+
db.close()
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
async def run_ingestion(engine: SmartKnowledgeBase):
|
| 120 |
+
files = await cl.AskFileMessage(
|
| 121 |
+
content="Upload the **SRD PDF**:",
|
| 122 |
+
accept=["application/pdf"],
|
| 123 |
+
max_size_mb=50,
|
| 124 |
+
timeout=600
|
| 125 |
+
).send()
|
| 126 |
+
if not files:
|
| 127 |
+
return
|
| 128 |
+
|
| 129 |
+
srd_file_path = files[0].path
|
| 130 |
+
|
| 131 |
+
res = await cl.AskActionMessage(
|
| 132 |
+
content="Select Diagram Vision Mode:",
|
| 133 |
+
actions=[
|
| 134 |
+
cl.Action(name="qwen", payload={"v": "qwen"}, label="Qwen"),
|
| 135 |
+
cl.Action(name="claude", payload={"v": "claude"}, label="Claude"),
|
| 136 |
+
cl.Action(name="both", payload={"v": "both"}, label="Both"),
|
| 137 |
+
cl.Action(name="none", payload={"v": "none"}, label="None"),
|
| 138 |
+
]
|
| 139 |
+
).send()
|
| 140 |
+
|
| 141 |
+
mode = res["payload"]["v"] if res else "none"
|
| 142 |
+
use_qwen = mode in ("qwen", "both")
|
| 143 |
+
use_claude = mode in ("claude", "both")
|
| 144 |
+
|
| 145 |
+
status = cl.Message(content="🚀 Starting ingestion...")
|
| 146 |
+
await status.send()
|
| 147 |
+
|
| 148 |
+
await cl.make_async(engine.process_document_step)(
|
| 149 |
+
srd_file_path, "pdf_text", "SRD Main", False, False
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
status.content += "\n✅ SRD indexed"
|
| 153 |
+
await status.update()
|
| 154 |
+
|
| 155 |
+
while True:
|
| 156 |
+
add = await cl.AskActionMessage(
|
| 157 |
+
content="Add a diagram?",
|
| 158 |
+
actions=[
|
| 159 |
+
cl.Action(name="yes", payload={}, label="➕ Add"),
|
| 160 |
+
cl.Action(name="done", payload={}, label="Done"),
|
| 161 |
+
]
|
| 162 |
+
).send()
|
| 163 |
+
|
| 164 |
+
if not add or add["name"] == "done":
|
| 165 |
+
break
|
| 166 |
+
|
| 167 |
+
title = await cl.AskUserMessage(content="Diagram title:", timeout=300).send()
|
| 168 |
+
if not title:
|
| 169 |
+
break
|
| 170 |
+
|
| 171 |
+
file = await cl.AskFileMessage(
|
| 172 |
+
content="Upload diagram:",
|
| 173 |
+
accept=["image/png", "image/jpeg", "application/pdf"],
|
| 174 |
+
max_size_mb=20,
|
| 175 |
+
timeout=600
|
| 176 |
+
).send()
|
| 177 |
+
|
| 178 |
+
if not file:
|
| 179 |
+
break
|
| 180 |
+
|
| 181 |
+
await cl.make_async(engine.process_document_step)(
|
| 182 |
+
file[0].path, "diagram", title["output"], use_qwen, use_claude
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
status.content += f"\n🎨 Diagram '{title['output']}' indexed"
|
| 186 |
+
await status.update()
|
| 187 |
+
|
| 188 |
+
status.content += "\n🎉 Ingestion complete. Ask questions!"
|
| 189 |
+
await status.update()
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
@cl.on_message
|
| 193 |
+
async def main(message: cl.Message):
|
| 194 |
+
session = cl.user_session
|
| 195 |
+
db = SessionLocal()
|
| 196 |
+
try:
|
| 197 |
+
engine: SmartKnowledgeBase = session.get("engine")
|
| 198 |
+
chat_id = session.get("chat_id")
|
| 199 |
+
|
| 200 |
+
if not engine or not chat_id:
|
| 201 |
+
await cl.Message(content="⚠️ Session error. Please refresh.").send()
|
| 202 |
+
return
|
| 203 |
+
|
| 204 |
+
# Save user msg
|
| 205 |
+
db.add(Message(chat_id=chat_id, role="user", content=message.content))
|
| 206 |
+
db.commit()
|
| 207 |
+
|
| 208 |
+
# Answer
|
| 209 |
+
response = await cl.make_async(engine.generate_smart_response)(message.content, claude)
|
| 210 |
+
|
| 211 |
+
# Save assistant msg
|
| 212 |
+
db.add(Message(chat_id=chat_id, role="assistant", content=response))
|
| 213 |
+
db.commit()
|
| 214 |
+
|
| 215 |
+
await cl.Message(content=response).send()
|
| 216 |
+
|
| 217 |
+
# Feedback
|
| 218 |
+
await cl.Message(
|
| 219 |
+
content="",
|
| 220 |
+
actions=[
|
| 221 |
+
cl.Action(
|
| 222 |
+
name="correct",
|
| 223 |
+
payload={"original": message.content},
|
| 224 |
+
label="🔧 Correct This"
|
| 225 |
+
)
|
| 226 |
+
]
|
| 227 |
+
).send()
|
| 228 |
+
|
| 229 |
+
finally:
|
| 230 |
+
db.close()
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
@cl.action_callback("correct")
|
| 234 |
+
async def on_correct(action):
|
| 235 |
+
session = cl.user_session
|
| 236 |
+
db = SessionLocal()
|
| 237 |
+
try:
|
| 238 |
+
engine: SmartKnowledgeBase = session.get("engine")
|
| 239 |
+
chat_id = session.get("chat_id")
|
| 240 |
+
learning_enabled = bool(session.get("learning_enabled", True))
|
| 241 |
+
|
| 242 |
+
await action.remove()
|
| 243 |
+
|
| 244 |
+
res = await cl.AskUserMessage(
|
| 245 |
+
content="Paste the correct information:",
|
| 246 |
+
timeout=600
|
| 247 |
+
).send()
|
| 248 |
+
if not res:
|
| 249 |
+
return
|
| 250 |
+
|
| 251 |
+
# Always store correction text in DB (audit trail)
|
| 252 |
+
db.add(Message(chat_id=chat_id, role="user_feedback", content=res["output"]))
|
| 253 |
+
db.commit()
|
| 254 |
+
|
| 255 |
+
# Learn only if allowed
|
| 256 |
+
if learning_enabled:
|
| 257 |
+
engine.learn_from_interaction(action.payload["original"], res["output"])
|
| 258 |
+
await cl.Message(content="✅ Correction saved and learned.").send()
|
| 259 |
+
else:
|
| 260 |
+
await cl.Message(content="✅ Correction saved (learning disabled for this chat).").send()
|
| 261 |
+
|
| 262 |
+
finally:
|
| 263 |
+
db.close()
|
chainlit.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Welcome to Chainlit! 🚀🤖
|
| 2 |
+
|
| 3 |
+
Hi there, Developer! 👋 We're excited to have you on board. Chainlit is a powerful tool designed to help you prototype, debug and share applications built on top of LLMs.
|
| 4 |
+
|
| 5 |
+
## Useful Links 🔗
|
| 6 |
+
|
| 7 |
+
- **Documentation:** Get started with our comprehensive [Chainlit Documentation](https://docs.chainlit.io) 📚
|
| 8 |
+
- **Discord Community:** Join our friendly [Chainlit Discord](https://discord.gg/k73SQ3FyUh) to ask questions, share your projects, and connect with other developers! 💬
|
| 9 |
+
|
| 10 |
+
We can't wait to see what you create with Chainlit! Happy coding! 💻😊
|
| 11 |
+
|
| 12 |
+
## Welcome screen
|
| 13 |
+
|
| 14 |
+
To modify the welcome screen, edit the `chainlit.md` file at the root of your project. If you do not want a welcome screen, just leave this file empty.
