Spaces:
Runtime error
Runtime error
Commit
Β·
6afc0d2
1
Parent(s):
dabf7ab
added second output and model to repo
Browse files- app.py +19 -30
- models/scibert/pytorch_model.bin +3 -0
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import transformers
|
| 3 |
import pickle
|
| 4 |
-
|
| 5 |
from pandas import DataFrame
|
|
|
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
| 7 |
|
| 8 |
st.markdown("# Hello, friend!")
|
| 9 |
st.markdown(" This magic application going to help you with understanding of science paper topic! Cool? Yeah! ")
|
|
@@ -18,32 +19,7 @@ with open('./models/scibert/decode_dict.pkl', 'rb') as f:
|
|
| 18 |
with st.form(key="my_form"):
|
| 19 |
st.markdown("### π Do you want a little magic? ")
|
| 20 |
st.markdown(" Write your article title and abstract to textboxes bellow and I'll gues topic of your paper! ")
|
| 21 |
-
# ce, c1, ce, c2, c3 = st.columns([0.07, 1, 0.07, 5, 0.07])
|
| 22 |
ce, c2, c3 = st.columns([0.07, 5, 0.07])
|
| 23 |
-
# with c1:
|
| 24 |
-
# ModelType = st.radio(
|
| 25 |
-
# "Choose your model",
|
| 26 |
-
# ["DistilBERT (Default)", "Flair"],
|
| 27 |
-
# help="At present, you can choose between 2 models (Flair or DistilBERT) to embed your text. More to come!",
|
| 28 |
-
# )
|
| 29 |
-
#
|
| 30 |
-
# if ModelType == "Default (DistilBERT)":
|
| 31 |
-
# # kw_model = KeyBERT(model=roberta)
|
| 32 |
-
#
|
| 33 |
-
# @st.cache(allow_output_mutation=True)
|
| 34 |
-
# def load_model():
|
| 35 |
-
# return KeyBERT(model=roberta)
|
| 36 |
-
#
|
| 37 |
-
#
|
| 38 |
-
# kw_model = load_model()
|
| 39 |
-
#
|
| 40 |
-
# else:
|
| 41 |
-
# @st.cache(allow_output_mutation=True)
|
| 42 |
-
# def load_model():
|
| 43 |
-
# return KeyBERT("distilbert-base-nli-mean-tokens")
|
| 44 |
-
#
|
| 45 |
-
#
|
| 46 |
-
# kw_model = load_model()
|
| 47 |
|
| 48 |
with c2:
|
| 49 |
doc_title = st.text_area(
|
|
@@ -113,9 +89,12 @@ model_local = "models/scibert/"
|
|
| 113 |
|
| 114 |
title = doc_title
|
| 115 |
abstract = doc_abstract
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
predicts = make_predict(
|
| 119 |
|
| 120 |
st.markdown("## π Yor article probably about: ")
|
| 121 |
st.header("")
|
|
@@ -125,9 +104,15 @@ df = (
|
|
| 125 |
.sort_values(by="Prob", ascending=False)
|
| 126 |
.reset_index(drop=True)
|
| 127 |
)
|
| 128 |
-
|
| 129 |
df.index += 1
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
# Add styling
|
| 132 |
cmGreen = sns.light_palette("green", as_cmap=True)
|
| 133 |
cmRed = sns.light_palette("red", as_cmap=True)
|
|
@@ -145,6 +130,10 @@ format_dictionary = {
|
|
| 145 |
}
|
| 146 |
|
| 147 |
df = df.format(format_dictionary)
|
|
|
|
| 148 |
|
| 149 |
with c2:
|
|
|
|
| 150 |
st.table(df)
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
import pickle
|
| 3 |
+
|
| 4 |
from pandas import DataFrame
|
| 5 |
+
import transformers
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
+
import seaborn as sns
|
| 8 |
|
| 9 |
st.markdown("# Hello, friend!")
|
| 10 |
st.markdown(" This magic application going to help you with understanding of science paper topic! Cool? Yeah! ")
|
|
|
|
| 19 |
with st.form(key="my_form"):
|
| 20 |
st.markdown("### π Do you want a little magic? ")
|
| 21 |
st.markdown(" Write your article title and abstract to textboxes bellow and I'll gues topic of your paper! ")
|
|
|
|
| 22 |
ce, c2, c3 = st.columns([0.07, 5, 0.07])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
with c2:
|
| 25 |
doc_title = st.text_area(
|
|
|
|
| 89 |
|
| 90 |
title = doc_title
|
| 91 |
abstract = doc_abstract
|
| 92 |
+
try:
|
| 93 |
+
tokens = tokenizer_(title + abstract, return_tensors="pt")
|
| 94 |
+
except ValueError:
|
| 95 |
+
st.error("Word parsing into tokens went wrong! Is input valid? If yes, pls contact author [email protected]")
|
| 96 |
|
| 97 |
+
predicts = make_predict(tokens, decode_dict)
|
| 98 |
|
| 99 |
st.markdown("## π Yor article probably about: ")
|
| 100 |
st.header("")
|
|
|
|
| 104 |
.sort_values(by="Prob", ascending=False)
|
| 105 |
.reset_index(drop=True)
|
| 106 |
)
|
|
|
|
| 107 |
df.index += 1
|
| 108 |
|
| 109 |
+
df2 = (
|
| 110 |
+
DataFrame(predicts.items(), columns=["Topic", "Prob"])
|
| 111 |
+
.sort_values(by="Prob", ascending=False)
|
| 112 |
+
.reset_index(drop=True)
|
| 113 |
+
)
|
| 114 |
+
# df2.index += 1
|
| 115 |
+
|
| 116 |
# Add styling
|
| 117 |
cmGreen = sns.light_palette("green", as_cmap=True)
|
| 118 |
cmRed = sns.light_palette("red", as_cmap=True)
|
|
|
|
| 130 |
}
|
| 131 |
|
| 132 |
df = df.format(format_dictionary)
|
| 133 |
+
df2 = df.format(format_dictionary)
|
| 134 |
|
| 135 |
with c2:
|
| 136 |
+
st.markdown("#### We suppose your research about: ")
|
| 137 |
st.table(df)
|
| 138 |
+
st.markdown("##### More detailed, it's about topic: ")
|
| 139 |
+
st.table(df2)
|
models/scibert/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3c198018ce26ff40d59d298bf6aa40515fb952ee2a522591b82565c44077b48
|
| 3 |
+
size 440146413
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
transformers
|
| 2 |
-
torch
|
|
|
|
|
|
| 1 |
transformers
|
| 2 |
+
torch
|
| 3 |
+
seaborn
|