segformer-b1-GFB
This model is a fine-tuned version of nvidia/mit-b1 on the segments/GFB dataset. It achieves the following results on the evaluation set:
- Loss: 0.7123
- Mean Iou: 0.4066
- Mean Accuracy: 0.6407
- Overall Accuracy: 0.7120
- Accuracy Unlabeled: 0.7269
- Accuracy Gbm: 0.7533
- Accuracy Podo: 0.6292
- Accuracy Endo: 0.4534
- Iou Unlabeled: 0.6879
- Iou Gbm: 0.3563
- Iou Podo: 0.3016
- Iou Endo: 0.2805
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 400
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Gbm | Accuracy Podo | Accuracy Endo | Iou Unlabeled | Iou Gbm | Iou Podo | Iou Endo |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.0437 | 2.3256 | 100 | 0.9647 | 0.1635 | 0.3944 | 0.3972 | 0.3432 | 0.9566 | 0.2760 | 0.0016 | 0.3400 | 0.1810 | 0.1312 | 0.0016 |
| 1.0477 | 4.6512 | 200 | 0.8946 | 0.2654 | 0.4802 | 0.5921 | 0.5917 | 0.9183 | 0.3820 | 0.0288 | 0.5746 | 0.2494 | 0.2106 | 0.0272 |
| 1.0521 | 6.9767 | 300 | 0.9437 | 0.1971 | 0.4167 | 0.4435 | 0.4006 | 0.9666 | 0.2893 | 0.0102 | 0.3960 | 0.1802 | 0.2019 | 0.0102 |
| 1.044 | 9.3023 | 400 | 0.8855 | 0.2978 | 0.5250 | 0.5906 | 0.5760 | 0.9407 | 0.4162 | 0.1673 | 0.5634 | 0.2525 | 0.2320 | 0.1432 |
| 1.043 | 11.6279 | 500 | 0.8286 | 0.3415 | 0.6245 | 0.6202 | 0.5835 | 0.8697 | 0.7344 | 0.3106 | 0.5767 | 0.3479 | 0.2393 | 0.2022 |
| 1.0244 | 13.9535 | 600 | 0.8240 | 0.3151 | 0.5919 | 0.5622 | 0.5104 | 0.9238 | 0.6422 | 0.2912 | 0.5034 | 0.2529 | 0.2886 | 0.2157 |
| 1.0181 | 16.2791 | 700 | 0.8666 | 0.2833 | 0.5509 | 0.5232 | 0.4694 | 0.9362 | 0.5532 | 0.2447 | 0.4624 | 0.2342 | 0.2497 | 0.1871 |
| 1.0278 | 18.6047 | 800 | 0.8137 | 0.3482 | 0.5795 | 0.6439 | 0.6303 | 0.9038 | 0.5999 | 0.1841 | 0.6138 | 0.2765 | 0.3384 | 0.1640 |
| 1.0576 | 20.9302 | 900 | 0.8081 | 0.4165 | 0.6371 | 0.7289 | 0.7441 | 0.7589 | 0.7191 | 0.3263 | 0.7099 | 0.4185 | 0.2868 | 0.2508 |
| 1.0154 | 23.2558 | 1000 | 0.8564 | 0.3388 | 0.5937 | 0.6087 | 0.5925 | 0.7811 | 0.6043 | 0.3967 | 0.5627 | 0.2989 | 0.2231 | 0.2706 |
| 0.9911 | 25.5814 | 1100 | 0.7912 | 0.3697 | 0.6326 | 0.6392 | 0.6166 | 0.8302 | 0.6749 | 0.4087 | 0.5943 | 0.2993 | 0.2939 | 0.2914 |
| 0.9804 | 27.9070 | 1200 | 0.7709 | 0.3985 | 0.6464 | 0.6974 | 0.6874 | 0.8488 | 0.7391 | 0.3104 | 0.6659 | 0.3707 | 0.3099 | 0.2476 |