|
db.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# db.py
|
| 2 |
+
from sqlalchemy import (
|
| 3 |
+
create_engine, Column, String, Text, DateTime, ForeignKey, Boolean
|
| 4 |
+
)
|
| 5 |
+
from sqlalchemy.orm import declarative_base, sessionmaker
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import uuid
|
| 8 |
+
|
| 9 |
+
Base = declarative_base()
|
| 10 |
+
engine = create_engine("sqlite:///cedropass.db")
|
| 11 |
+
SessionLocal = sessionmaker(bind=engine)
|
| 12 |
+
|
| 13 |
+
def gen_id():
|
| 14 |
+
return str(uuid.uuid4())
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class User(Base):
|
| 18 |
+
__tablename__ = "users"
|
| 19 |
+
id = Column(String, primary_key=True, default=gen_id)
|
| 20 |
+
created_at = Column(DateTime, default=datetime.utcnow)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class Chat(Base):
|
| 24 |
+
__tablename__ = "chats"
|
| 25 |
+
id = Column(String, primary_key=True, default=gen_id)
|
| 26 |
+
user_id = Column(String, ForeignKey("users.id"))
|
| 27 |
+
project_name = Column(String)
|
| 28 |
+
learning_enabled = Column(Boolean, default=True) # ✅ opt-in learning
|
| 29 |
+
created_at = Column(DateTime, default=datetime.utcnow)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Message(Base):
|
| 33 |
+
__tablename__ = "messages"
|
| 34 |
+
id = Column(String, primary_key=True, default=gen_id)
|
| 35 |
+
chat_id = Column(String, ForeignKey("chats.id"))
|
| 36 |
+
role = Column(String) # user / assistant / user_feedback
|
| 37 |
+
content = Column(Text)
|
| 38 |
+
created_at = Column(DateTime, default=datetime.utcnow)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
Base.metadata.create_all(engine)
|
main_final.py
ADDED
|
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# # main2.py
|
| 2 |
+
|
| 3 |
+
# import os
|
| 4 |
+
# import time
|
| 5 |
+
# from dotenv import load_dotenv
|
| 6 |
+
|
| 7 |
+
# load_dotenv()
|
| 8 |
+
|
| 9 |
+
# from srd_engine_final import SRDChatbotEngine, ClaudeAnswerer
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# def yes_no(prompt: str, default: bool = False) -> bool:
|
| 13 |
+
# """
|
| 14 |
+
# Simple [y/N] helper.
|
| 15 |
+
# """
|
| 16 |
+
# raw = input(prompt).strip().lower()
|
| 17 |
+
# if not raw:
|
| 18 |
+
# return default
|
| 19 |
+
# return raw in ("y", "yes")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# def main():
|
| 23 |
+
# engine = SRDChatbotEngine()
|
| 24 |
+
# claude_text_llm = None # Lazy init (for final answers)
|
| 25 |
+
|
| 26 |
+
# print("\n" + "=" * 50)
|
| 27 |
+
# print(" ULTIMATE SRD CO-PILOT (Claude + Qwen2-VL)")
|
| 28 |
+
# print("=" * 50)
|
| 29 |
+
|
| 30 |
+
# while True:
|
| 31 |
+
# print("\n1. Index Documents")
|
| 32 |
+
# print("2. Ask Question")
|
| 33 |
+
# print("3. Exit")
|
| 34 |
+
|
| 35 |
+
# choice = input("\nChoose: ").strip()
|
| 36 |
+
|
| 37 |
+
# # ----- INDEX -----
|
| 38 |
+
# if choice == "1":
|
| 39 |
+
# pdf = input("Enter SRD PDF path: ").strip().strip('"')
|
| 40 |
+
# if not os.path.exists(pdf):
|
| 41 |
+
# print("[ERROR] SRD PDF not found.")
|
| 42 |
+
# continue
|
| 43 |
+
|
| 44 |
+
# gantt = (
|
| 45 |
+
# input("Gantt Chart path (optional): ").strip().strip('"') or None
|
| 46 |
+
# )
|
| 47 |
+
# cls = (
|
| 48 |
+
# input("Class Diagram path (optional): ").strip().strip('"') or None
|
| 49 |
+
# )
|
| 50 |
+
# seq = (
|
| 51 |
+
# input("Sequence Diagram path (optional): ").strip().strip('"')
|
| 52 |
+
# or None
|
| 53 |
+
# )
|
| 54 |
+
|
| 55 |
+
# # Vision choices
|
| 56 |
+
# print("\nDiagram understanding options:")
|
| 57 |
+
|
| 58 |
+
# # <<< ADDED: Ask user if they want Qwen2-VL >>>
|
| 59 |
+
# use_qwen_vision = yes_no(
|
| 60 |
+
# "Use Qwen2-VL (free, open-source vision)? (y/N): ", default=False
|
| 61 |
+
# )
|
| 62 |
+
|
| 63 |
+
# # EXISTING CLAUDE OPTION
|
| 64 |
+
# use_claude_vision = yes_no(
|
| 65 |
+
# "Also use Claude Vision for diagrams? (y/N): ", default=False
|
| 66 |
+
# )
|
| 67 |
+
|
| 68 |
+
# # User feedback
|
| 69 |
+
# if use_qwen_vision and use_claude_vision:
|
| 70 |
+
# print("→ Diagrams will be processed by BOTH Qwen2-VL (free) and Claude Vision (paid).")
|
| 71 |
+
# elif use_qwen_vision:
|
| 72 |
+
# print("→ Diagrams will be processed ONLY by Qwen2-VL (free).")
|
| 73 |
+
# elif use_claude_vision:
|
| 74 |
+
# print("→ Diagrams will be processed ONLY by Claude Vision.")
|
| 75 |
+
# else:
|
| 76 |
+
# print("→ No Vision AI selected. Using OCR only (fastest).")
|
| 77 |
+
|
| 78 |
+
# try:
|
| 79 |
+
# engine.build_index(
|
| 80 |
+
# pdf_path=pdf,
|
| 81 |
+
# gantt_path=gantt,
|
| 82 |
+
# class_path=cls,
|
| 83 |
+
# seq_path=seq,
|
| 84 |
+
# use_qwen_vision=use_qwen_vision, # <<< CHANGED FROM True
|
| 85 |
+
# use_claude_vision=use_claude_vision,
|
| 86 |
+
# )
|
| 87 |
+
# print("✔ Indexed successfully.")
|
| 88 |
+
# except Exception as e:
|
| 89 |
+
# print(f"[ERROR] Indexing failed: {e}")
|
| 90 |
+
|
| 91 |
+
# # ----- CHAT -----
|
| 92 |
+
# elif choice == "2":
|
| 93 |
+
# if not engine.vectorstore:
|
| 94 |
+
# print("Please index documents first (Option 1).")
|
| 95 |
+
# continue
|
| 96 |
+
|
| 97 |
+
# if claude_text_llm is None:
|
| 98 |
+
# try:
|
| 99 |
+
# claude_text_llm = ClaudeAnswerer()
|
| 100 |
+
# print("✔ Claude (text) initialized for final answers.")
|
| 101 |
+
# except Exception as e:
|
| 102 |
+
# print(f"[ERROR] Failed to init Claude for answers: {e}")
|
| 103 |
+
# print(
|
| 104 |
+
# "Make sure 'anthropic' is installed and ANTHROPIC_API_KEY is set."
|
| 105 |
+
# )
|
| 106 |
+
# continue
|
| 107 |
+
|
| 108 |
+
# while True:
|
| 109 |
+
# q = input("\n[You]: ").strip()
|
| 110 |
+
# if q.lower() in ("exit", "back", "quit"):
|
| 111 |
+
# break
|
| 112 |
+
|
| 113 |
+
# # <<< ADDED: Total question timer >>>
|
| 114 |
+
# total_start = time.time()
|
| 115 |
+
|
| 116 |
+
# # ----- Retrieval Timer -----
|
| 117 |
+
# retrieval_start = time.time()
|
| 118 |
+
# try:
|
| 119 |
+
# results = engine.hybrid_search(q, top_k=7)
|
| 120 |
+
# except Exception as e:
|
| 121 |
+
# print(f"[ERROR] Search failed: {e}")
|
| 122 |
+
# continue
|
| 123 |
+
# retrieval_time = time.time() - retrieval_start
|
| 124 |
+
# print(f"[Retrieved in {retrieval_time:.2f}s]")
|
| 125 |
+
|
| 126 |
+
# if not results:
|
| 127 |
+
# print("No matching content found in the SRD or diagrams.")
|
| 128 |
+
# continue
|
| 129 |
+
|
| 130 |
+
# # Debug: show where the info came from
|
| 131 |
+
# for r in results:
|
| 132 |
+
# src = r["metadata"].get("source")
|
| 133 |
+
# sect = r["metadata"].get("section", "N/A")
|
| 134 |
+
# score = r["score"]
|
| 135 |
+
# print(f" → {src} | section={sect} | score={score:.2f}")
|
| 136 |
+
|
| 137 |
+
# print("\n--- Claude Answer ---")
|
| 138 |
+
|
| 139 |
+
# # ----- Claude answering time -----
|
| 140 |
+
# claude_start = time.time()
|
| 141 |
+
# try:
|
| 142 |
+
# answer = claude_text_llm.generate_answer(q, results)
|
| 143 |
+
# print(answer)
|
| 144 |
+
# except Exception as e:
|
| 145 |
+
# print(f"Claude error: {e}")
|
| 146 |
+
# claude_time = time.time() - claude_start
|
| 147 |
+
|
| 148 |
+
# print(f"\n[Claude Answer Time: {claude_time:.2f}s]")
|
| 149 |
+
|
| 150 |
+
# total_time = time.time() - total_start
|
| 151 |
+
# print(f"[Total Time (Question → Final Answer): {total_time:.2f}s]")
|
| 152 |
+
# print("---------------------")
|
| 153 |
+
|
| 154 |
+
# # ----- EXIT -----
|
| 155 |
+
# elif choice == "3":
|
| 156 |
+
# print("Goodbye.")
|
| 157 |
+
# break
|
| 158 |
+
|
| 159 |
+
# else:
|
| 160 |
+
# print("Invalid choice. Please select 1, 2, or 3.")
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
# if __name__ == "__main__":
|
| 164 |
+
# main()
|
| 165 |
+
# main2.py
|
| 166 |
+
|
| 167 |
+
import os
|
| 168 |
+
import time
|
| 169 |
+
from dotenv import load_dotenv
|
| 170 |
+
|
| 171 |
+
load_dotenv()
|
| 172 |
+
|
| 173 |
+
from srd_engine_final import SRDChatbotEngine, ClaudeAnswerer
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def yes_no(prompt: str, default: bool = False) -> bool:
|
| 177 |
+
"""
|
| 178 |
+
Simple [y/N] helper.
|
| 179 |
+
"""
|
| 180 |
+
raw = input(prompt).strip().lower()
|
| 181 |
+
if not raw:
|
| 182 |
+
return default
|
| 183 |
+
return raw in ("y", "yes")
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def main():
|
| 187 |
+
engine = SRDChatbotEngine()
|
| 188 |
+
claude_text_llm = None # Lazy init (for final answers)
|
| 189 |
+
|
| 190 |
+
print("\n" + "=" * 50)
|
| 191 |
+
print(" ULTIMATE SRD CO-PILOT (Claude + Qwen2-VL)")
|
| 192 |
+
print("=" * 50)
|
| 193 |
+
|
| 194 |
+
while True:
|
| 195 |
+
print("\n1. Index Documents")
|
| 196 |
+
print("2. Ask Question")
|
| 197 |
+
print("3. Exit")
|
| 198 |
+
|
| 199 |
+
choice = input("\nChoose: ").strip()
|
| 200 |
+
|
| 201 |
+
# ----- INDEX -----
|
| 202 |
+
if choice == "1":
|
| 203 |
+
pdf = input("Enter SRD PDF path: ").strip().strip('"')
|
| 204 |
+
if not os.path.exists(pdf):
|
| 205 |
+
print("[ERROR] SRD PDF not found.")
|
| 206 |
+
continue
|
| 207 |
+
|
| 208 |
+
gantt = input("Gantt Chart path (optional): ").strip().strip('"') or None
|
| 209 |
+
cls = input("Class Diagram path (optional): ").strip().strip('"') or None
|
| 210 |
+
seq = input("Sequence Diagram path (optional): ").strip().strip('"') or None
|
| 211 |
+
|
| 212 |
+
print("\nDiagram understanding options:")
|
| 213 |
+
|
| 214 |
+
use_qwen_vision = yes_no(
|
| 215 |
+
"Use Qwen2-VL (free, open-source vision)? (y/N): ", default=False
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
use_claude_vision = yes_no(
|
| 219 |
+
"Also use Claude Vision for diagrams? (y/N): ", default=False
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
if use_qwen_vision and use_claude_vision:
|
| 223 |
+
print("→ Diagrams will be processed by BOTH Qwen2-VL (free) and Claude Vision (paid).")
|
| 224 |
+
elif use_qwen_vision:
|
| 225 |
+
print("→ Diagrams will be processed ONLY by Qwen2-VL (free).")
|
| 226 |
+
elif use_claude_vision:
|
| 227 |
+
print("→ Diagrams will be processed ONLY by Claude Vision.")
|
| 228 |
+
else:
|
| 229 |
+
print("→ No Vision AI selected. Using OCR only (fastest).")
|
| 230 |
+
|
| 231 |
+
try:
|
| 232 |
+
t0 = time.time()
|
| 233 |
+
engine.build_index(
|
| 234 |
+
pdf_path=pdf,
|
| 235 |
+
gantt_path=gantt,
|
| 236 |
+
class_path=cls,
|
| 237 |
+
seq_path=seq,
|
| 238 |
+
use_qwen_vision=use_qwen_vision,
|
| 239 |
+
use_claude_vision=use_claude_vision,
|
| 240 |
+
)
|
| 241 |
+
t1 = time.time()
|
| 242 |
+
print(f"✔ Indexed successfully in {t1 - t0:.2f}s.")
|
| 243 |
+
except Exception as e:
|
| 244 |
+
print(f"[ERROR] Indexing failed: {e}")
|
| 245 |
+
|
| 246 |
+
# ----- CHAT -----
|
| 247 |
+
elif choice == "2":
|
| 248 |
+
if not engine.vectorstore:
|
| 249 |
+
print("Please index documents first (Option 1).")
|
| 250 |
+
continue
|
| 251 |
+
|
| 252 |
+
if claude_text_llm is None:
|
| 253 |
+
try:
|
| 254 |
+
claude_text_llm = ClaudeAnswerer()
|
| 255 |
+
print("✔ Claude (text) initialized for final answers.")
|
| 256 |
+
except Exception as e:
|
| 257 |
+
print(f"[ERROR] Failed to init Claude for answers: {e}")
|
| 258 |
+
print(
|
| 259 |
+
"Make sure 'anthropic' is installed and ANTHROPIC_API_KEY is set."
|
| 260 |
+
)
|
| 261 |
+
continue
|
| 262 |
+
|
| 263 |
+
while True:
|
| 264 |
+
q = input("\n[You]: ").strip()
|
| 265 |
+
if q.lower() in ("exit", "back", "quit"):
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
total_start = time.time()
|
| 269 |
+
|
| 270 |
+
# Retrieval
|
| 271 |
+
retrieval_start = time.time()
|
| 272 |
+
try:
|
| 273 |
+
results = engine.hybrid_search(q, top_k=7)
|
| 274 |
+
except Exception as e:
|
| 275 |
+
print(f"[ERROR] Search failed: {e}")
|
| 276 |
+
continue
|
| 277 |
+
retrieval_time = time.time() - retrieval_start
|
| 278 |
+
print(f"[Retrieved in {retrieval_time:.2f}s]")
|
| 279 |
+
|
| 280 |
+
if not results:
|
| 281 |
+
print("No matching content found in the SRD or diagrams.")
