Spaces:
Runtime error
Runtime error
Commit
Β·
de73359
1
Parent(s):
6afc0d2
model api in different file
Browse files- __pycache__/model.cpython-39.pyc +0 -0
- app.py +8 -39
- model.py +32 -0
- model_api.py +0 -17
__pycache__/model.cpython-39.pyc
ADDED
|
Binary file (1.55 kB). View file
|
|
|
app.py
CHANGED
|
@@ -1,20 +1,13 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import pickle
|
| 3 |
-
|
| 4 |
from pandas import DataFrame
|
| 5 |
-
import transformers
|
| 6 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
import seaborn as sns
|
|
|
|
| 8 |
|
| 9 |
st.markdown("# Hello, friend!")
|
| 10 |
st.markdown(" This magic application going to help you with understanding of science paper topic! Cool? Yeah! ")
|
| 11 |
-
# st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
|
| 12 |
|
| 13 |
-
st.write("Loading
|
| 14 |
-
|
| 15 |
-
tokenizer_ = AutoTokenizer.from_pretrained(model_name_global)
|
| 16 |
-
with open('./models/scibert/decode_dict.pkl', 'rb') as f:
|
| 17 |
-
decode_dict = pickle.load(f)
|
| 18 |
|
| 19 |
with st.form(key="my_form"):
|
| 20 |
st.markdown("### π Do you want a little magic? ")
|
|
@@ -63,38 +56,14 @@ if not submit_button:
|
|
| 63 |
st.stop()
|
| 64 |
|
| 65 |
|
| 66 |
-
# allow_output_mutation=True
|
| 67 |
-
@st.cache(suppress_st_warning=True)
|
| 68 |
-
def load_model():
|
| 69 |
-
st.write("Loading big model")
|
| 70 |
-
return AutoModelForSequenceClassification.from_pretrained("models/scibert/")
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
def make_predict(tokens, decode_dict):
|
| 74 |
-
# tokenizer_ = AutoTokenizer.from_pretrained(model_name_global)
|
| 75 |
-
# tokens = tokenizer_(title + abstract, return_tensors="pt")
|
| 76 |
-
|
| 77 |
-
model_ = load_model()
|
| 78 |
-
outs = model_(tokens.input_ids)
|
| 79 |
-
|
| 80 |
-
probs = outs["logits"].softmax(dim=-1).tolist()[0]
|
| 81 |
-
topic_probs = {}
|
| 82 |
-
for i, p in enumerate(probs):
|
| 83 |
-
if p > 0.1:
|
| 84 |
-
topic_probs[decode_dict[i]] = p
|
| 85 |
-
return topic_probs
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
model_local = "models/scibert/"
|
| 89 |
-
|
| 90 |
title = doc_title
|
| 91 |
abstract = doc_abstract
|
| 92 |
-
try:
|
| 93 |
-
|
| 94 |
-
except ValueError:
|
| 95 |
-
|
| 96 |
|
| 97 |
-
predicts = make_predict(
|
| 98 |
|
| 99 |
st.markdown("## π Yor article probably about: ")
|
| 100 |
st.header("")
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
| 2 |
from pandas import DataFrame
|
|
|
|
|
|
|
| 3 |
import seaborn as sns
|
| 4 |
+
from model import ArxivClassifierModel
|
| 5 |
|
| 6 |
st.markdown("# Hello, friend!")
|
| 7 |
st.markdown(" This magic application going to help you with understanding of science paper topic! Cool? Yeah! ")
|
|
|
|
| 8 |
|
| 9 |
+
# st.write("Loading model")
|
| 10 |
+
model = ArxivClassifierModel()
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
with st.form(key="my_form"):
|
| 13 |
st.markdown("### π Do you want a little magic? ")
|
|
|
|
| 56 |
st.stop()
|
| 57 |
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
title = doc_title
|
| 60 |
abstract = doc_abstract
|
| 61 |
+
# try:
|
| 62 |
+
# tokens = tokenizer_(title + abstract, return_tensors="pt")
|
| 63 |
+
# except ValueError:
|
| 64 |
+
# st.error("Word parsing into tokens went wrong! Is input valid? If yes, pls contact author [email protected]")
|
| 65 |
|
| 66 |
+
predicts = model.make_predict(title + abstract)
|
| 67 |
|
| 68 |
st.markdown("## π Yor article probably about: ")
|
| 69 |
st.header("")
|
model.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pickle
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
|
| 5 |
+
class ArxivClassifierModel():
|
| 6 |
+
|
| 7 |
+
def __init__(self):
|
| 8 |
+
self.model = self.__load_model()
|
| 9 |
+
|
| 10 |
+
model_name_global = "allenai/scibert_scivocab_uncased"
|
| 11 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name_global)
|
| 12 |
+
with open('./models/scibert/decode_dict.pkl', 'rb') as f:
|
| 13 |
+
self.decode_dict = pickle.load(f)
|
| 14 |
+
|
| 15 |
+
def make_predict(self, text):
|
| 16 |
+
# tokenizer_ = AutoTokenizer.from_pretrained(model_name_global)
|
| 17 |
+
tokens = self.tokenizer(text, return_tensors="pt")
|
| 18 |
+
|
| 19 |
+
outs = self.model(tokens.input_ids)
|
| 20 |
+
|
| 21 |
+
probs = outs["logits"].softmax(dim=-1).tolist()[0]
|
| 22 |
+
topic_probs = {}
|
| 23 |
+
for i, p in enumerate(probs):
|
| 24 |
+
if p > 0.1:
|
| 25 |
+
topic_probs[self.decode_dict[i]] = p
|
| 26 |
+
return topic_probs
|
| 27 |
+
|
| 28 |
+
# allow_output_mutation=True
|
| 29 |
+
@st.cache(suppress_st_warning=True)
|
| 30 |
+
def __load_model(self):
|
| 31 |
+
st.write("Loading big model")
|
| 32 |
+
return AutoModelForSequenceClassification.from_pretrained("models/scibert/")
|
model_api.py
DELETED
|
@@ -1,17 +0,0 @@
|
|
| 1 |
-
#
|
| 2 |
-
#
|
| 3 |
-
# def make_predict(model_name_global, model_local, decode_dict, title, abstract):
|
| 4 |
-
# model_name_global="allenai/scibert_scivocab_uncased"
|
| 5 |
-
# model_local="scibert_trainer/checkpoint-2000/"
|
| 6 |
-
#
|
| 7 |
-
# tokenizer_ = AutoTokenizer.from_pretrained(model_name_global)
|
| 8 |
-
# tokens = tokenizer_(title + abstract, return_tensors="pt")
|
| 9 |
-
# model_ = AutoModelForSequenceClassification.from_pretrained(model_local)
|
| 10 |
-
# outs = model_(tokens.input_ids)
|
| 11 |
-
#
|
| 12 |
-
# probs = outs["logits"].softmax(dim=-1).tolist()[0]
|
| 13 |
-
# topic_probs = {}
|
| 14 |
-
# for i, p in enumerate(probs):
|
| 15 |
-
# if p > 0.1:
|
| 16 |
-
# topic_probs[decode_dict[i]] = p
|
| 17 |
-
# return topic_probs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|