| 1.0381 | 30.2326 | 1300 | 0.7870 | 0.3218 | 0.6275 | 0.5519 | 0.4872 | 0.8913 | 0.7242 | 0.4072 | 0.4783 | 0.2642 | 0.2766 | 0.2682 |
| 0.9724 | 32.5581 | 1400 | 0.8018 | 0.3666 | 0.6549 | 0.6235 | 0.5878 | 0.8067 | 0.7556 | 0.4696 | 0.5716 | 0.3192 | 0.2645 | 0.3110 |
| 0.9812 | 34.8837 | 1500 | 0.7901 | 0.3407 | 0.6203 | 0.5876 | 0.5474 | 0.8960 | 0.5768 | 0.4611 | 0.5349 | 0.2594 | 0.2900 | 0.2784 |
| 0.9904 | 37.2093 | 1600 | 0.8698 | 0.3007 | 0.5293 | 0.5806 | 0.5723 | 0.8089 | 0.4723 | 0.2638 | 0.5450 | 0.2474 | 0.2128 | 0.1977 |
| 0.9809 | 39.5349 | 1700 | 0.7359 | 0.3870 | 0.6742 | 0.6538 | 0.6237 | 0.8505 | 0.7126 | 0.5098 | 0.6068 | 0.3316 | 0.2965 | 0.3133 |
| 0.9835 | 41.8605 | 1800 | 0.6637 | 0.4472 | 0.7122 | 0.7321 | 0.7221 | 0.8559 | 0.7314 | 0.5394 | 0.7020 | 0.4129 | 0.3383 | 0.3357 |
| 0.9693 | 44.1860 | 1900 | 0.7658 | 0.3631 | 0.6283 | 0.6547 | 0.6421 | 0.8321 | 0.6226 | 0.4163 | 0.6148 | 0.3350 | 0.2732 | 0.2295 |
| 0.9553 | 46.5116 | 2000 | 0.6570 | 0.4282 | 0.7234 | 0.7041 | 0.6783 | 0.8463 | 0.7924 | 0.5764 | 0.6634 | 0.4159 | 0.3154 | 0.3180 |
| 0.9579 | 48.8372 | 2100 | 0.7036 | 0.4030 | 0.6615 | 0.6909 | 0.6793 | 0.8306 | 0.7145 | 0.4218 | 0.6555 | 0.3455 | 0.3298 | 0.2812 |
| 0.9291 | 51.1628 | 2200 | 0.7865 | 0.3438 | 0.6064 | 0.6146 | 0.5937 | 0.8297 | 0.5907 | 0.4113 | 0.5702 | 0.2705 | 0.2910 | 0.2434 |
| 0.9129 | 53.4884 | 2300 | 0.6790 | 0.4314 | 0.7052 | 0.7182 | 0.7075 | 0.8079 | 0.7652 | 0.5404 | 0.6840 | 0.4149 | 0.3219 | 0.3047 |
| 0.9365 | 55.8140 | 2400 | 0.7916 | 0.3621 | 0.5994 | 0.6570 | 0.6591 | 0.7521 | 0.6349 | 0.3514 | 0.6255 | 0.3046 | 0.2695 | 0.2487 |
| 0.9193 | 58.1395 | 2500 | 0.6435 | 0.4449 | 0.7146 | 0.7302 | 0.7229 | 0.8068 | 0.7568 | 0.5720 | 0.6981 | 0.4204 | 0.3320 | 0.3290 |
| 0.9009 | 60.4651 | 2600 | 0.6424 | 0.4394 | 0.7117 | 0.7213 | 0.7065 | 0.8426 | 0.7664 | 0.5314 | 0.6865 | 0.3993 | 0.3441 | 0.3274 |
| 0.8991 | 62.7907 | 2700 | 0.6142 | 0.4516 | 0.7266 | 0.7392 | 0.7304 | 0.8494 | 0.7231 | 0.6034 | 0.7099 | 0.4150 | 0.3630 | 0.3186 |
| 0.9053 | 65.1163 | 2800 | 0.6652 | 0.4470 | 0.6885 | 0.7437 | 0.7524 | 0.8031 | 0.6762 | 0.5223 | 0.7202 | 0.3968 | 0.3475 | 0.3235 |