|
| 282 |
+
continue
|
| 283 |
+
|
| 284 |
+
for r in results:
|
| 285 |
+
src = r["metadata"].get("source")
|
| 286 |
+
sect = r["metadata"].get("section", "N/A")
|
| 287 |
+
score = r["score"]
|
| 288 |
+
print(f" → {src} | section={sect} | score={score:.2f}")
|
| 289 |
+
|
| 290 |
+
print("\n--- Claude Answer ---")
|
| 291 |
+
|
| 292 |
+
# Answer
|
| 293 |
+
claude_start = time.time()
|
| 294 |
+
try:
|
| 295 |
+
answer = claude_text_llm.generate_answer(q, results)
|
| 296 |
+
print(answer)
|
| 297 |
+
except Exception as e:
|
| 298 |
+
print(f"Claude error: {e}")
|
| 299 |
+
claude_time = time.time() - claude_start
|
| 300 |
+
|
| 301 |
+
total_time = time.time() - total_start
|
| 302 |
+
print("\n[Timings]")
|
| 303 |
+
print(f" - Retrieval time: {retrieval_time:.2f}s")
|
| 304 |
+
print(f" - Claude answer call time (wrapper): {claude_time:.2f}s")
|
| 305 |
+
print(f" - Total time (Question → Final Answer): {total_time:.2f}s")
|
| 306 |
+
print("---------------------")
|
| 307 |
+
|
| 308 |
+
# ----- EXIT -----
|
| 309 |
+
elif choice == "3":
|
| 310 |
+
print("Goodbye.")
|
| 311 |
+
break
|
| 312 |
+
|
| 313 |
+
else:
|
| 314 |
+
print("Invalid choice. Please select 1, 2, or 3.")
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
if __name__ == "__main__":
|
| 318 |
+
main()
|
srd_engine_final.py
ADDED
|
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# srd_engine_final.py
|
| 2 |
+
# ============================================================
|
| 3 |
+
# CedroPass SRD – Final RAG Engine (Stable, Section-Aware)
|
| 4 |
+
# ============================================================
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import re
|
| 8 |
+
import io
|
| 9 |
+
import base64
|
| 10 |
+
import time
|
| 11 |
+
import shutil
|
| 12 |
+
import warnings
|
| 13 |
+
from typing import List, Dict, Any, Optional
|
| 14 |
+
|
| 15 |
+
from dotenv import load_dotenv
|
| 16 |
+
load_dotenv()
|
| 17 |
+
|
| 18 |
+
# -------------------- Data Processing --------------------
|
| 19 |
+
import pdfplumber
|
| 20 |
+
import camelot
|
| 21 |
+
from pdf2image import convert_from_path
|
| 22 |
+
import pytesseract
|
| 23 |
+
from PIL import Image
|
| 24 |
+
|
| 25 |
+
# -------------------- NLP & Retrieval --------------------
|
| 26 |
+
import spacy
|
| 27 |
+
from sentence_transformers import CrossEncoder
|
| 28 |
+
from langchain_community.vectorstores import Chroma
|
| 29 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 30 |
+
from langchain_community.retrievers import BM25Retriever
|
| 31 |
+
from langchain_core.documents import Document
|
| 32 |
+
from rapidfuzz import process as fuzz_process
|
| 33 |
+
|
| 34 |
+
# -------------------- Claude --------------------
|
| 35 |
+
try:
|
| 36 |
+
from anthropic import Anthropic
|
| 37 |
+
except ImportError:
|
| 38 |
+
Anthropic = None
|
| 39 |
+
|
| 40 |
+
# -------------------- CONFIG --------------------
|
| 41 |
+
warnings.filterwarnings("ignore")
|
| 42 |
+
Image.MAX_IMAGE_PIXELS = None
|
| 43 |
+
|
| 44 |
+
POPPLER_PATH = os.getenv("POPPLER_PATH")
|
| 45 |
+
TESSERACT_PATH = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
| 46 |
+
if os.path.exists(TESSERACT_PATH):
|
| 47 |
+
pytesseract.pytesseract.tesseract_cmd = TESSERACT_PATH
|
| 48 |
+
|
| 49 |
+
# -------------------- NLP MODEL --------------------
|
| 50 |
+
print("[SYSTEM] Loading NLP pipelines...")
|
| 51 |
+
try:
|
| 52 |
+
NLP_EN = spacy.load("en_core_web_sm")
|
| 53 |
+
except OSError:
|
| 54 |
+
from spacy.cli import download
|
| 55 |
+
download("en_core_web_sm")
|
| 56 |
+
NLP_EN = spacy.load("en_core_web_sm")
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# ============================================================
|
| 60 |
+
# TEXT UTILS
|
| 61 |
+
# ============================================================
|
| 62 |
+
def normalize_text(text: str) -> str:
|
| 63 |
+
return re.sub(r"\s+", " ", text).strip()
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def lemmatize_text(text: str) -> str:
|
| 67 |
+
doc = NLP_EN(text[:50000])
|
| 68 |
+
return " ".join(
|
| 69 |
+
t.lemma_.lower()
|
| 70 |
+
for t in doc
|
| 71 |
+
if not t.is_space and not t.is_punct
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# ============================================================
|
| 76 |
+
# SECTION-AWARE SRD SPLITTER (CRITICAL FIX)
|
| 77 |
+
# ============================================================
|
| 78 |
+
class SmartSRDSplitter:
|
| 79 |
+
"""
|
| 80 |
+
Guarantees that ALL child paragraphs inherit the correct
|
| 81 |
+
section_type until a new header appears.
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
HEADER_REGEX = re.compile(
|
| 85 |
+
r"^(\d+(\.\d+)*|FR-\d+|NFR-\d+|[A-Z][A-Za-z\s]{3,}:)",
|
| 86 |
+
re.IGNORECASE,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
def split_text(self, text: str) -> List[Document]:
|
| 90 |
+
docs: List[Document] = []
|
| 91 |
+
lines = text.splitlines()
|
| 92 |
+
|
| 93 |
+
buffer: List[str] = []
|
| 94 |
+
current_section_title = "General"
|
| 95 |
+
current_section_type = "general"
|
| 96 |
+
|
| 97 |
+
for raw in lines:
|
| 98 |
+
line = raw.strip()
|
| 99 |
+
if not line:
|
| 100 |
+
continue
|
| 101 |
+
|
| 102 |
+
if self.HEADER_REGEX.match(line):
|
| 103 |
+
# Flush previous chunk
|
| 104 |
+
if buffer:
|
| 105 |
+
docs.append(
|
| 106 |
+
Document(
|
| 107 |
+
page_content="\n".join(buffer),
|
| 108 |
+
metadata={
|
| 109 |
+
"type": "text",
|
| 110 |
+
"section": current_section_title,
|
| 111 |
+
"section_type": current_section_type,
|
| 112 |
+
"source": "SRD_Main",
|
| 113 |
+
},
|
| 114 |
+
)
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
buffer = [line]
|
| 118 |
+
current_section_title = line[:80]
|
| 119 |
+
|
| 120 |
+
lowered = line.lower()
|
| 121 |
+
if "functional requirement" in lowered or "fr-" in lowered:
|
| 122 |
+
current_section_type = "functional"
|
| 123 |
+
elif "non-functional" in lowered or "nfr-" in lowered:
|
| 124 |
+
current_section_type = "nonfunctional"
|
| 125 |
+
else:
|
| 126 |
+
current_section_type = "general"
|
| 127 |
+
else:
|
| 128 |
+
buffer.append(line)
|
| 129 |
+
|
| 130 |
+
# Final flush
|
| 131 |
+
if buffer:
|
| 132 |
+
docs.append(
|
| 133 |
+
Document(
|
| 134 |
+
page_content="\n".join(buffer),
|
| 135 |
+
metadata={
|
| 136 |
+
"type": "text",
|
| 137 |
+
"section": current_section_title,
|
| 138 |
+
"section_type": current_section_type,
|
| 139 |
+
"source": "SRD_Main",
|
| 140 |
+
},
|
| 141 |
+
)
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
return docs
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
