Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a Cross Encoder model finetuned from cross-encoder/nli-deberta-v3-base on the horeca-nli dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text pair classification.
This a model for Natural Language Inference NLI. it take a premises and an hypothesis as input, and return a classification of the relationship between the two input sentence Possible outputs are: contradiction, entailment, neutral
Example:
premises:kitchen eighty centimeters wide, deep 70 cm placed on closed compartment
hypothesis:the kitchen is placed on open shelf
Output:contradiction
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("software-si/kitchen-nli")
# Get scores for pairs of texts
pairs = [
['cooking unit with square plates on compartment with doors', 'the depth of the kitchen is 70 centimeters'],
['cooking unit with 2 electric plates, on compartment with doors', 'the kitchen is placed on top'],
['kitchen module in top version deep 70 cm eighty centimeters wide,', 'the kitchen is placed on cabinet'],
['cooking unit wide 80 cm, with a depth of 90 centimeters, placed on closed compartment', 'the kitchen has a width of 40 cm'],
['kitchen with gas cooking, with gas oven, one hundred twenty centimeters wide,', 'the layout of the kitchen is top'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5, 3)
label_mapping = ['contradiction', 'entailment', 'neutral']
premises, hypothesis, and labels| premises | hypothesis | labels | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| premises | hypothesis | labels |
|---|---|---|
kitchen eighty centimeters wide, deep 70 cm placed on closed compartment |
the kitchen is forty centimeters wide |
0 |
cooking unit placed on cabinet deep 90 cm, gas supply, |
the kitchen is placed on open shelf |
2 |
cooking unit wide 40 cm, powered by electricity with the square plates |
the kitchen measures one hundred twenty centimeters in width |
0 |
CrossEntropyLosspremises, hypothesis, and labels| premises | hypothesis | labels | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| premises | hypothesis | labels |
|---|---|---|
cooking unit with square plates on compartment with doors |
the depth of the kitchen is 70 centimeters |
2 |
cooking unit with 2 electric plates, on compartment with doors |
the kitchen is placed on top |
2 |
kitchen module in top version deep 70 cm eighty centimeters wide, |
the kitchen is placed on cabinet |
0 |
CrossEntropyLosseval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 1e-05num_train_epochs: 1warmup_steps: 10283bf16: Trueload_best_model_at_end: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 10283log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.3111 | 500 | 0.0082 | 0.0072 |
| 0.6223 | 1000 | 0.0043 | 0.0027 |
| 0.9334 | 1500 | 0.0041 | 0.0388 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
microsoft/deberta-v3-base