| 0.8173 | 67.4419 | 2900 | 0.7179 | 0.3810 | 0.6336 | 0.6698 | 0.6637 | 0.7913 | 0.6622 | 0.4171 | 0.6357 | 0.3190 | 0.2975 | 0.2718 |
| 0.945 | 69.7674 | 3000 | 0.6487 | 0.4442 | 0.6973 | 0.7385 | 0.7416 | 0.7962 | 0.7164 | 0.5350 | 0.7112 | 0.4082 | 0.3428 | 0.3147 |
| 0.8838 | 72.0930 | 3100 | 0.7113 | 0.3930 | 0.6474 | 0.6827 | 0.6784 | 0.8044 | 0.6459 | 0.4609 | 0.6496 | 0.3371 | 0.2970 | 0.2883 |
| 0.8921 | 74.4186 | 3200 | 0.6615 | 0.4231 | 0.6799 | 0.7145 | 0.7118 | 0.8045 | 0.7055 | 0.4978 | 0.6840 | 0.3764 | 0.3258 | 0.3060 |
| 0.8662 | 76.7442 | 3300 | 0.6605 | 0.4303 | 0.6886 | 0.7238 | 0.7243 | 0.8056 | 0.6833 | 0.5414 | 0.6968 | 0.3823 | 0.3321 | 0.3101 |
| 0.8779 | 79.0698 | 3400 | 0.6636 | 0.4293 | 0.6729 | 0.7259 | 0.7311 | 0.7904 | 0.6939 | 0.4761 | 0.6998 | 0.3753 | 0.3354 | 0.3068 |
| 0.9394 | 81.3953 | 3500 | 0.6623 | 0.4412 | 0.6789 | 0.7404 | 0.7513 | 0.7854 | 0.6833 | 0.4954 | 0.7155 | 0.3982 | 0.3380 | 0.3133 |
| 0.8704 | 83.7209 | 3600 | 0.6811 | 0.4265 | 0.6654 | 0.7272 | 0.7386 | 0.7762 | 0.6573 | 0.4896 | 0.7030 | 0.3744 | 0.3255 | 0.3029 |
| 0.9146 | 86.0465 | 3700 | 0.7154 | 0.4051 | 0.6390 | 0.7087 | 0.7233 | 0.7467 | 0.6305 | 0.4557 | 0.6845 | 0.3505 | 0.2980 | 0.2875 |
| 0.8139 | 88.3721 | 3800 | 0.7432 | 0.3867 | 0.6199 | 0.6916 | 0.7069 | 0.7281 | 0.6125 | 0.4322 | 0.6659 | 0.3320 | 0.2822 | 0.2666 |
| 0.8596 | 90.6977 | 3900 | 0.7091 | 0.4057 | 0.6419 | 0.7085 | 0.7207 | 0.7538 | 0.6455 | 0.4477 | 0.6836 | 0.3548 | 0.3001 | 0.2842 |
| 0.8117 | 93.0233 | 4000 | 0.7186 | 0.3985 | 0.6374 | 0.7012 | 0.7130 | 0.7491 | 0.6307 | 0.4569 | 0.6756 | 0.3476 | 0.2919 | 0.2788 |
| 0.8227 | 95.3488 | 4100 | 0.7220 | 0.4034 | 0.6334 | 0.7106 | 0.7287 | 0.7434 | 0.6130 | 0.4485 | 0.6878 | 0.3494 | 0.2968 | 0.2798 |
| 0.7746 | 97.6744 | 4200 | 0.7147 | 0.4095 | 0.6381 | 0.7172 | 0.7356 | 0.7497 | 0.6206 | 0.4463 | 0.6946 | 0.3573 | 0.3042 | 0.2818 |
| 0.8396 | 100.0 | 4300 | 0.7123 | 0.4066 | 0.6407 | 0.7120 | 0.7269 | 0.7533 | 0.6292 | 0.4534 | 0.6879 | 0.3563 | 0.3016 | 0.2805 |
Framework versions
- Transformers 4.57.2
- Pytorch 2.8.0+cu126
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 4
Model tree for lwe0105/segformer-b1-GFB
Base model
nvidia/mit-b1