# ============================================================
|
| 148 |
+
# PDF EXTRACTORS
|
| 149 |
+
# ============================================================
|
| 150 |
+
def extract_pdf_text(path: str) -> str:
|
| 151 |
+
text = ""
|
| 152 |
+
with pdfplumber.open(path) as pdf:
|
| 153 |
+
for p in pdf.pages:
|
| 154 |
+
t = p.extract_text()
|
| 155 |
+
if t:
|
| 156 |
+
text += t + "\n"
|
| 157 |
+
return text
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def extract_tables(path: str) -> List[Document]:
|
| 161 |
+
docs: List[Document] = []
|
| 162 |
+
try:
|
| 163 |
+
tables = camelot.read_pdf(path, pages="all", flavor="stream")
|
| 164 |
+
for i, t in enumerate(tables):
|
| 165 |
+
md = t.df.to_markdown(index=False)
|
| 166 |
+
if len(md) > 30:
|
| 167 |
+
docs.append(
|
| 168 |
+
Document(
|
| 169 |
+
page_content=md,
|
| 170 |
+
metadata={
|
| 171 |
+
"type": "table",
|
| 172 |
+
"section_type": "general",
|
| 173 |
+
"source": "SRD_Table",
|
| 174 |
+
},
|
| 175 |
+
)
|
| 176 |
+
)
|
| 177 |
+
except Exception:
|
| 178 |
+
pass
|
| 179 |
+
return docs
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# ============================================================
|
| 183 |
+
# DIAGRAM INTERPRETER (TEXT-ONLY SAFE)
|
| 184 |
+
# ============================================================
|
| 185 |
+
class DiagramInterpreter:
|
| 186 |
+
def __init__(self):
|
| 187 |
+
self.client = (
|
| 188 |
+
Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
|
| 189 |
+
if Anthropic and os.getenv("ANTHROPIC_API_KEY")
|
| 190 |
+
else None
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
def describe(self, image: Image.Image, label: str) -> str:
|
| 194 |
+
if not self.client:
|
| 195 |
+
return pytesseract.image_to_string(image)
|
| 196 |
+
|
| 197 |
+
buf = io.BytesIO()
|
| 198 |
+
image.convert("RGB").save(buf, format="JPEG", quality=85)
|
| 199 |
+
b64 = base64.b64encode(buf.getvalue()).decode()
|
| 200 |
+
|
| 201 |
+
resp = self.client.messages.create(
|
| 202 |
+
model="claude-sonnet-4-5-20250929",
|
| 203 |
+
max_tokens=600,
|
| 204 |
+
temperature=0.2,
|
| 205 |
+
messages=[
|
| 206 |
+
{
|
| 207 |
+
"role": "user",
|
| 208 |
+
"content": [
|
| 209 |
+
{"type": "text", "text": f"Explain this {label} diagram for an SRD."},
|
| 210 |
+
{
|
| 211 |
+
"type": "image",
|
| 212 |
+
"source": {
|
| 213 |
+
"type": "base64",
|
| 214 |
+
"media_type": "image/jpeg",
|
| 215 |
+
"data": b64,
|
| 216 |
+
},
|
| 217 |
+
},
|
| 218 |
+
],
|
| 219 |
+
}
|
| 220 |
+
],
|
| 221 |
+
)
|
| 222 |
+
return resp.content[0].text
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
# ============================================================
|
| 226 |
+
# CORE RAG ENGINE
|
| 227 |
+
# ============================================================
|
| 228 |
+
class SRDChatbotEngine:
|
| 229 |
+
def __init__(self, chroma_dir: str = "chroma_db_final"):
|
| 230 |
+
print("[ENGINE] Initializing retrievers...")
|
| 231 |
+
|
| 232 |
+
self.embedding_model = HuggingFaceEmbeddings(
|
| 233 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
| 234 |
+
)
|
| 235 |
+
self.reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
| 236 |
+
|
| 237 |
+
self.chroma_dir = chroma_dir
|
| 238 |
+
self.vectorstore: Optional[Chroma] = None
|
| 239 |
+
self.chroma_retriever = None
|
| 240 |
+
self.bm25_retriever: Optional[BM25Retriever] = None
|
| 241 |
+
self.vocab = set()
|
| 242 |
+
|
| 243 |
+
# -------------------- BUILD INDEX --------------------
|
| 244 |
+
def build_index(
|
| 245 |
+
self,
|
| 246 |
+
pdf_path: str,
|
| 247 |
+
diagrams: Optional[List[str]] = None,
|
| 248 |
+
):
|
| 249 |
+
if os.path.exists(self.chroma_dir):
|
| 250 |
+
shutil.rmtree(self.chroma_dir)
|
| 251 |
+
|
| 252 |
+
splitter = SmartSRDSplitter()
|
| 253 |
+
docs = splitter.split_text(extract_pdf_text(pdf_path))
|
| 254 |
+
docs.extend(extract_tables(pdf_path))
|
| 255 |
+
|
| 256 |
+
for d in docs:
|
| 257 |
+
d.metadata["lemma"] = lemmatize_text(d.page_content)
|
| 258 |
+
for w in d.page_content.split():
|
| 259 |
+
if w.isalnum():
|
| 260 |
+
self.vocab.add(w.lower())
|
| 261 |
+
|
| 262 |
+
self.vectorstore = Chroma.from_documents(
|
| 263 |
+
docs,
|
| 264 |
+
embedding=self.embedding_model,
|
| 265 |
+
persist_directory=self.chroma_dir,
|
| 266 |
+
collection_name="srd_final",
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
self.chroma_retriever = self.vectorstore.as_retriever(search_kwargs={"k": 20})
|
| 270 |
+
self.bm25_retriever = BM25Retriever.from_documents(docs)
|
| 271 |
+
self.bm25_retriever.k = 20
|
| 272 |
+
|
| 273 |
+
print(f"✅ Indexed {len(docs)} SRD chunks")
|
| 274 |
+
|
| 275 |
+
# -------------------- INTENT --------------------
|
| 276 |
+
def detect_intent(self, q: str) -> str:
|
| 277 |
+
q = q.lower()
|
| 278 |
+
if any(w in q for w in ["list", "enumerate", "all functional", "requirements of"]):
|
| 279 |
+
return "enumeration"
|
| 280 |
+
return "qa"
|
| 281 |
+
|
| 282 |
+
# -------------------- ENUMERATION (NO SIM SEARCH) --------------------
|
| 283 |
+
def list_functional_requirements(self) -> List[str]:
|
| 284 |
+
data = self.vectorstore.get(
|
| 285 |
+
where={"section_type": "functional"}
|
| 286 |
+
)
|
| 287 |
+
return data.get("documents", [])
|
| 288 |
+
|
| 289 |
+
# -------------------- QUERY --------------------
|
| 290 |
+
def answer(self, query: str, claude) -> str:
|
| 291 |
+
intent = self.detect_intent(query)
|
| 292 |
+
|
| 293 |
+
if intent == "enumeration":
|
| 294 |
+
items = self.list_functional_requirements()
|
| 295 |
+
if not items:
|
| 296 |
+
return "I could not find sufficient information in the provided SRD."
|
| 297 |
+
|
| 298 |
+
prompt = f"""
|
| 299 |
+
You are a Senior Project Architect.
|
| 300 |
+
|
| 301 |
+
List ALL functional requirements below.
|
| 302 |
+
Do not merge, summarize, or invent anything.
|
| 303 |
+
|
| 304 |
+
REQUIREMENTS:
|
| 305 |
+
{chr(10).join(items)}
|
| 306 |
+
"""
|
| 307 |
+
return claude.generate_raw(prompt)
|
| 308 |
+
|
| 309 |
+
# ---------- Normal QA ----------
|
| 310 |
+
dense = self.chroma_retriever.invoke(query)
|
| 311 |
+
sparse = self.bm25_retriever.invoke(query)
|
| 312 |
+
|
| 313 |
+
pool = dense + sparse
|
| 314 |
+
pairs = [[query, d.page_content] for d in pool]
|
| 315 |
+
scores = self.reranker.predict(pairs)
|
| 316 |
+
|
| 317 |
+
top = [
|
| 318 |
+
d.page_content
|
| 319 |
+
for d, s in sorted(zip(pool, scores), key=lambda x: x[1], reverse=True)
|
| 320 |
+
if s > -6
|
| 321 |
+
][:8]
|
| 322 |
+
|
| 323 |
+
if not top:
|
| 324 |
+
return "I could not find sufficient information in the provided SRD."
|
| 325 |
+
|
| 326 |
+
ctx = "\n---\n".join(top[:4000])
|
| 327 |
+
|
| 328 |
+
prompt = f"""
|
| 329 |
+
Answer using ONLY the SRD context below.
|
| 330 |
+
If unsupported, say so explicitly.
|
| 331 |
+
|
| 332 |
+
CONTEXT:
|
| 333 |
+
{ctx}
|
| 334 |
+
|
| 335 |
+
QUESTION:
|
| 336 |
+
{query}
|
| 337 |
+
"""
|
| 338 |
+
return claude.generate_raw(prompt)
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
# ============================================================
|
| 342 |
+
# CLAUDE ANSWERER
|
| 343 |
+
# ============================================================
|
| 344 |
+
class ClaudeAnswerer:
|
| 345 |
+
def __init__(self):
|
| 346 |
+
if Anthropic is None:
|
| 347 |
+
raise RuntimeError("anthropic not installed")
|
| 348 |
+
|
| 349 |
+
self.client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
|
| 350 |
+
self.model = "claude-sonnet-4-5-20250929"
|
| 351 |
+
|
| 352 |
+
def generate_raw(self, prompt: str) -> str:
|
| 353 |
+
resp = self.client.messages.create(
|
| 354 |
+
model=self.model,
|
| 355 |
+
max_tokens=1200,
|
| 356 |
+
temperature=0.2,
|
| 357 |
+
messages=[{"role": "user", "content": prompt}],
|
| 358 |
+
)
|
| 359 |
+
return resp.content[0].text
|
srd_engine_v2.py
ADDED
|
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# srd_engine_v2.py
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
import io
|
| 5 |
+
import base64
|
| 6 |
+
import hashlib
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from typing import List, Optional
|
| 9 |
+
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
load_dotenv()
|
| 12 |
+
|
| 13 |
+
# -------------------- Data Processing --------------------
|
| 14 |
+
import pdfplumber
|
| 15 |
+
import camelot
|
| 16 |
+
from pdf2image import convert_from_path, pdfinfo_from_path
|
| 17 |
+
import pytesseract
|
| 18 |
+
from PIL import Image
|
| 19 |
+
|
| 20 |
+
# -------------------- Vector Store --------------------
|
| 21 |
+
from langchain_community.vectorstores import Chroma
|
| 22 |
+
from langchain_core.documents import Document
|
| 23 |
+
|
| 24 |
+
# -------------------- Claude --------------------
|
| 25 |
+
try:
|
| 26 |
+
from anthropic import Anthropic
|
| 27 |
+
except ImportError:
|
| 28 |
+
Anthropic = None
|
| 29 |
+
|
| 30 |
+
from srd_engine_final import SRDChatbotEngine, ClaudeAnswerer
|
| 31 |
+
|
| 32 |
+
POPPLER_PATH = os.getenv("POPPLER_PATH")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# =====================================================
|
| 36 |
+
# UTILS
|
| 37 |
+
# =====================================================
|
| 38 |
+
def content_hash(text: str) -> str:
|
| 39 |
+
return hashlib.md5(text.encode("utf-8")).hexdigest()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def resize_for_claude(image: Image.Image, max_dim: int = 7900) -> Image.Image:
|
| 43 |
+
w, h = image.size
|
| 44 |
+
if w <= max_dim and h <= max_dim:
|
| 45 |
+
return image
|
| 46 |
+
scale = min(max_dim / w, max_dim / h)
|
| 47 |
+
return image.resize((int(w * scale), int(h * scale)), Image.LANCZOS)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# =====================================================
|
| 51 |
+
# SECTION / HEADER DETECTION
|
| 52 |
+
# =====================================================
|
| 53 |
+
SECTION_PATTERNS = {
|
| 54 |
+
"functional": re.compile(r"(functional\s+requirements|FR-\d+)", re.I),
|
| 55 |
+
"nonfunctional": re.compile(r"(non[-\s]?functional\s+requirements|NFR-\d+)", re.I),
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def detect_section_type(text: str) -> str:
|
| 60 |
+
for k, pat in SECTION_PATTERNS.items():
|
| 61 |
+
if pat.search(text):
|
| 62 |
+
return k
|
| 63 |
+
return "general"
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# =====================================================
|
| 67 |
+
# SRD-AWARE SPLITTER (REQUIREMENT SAFE)
|
| 68 |
+
# =====================================================
|
| 69 |
+
class SmartSRDSplitter:
|
| 70 |
+
HEADER_REGEX = re.compile(
|
| 71 |
+
r"(FR-\d+|NFR-\d+|\d+\.\d+|[A-Z][A-Za-z\s]{3,}:)",
|
| 72 |
+
re.I
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
def split_text(self, text: str) -> List[Document]:
|
| 76 |
+
docs: List[Document] = []
|
| 77 |
+
lines = [l.strip() for l in text.splitlines() if l.strip()]
|
| 78 |
+
buffer: List[str] = []
|
| 79 |
+
current_header = "General"
|
| 80 |
+
|
| 81 |
+
for line in lines:
|
| 82 |
+
if self.HEADER_REGEX.match(line):
|
| 83 |
+
if buffer:
|
| 84 |
+
content = "\n".join(buffer)
|
| 85 |
+
docs.append(
|
| 86 |
+
Document(
|
| 87 |
+
page_content=content,
|
| 88 |
+
metadata={
|
| 89 |
+
"type": "text",
|
| 90 |
+
"header": current_header,
|
| 91 |
+
"section_type": detect_section_type(content),
|
| 92 |
+
},
|
| 93 |
+
)
|
| 94 |
+
)
|
| 95 |
+
buffer = [line]
|
| 96 |
+
current_header = line[:80]
|
| 97 |
+
else:
|
| 98 |
+
buffer.append(line)
|
| 99 |
+
|
| 100 |
+
if buffer:
|
| 101 |
+
content = "\n".join(buffer)
|
| 102 |
+
docs.append(
|
| 103 |
+
Document(
|
| 104 |
+
page_content=content,
|
| 105 |
+
metadata={
|
| 106 |
+
"type": "text",
|
| 107 |
+
"header": current_header,
|
| 108 |
+
"section_type": detect_section_type(content),
|
| 109 |
+
},
|
| 110 |
+
)
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
return docs
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# =====================================================
|
| 117 |
+
# DIAGRAM INTERPRETER
|
| 118 |
+
# =====================================================
|
| 119 |
+
class DiagramInterpreter:
|
| 120 |
+
def __init__(self):
|
| 121 |
+
self._anthropic = None
|
| 122 |
+
|
| 123 |
+
def process_image(
|
| 124 |
+
self,
|
| 125 |
+
image: Image.Image,
|
| 126 |
+
label: str,
|
| 127 |
+
use_qwen: bool,
|
| 128 |
+
use_claude: bool
|
| 129 |
+
) -> str:
|
| 130 |
+
sections: List[str] = []
|
| 131 |
+
|
| 132 |
+
if use_claude:
|
| 133 |
+
if Anthropic is None:
|
| 134 |
+
sections.append("Claude Vision requested but anthropic package is not installed.")
|
| 135 |
+
else:
|
| 136 |
+
if not self._anthropic:
|
| 137 |
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
| 138 |
+
if not api_key:
|
| 139 |
+
sections.append("Claude Vision requested but ANTHROPIC_API_KEY is not set.")
|
| 140 |
+
else:
|
| 141 |
+
self._anthropic = Anthropic(api_key=api_key)
|
| 142 |
+
|
| 143 |
+
if self._anthropic:
|
| 144 |
+
safe_image = resize_for_claude(image)
|
| 145 |
+
buf = io.BytesIO()
|
| 146 |
+
safe_image.convert("RGB").save(buf, format="JPEG", quality=85)
|
| 147 |
+
b64 = base64.b64encode(buf.getvalue()).decode()
|
| 148 |
+
|
| 149 |
+
resp = self._anthropic.messages.create(
|
| 150 |
+
model=os.getenv("CLAUDE_VISION_MODEL", "claude-sonnet-4-5-20250929"),
|
| 151 |
+
max_tokens=600,
|
| 152 |
+
temperature=0.2,
|
| 153 |
+
messages=[
|
| 154 |
+
{
|
| 155 |
+
"role": "user",
|
| 156 |
+
"content": [
|
| 157 |
+
{"type": "text", "text": f"Explain this {label} diagram for an SRD."},
|
| 158 |
+
{
|
| 159 |
+
"type": "image",
|
| 160 |
+
"source": {"type": "base64", "media_type": "image/jpeg", "data": b64},
|
| 161 |
+
},
|
| 162 |
+
],
|
| 163 |
+
}
|
| 164 |
+
],
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
try:
|
| 168 |
+
text0 = resp.content[0].text # type: ignore[attr-defined]
|
| 169 |
+
except Exception:
|
| 170 |
+
text0 = ""
|
| 171 |
+
for block in getattr(resp, "content", []):
|
| 172 |
+
t = getattr(block, "text", None)
|
| 173 |
+
if t:
|
| 174 |
+
text0 += t + "\n"
|
| 175 |
+
text0 = text0.strip()
|
| 176 |
+
|
| 177 |
+
if text0:
|
| 178 |
+
sections.append(text0)
|
| 179 |
+
|
| 180 |
+
if not sections:
|
| 181 |
+
sections.append(pytesseract.image_to_string(image))
|
| 182 |
+
|
| 183 |
+
return "\n\n".join([s for s in sections if s.strip()]).strip()
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# =====================================================
|
| 187 |
+
# SMART KNOWLEDGE BASE (MULTI-USER + MULTI-CHAT SAFE)
|
| 188 |
+
# =====================================================
|
| 189 |
+
class SmartKnowledgeBase(SRDChatbotEngine):
|
| 190 |
+
def __init__(self, chroma_dir="chroma_global_db"):
|
| 191 |
+
super().__init__(chroma_dir)
|
| 192 |
+
self.current_project_id: Optional[str] = None
|
| 193 |
+
self.current_chat_id: Optional[str] = None # ✅ NEW
|
| 194 |
+
self.current_user_id: Optional[str] = None # ✅ NEW
|
| 195 |
+
|
| 196 |
+
self.vectorstore = Chroma(
|
| 197 |
+
persist_directory=chroma_dir,
|
| 198 |
+
embedding_function=self.embedding_model,
|
| 199 |
+
collection_name="srd_knowledge"
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
self.interpreter = DiagramInterpreter()
|
| 203 |
+
|
| 204 |
+
# ------------------------------
|
| 205 |
+
# SESSION SCOPING
|
| 206 |
+
# ------------------------------
|
| 207 |
+
def set_current_project(self, name: str):
|
| 208 |
+
self.current_project_id = name.lower().replace(" ", "_")
|
| 209 |
+
|
| 210 |
+
def set_current_chat(self, chat_id: str):
|
| 211 |
+
self.current_chat_id = chat_id
|
| 212 |
+
|
| 213 |
+
def set_current_user(self, user_id: str):
|
| 214 |
+
self.current_user_id = user_id
|
| 215 |
+
|
| 216 |
+
def _require_scope(self):
|
| 217 |
+
if not self.current_project_id:
|
| 218 |
+
raise RuntimeError("Project not set. Call set_current_project(...) first.")
|
| 219 |
+
if not self.current_chat_id:
|
| 220 |
+
raise RuntimeError("Chat not set. Call set_current_chat(...) first.")
|
| 221 |
+
if not self.current_user_id:
|
| 222 |
+
raise RuntimeError("User not set. Call set_current_user(...) first.")
|
| 223 |
+
|
| 224 |
+
def _where_scope(self) -> dict:
|
| 225 |
+
# Chroma where filter (strict isolation)
|
| 226 |
+
return {
|
| 227 |
+
"$and": [
|
| 228 |
+
{"project_id": {"$eq": self.current_project_id}},
|
| 229 |
+
{"chat_id": {"$eq": self.current_chat_id}},
|
| 230 |
+
{"user_id": {"$eq": self.current_user_id}},
|
| 231 |
+
]
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
# ------------------------------
|
| 235 |
+
# LEARNING / USER CORRECTION
|
| 236 |
+
# ------------------------------
|
| 237 |
+
def learn_from_interaction(self, query: str, correction_text: str):
|
| 238 |
+
self._require_scope()
|
| 239 |
+
|
| 240 |
+
if not correction_text or not correction_text.strip():
|
| 241 |
+
return
|
| 242 |
+
|
| 243 |
+
inferred = detect_section_type(correction_text)
|
| 244 |
+
if inferred == "general":
|
| 245 |
+
inferred = self.detect_requirement_type(query)
|
| 246 |
+
|
| 247 |
+
doc = Document(
|
| 248 |
+
page_content=correction_text.strip(),
|
| 249 |
+
metadata={
|
| 250 |
+
"type": "user_correction",
|
| 251 |
+
"section_type": inferred,
|
| 252 |
+
"project_id": self.current_project_id,
|
| 253 |
+
"chat_id": self.current_chat_id,
|
| 254 |
+
"user_id": self.current_user_id,
|
| 255 |
+
"source": "user_feedback",
|
| 256 |
+
"timestamp": datetime.now().isoformat(),
|
| 257 |
+
"original_query": query,
|
| 258 |
+
"priority": "high",
|
| 259 |
+
},
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
self.vectorstore.add_documents([doc])
|
| 263 |
+
self.vectorstore.persist()
|
| 264 |
+
|
| 265 |
+
# ------------------------------
|
| 266 |
+
# INGESTION
|
| 267 |
+
# ------------------------------
|
| 268 |
+
def process_document_step(self, path, ftype, label, use_qwen, use_claude):
|
| 269 |
+
self._require_scope()
|
| 270 |
+
|
| 271 |
+
docs: List[Document] = []
|
| 272 |
+
|
| 273 |
+
if ftype == "pdf_text":
|
| 274 |
+
with pdfplumber.open(path) as pdf:
|
| 275 |
+
text = "\n".join((p.extract_text() or "") for p in pdf.pages)
|
| 276 |
+
|
| 277 |
+
splitter = SmartSRDSplitter()
|
| 278 |
+
docs = splitter.split_text(text)
|
| 279 |
+
|
| 280 |
+
try:
|
| 281 |
+
tables = camelot.read_pdf(path, pages="all", flavor="stream")
|
| 282 |
+
for t in tables:
|
| 283 |
+
docs.append(
|
| 284 |
+
Document(
|
| 285 |
+
page_content=t.df.to_markdown(),
|
| 286 |
+
metadata={"type": "table", "section_type": "general"},
|
| 287 |
+
)
|
| 288 |
+
)
|
| 289 |
+
except Exception:
|
| 290 |
+
pass
|
| 291 |
+
|
| 292 |
+
elif ftype == "diagram":
|
| 293 |
+
if path.lower().endswith(".pdf"):
|
| 294 |
+
info = pdfinfo_from_path(path, poppler_path=POPPLER_PATH)
|
| 295 |
+
for page in range(1, info["Pages"] + 1):
|
| 296 |
+
imgs = convert_from_path(
|
| 297 |
+
path,
|
| 298 |
+
first_page=page,
|
| 299 |
+
last_page=page,
|
| 300 |
+
dpi=150,
|
| 301 |
+
poppler_path=POPPLER_PATH,
|
| 302 |
+
)
|
| 303 |
+
for img in imgs:
|
| 304 |
+
txt = self.interpreter.process_image(img, label, use_qwen, use_claude)
|
| 305 |
+
docs.append(Document(page_content=txt, metadata={"type": "diagram", "section_type": "general"}))
|
| 306 |
+
else:
|
| 307 |
+
img = Image.open(path)
|
| 308 |
+
txt = self.interpreter.process_image(img, label, use_qwen, use_claude)
|
| 309 |
+
docs.append(Document(page_content=txt, metadata={"type": "diagram", "section_type": "general"}))
|
| 310 |
+
|
| 311 |
+
# ------------------------------
|
| 312 |
+
# Dedup + metadata
|
| 313 |
+
# ------------------------------
|
| 314 |
+
seen = set()
|
| 315 |
+
final_docs: List[Document] = []
|
| 316 |
+
|
| 317 |
+
for d in docs:
|
| 318 |
+
h = content_hash(d.page_content or "")
|
| 319 |
+
if h in seen:
|
| 320 |
+
continue
|
| 321 |
+
seen.add(h)
|
| 322 |
+
|
| 323 |
+
d.metadata["project_id"] = self.current_project_id
|
| 324 |
+
d.metadata["chat_id"] = self.current_chat_id
|
| 325 |
+
d.metadata["user_id"] = self.current_user_id
|
| 326 |
+
d.metadata["timestamp"] = datetime.now().isoformat()
|
| 327 |
+
|
| 328 |
+
final_docs.append(d)
|
| 329 |
+
|
| 330 |
+
if final_docs:
|
| 331 |
+
self.vectorstore.add_documents(final_docs)
|
| 332 |
+
self.vectorstore.persist()
|
| 333 |
+
|
| 334 |
+
return final_docs
|
| 335 |
+
|
| 336 |
+
# ------------------------------
|
| 337 |
+
# INTENT DETECTION
|
| 338 |
+
# ------------------------------
|
| 339 |
+
def detect_intent(self, query: str) -> str:
|
| 340 |
+
q = (query or "").lower()
|
| 341 |
+
if any(w in q for w in ["list", "show all", "enumerate", "give me all", "all of the"]):
|
| 342 |
+
return "enumeration"
|
| 343 |
+
if any(w in q for w in ["explain", "describe", "how", "why", "what is", "what are"]):
|
| 344 |
+
return "explanation"
|
| 345 |
+
return "lookup"
|
| 346 |
+
|
| 347 |
+
# ------------------------------
|
| 348 |
+
# REQUIREMENT TYPE DETECTION
|
| 349 |
+
# ------------------------------
|
| 350 |
+
def detect_requirement_type(self, query: str) -> str:
|
| 351 |
+
q = (query or "").lower()
|
| 352 |
+
|
| 353 |
+
if any(w in q for w in [
|
| 354 |
+
"non functional", "non-functional", "nonfunctional", "nfr", "nfrs",
|
| 355 |
+
"quality attributes", "quality requirements"
|
| 356 |
+
]):
|
| 357 |
+
return "nonfunctional"
|
| 358 |
+
|
| 359 |
+
if any(w in q for w in [
|
| 360 |
+
"performance", "security", "availability", "reliability", "scalability",
|
| 361 |
+
"usability", "maintainability", "portability", "compliance", "privacy",
|
| 362 |
+
"latency", "throughput", "encryption", "audit", "logging", "backup",
|
| 363 |
+
]):
|
| 364 |
+
return "nonfunctional"
|
| 365 |
+
|
| 366 |
+
if any(w in q for w in ["functional", "fr-", "frs", "use case", "features"]):
|
| 367 |
+
return "functional"
|
| 368 |
+
|
| 369 |
+
return "functional"
|
| 370 |
+
|
| 371 |
+
# ------------------------------
|
| 372 |
+
# SMART RESPONSE (CHAT-ISOLATED)
|
| 373 |
+
# ------------------------------
|
| 374 |
+
def generate_smart_response(self, query: str, claude: ClaudeAnswerer) -> str:
|
| 375 |
+
self._require_scope()
|
| 376 |
+
|
| 377 |
+
intent = self.detect_intent(query)
|
| 378 |
+
|
| 379 |
+
# =============== ENUMERATION MODE ===============
|
| 380 |
+
if intent == "enumeration":
|
| 381 |
+
req_type = self.detect_requirement_type(query)
|
| 382 |
+
|
| 383 |
+
raw = self.vectorstore.get(
|
| 384 |
+
where={
|
| 385 |
+
"$and": [
|
| 386 |
+
{"project_id": {"$eq": self.current_project_id}},
|
| 387 |
+
{"chat_id": {"$eq": self.current_chat_id}},
|
| 388 |
+
{"user_id": {"$eq": self.current_user_id}},
|
| 389 |
+
{"section_type": {"$eq": req_type}},
|
| 390 |
+
]
|
| 391 |
+
}
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
docs = raw.get("documents", []) or []
|
| 395 |
+
|
| 396 |
+
if not docs and req_type == "nonfunctional":
|
| 397 |
+
raw2 = self.vectorstore.get(
|
| 398 |
+
where={
|
| 399 |
+
"$and": [
|
| 400 |
+
{"project_id": {"$eq": self.current_project_id}},
|
| 401 |
+
{"chat_id": {"$eq": self.current_chat_id}},
|
| 402 |
+
{"user_id": {"$eq": self.current_user_id}},
|
| 403 |
+
{"section_type": {"$eq": "general"}},
|
| 404 |
+
]
|
| 405 |
+
}
|
| 406 |
+
)
|
| 407 |
+
docs2 = raw2.get("documents", []) or []
|
| 408 |
+
if docs2:
|
| 409 |
+
docs = docs2
|
| 410 |
+
|
| 411 |
+
if not docs:
|
| 412 |
+
return "I could not find sufficient information in the provided SRD."
|
| 413 |
+
|
| 414 |
+
title = "FUNCTIONAL REQUIREMENTS" if req_type == "functional" else "NON-FUNCTIONAL REQUIREMENTS"
|
| 415 |
+
|
| 416 |
+
prompt = f"""
|
| 417 |
+
You are a Senior Project Architect.
|
| 418 |
+
|
| 419 |
+
Return a COMPLETE numbered list of the {title} found below.
|
| 420 |
+
Do NOT invent items. Do NOT omit items. If duplicates exist, keep only one copy.
|
| 421 |
+
|
| 422 |
+
REQUIREMENTS:
|
| 423 |
+
{chr(10).join(docs)}
|
| 424 |
+
"""
|
| 425 |
+
return claude.client.messages.create(
|
| 426 |
+
model=claude.model,
|
| 427 |
+
max_tokens=1400,
|
| 428 |
+
temperature=0.2,
|
| 429 |
+
messages=[{"role": "user", "content": prompt}],
|
| 430 |
+
).content[0].text
|
| 431 |
+
|
| 432 |
+
# =============== NORMAL QA MODE ===============
|
| 433 |
+
docs = self.vectorstore.similarity_search(
|
| 434 |
+
query,
|
| 435 |
+
k=12,
|
| 436 |
+
filter=self._where_scope(), # ✅ chat + user + project scoped
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
if not docs:
|
| 440 |
+
return "I could not find sufficient information in the provided SRD."
|
| 441 |
+
|
| 442 |
+
ctx = ""
|
| 443 |
+
for d in docs[:8]:
|
| 444 |
+
ctx += f"[{d.metadata.get('header', 'SRD')}]\n{d.page_content}\n---\n"
|
| 445 |
+
|
| 446 |
+
prompt = f"""
|
| 447 |
+
You are a Senior Project Architect.
|
| 448 |
+
|
| 449 |
+
Answer ONLY using the SRD context.
|
| 450 |
+
If unsupported, say so explicitly.
|
| 451 |
+
|
| 452 |
+
CONTEXT:
|
| 453 |
+
{ctx}
|
| 454 |
+
|
| 455 |
+
QUESTION:
|
| 456 |
+
{query}
|
| 457 |
+
"""
|
| 458 |
+
return claude.client.messages.create(
|
| 459 |
+
model=claude.model,
|
| 460 |
+
max_tokens=1000,
|
| 461 |
+
temperature=0.3,
|
| 462 |
+
messages=[{"role": "user", "content": prompt}],
|
| 463 |
+
).content[0].text
|