segformer-b1-GFB

This model is a fine-tuned version of nvidia/mit-b1 on the segments/GFB dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7123
  • Mean Iou: 0.4066
  • Mean Accuracy: 0.6407
  • Overall Accuracy: 0.7120
  • Accuracy Unlabeled: 0.7269
  • Accuracy Gbm: 0.7533
  • Accuracy Podo: 0.6292
  • Accuracy Endo: 0.4534
  • Iou Unlabeled: 0.6879
  • Iou Gbm: 0.3563
  • Iou Podo: 0.3016
  • Iou Endo: 0.2805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Gbm Accuracy Podo Accuracy Endo Iou Unlabeled Iou Gbm Iou Podo Iou Endo
1.0437 2.3256 100 0.9647 0.1635 0.3944 0.3972 0.3432 0.9566 0.2760 0.0016 0.3400 0.1810 0.1312 0.0016
1.0477 4.6512 200 0.8946 0.2654 0.4802 0.5921 0.5917 0.9183 0.3820 0.0288 0.5746 0.2494 0.2106 0.0272
1.0521 6.9767 300 0.9437 0.1971 0.4167 0.4435 0.4006 0.9666 0.2893 0.0102 0.3960 0.1802 0.2019 0.0102
1.044 9.3023 400 0.8855 0.2978 0.5250 0.5906 0.5760 0.9407 0.4162 0.1673 0.5634 0.2525 0.2320 0.1432
1.043 11.6279 500 0.8286 0.3415 0.6245 0.6202 0.5835 0.8697 0.7344 0.3106 0.5767 0.3479 0.2393 0.2022
1.0244 13.9535 600 0.8240 0.3151 0.5919 0.5622 0.5104 0.9238 0.6422 0.2912 0.5034 0.2529 0.2886 0.2157
1.0181 16.2791 700 0.8666 0.2833 0.5509 0.5232 0.4694 0.9362 0.5532 0.2447 0.4624 0.2342 0.2497 0.1871
1.0278 18.6047 800 0.8137 0.3482 0.5795 0.6439 0.6303 0.9038 0.5999 0.1841 0.6138 0.2765 0.3384 0.1640
1.0576 20.9302 900 0.8081 0.4165 0.6371 0.7289 0.7441 0.7589 0.7191 0.3263 0.7099 0.4185 0.2868 0.2508
1.0154 23.2558 1000 0.8564 0.3388 0.5937 0.6087 0.5925 0.7811 0.6043 0.3967 0.5627 0.2989 0.2231 0.2706
0.9911 25.5814 1100 0.7912 0.3697 0.6326 0.6392 0.6166 0.8302 0.6749 0.4087 0.5943 0.2993 0.2939 0.2914
0.9804 27.9070 1200 0.7709 0.3985 0.6464 0.6974 0.6874 0.8488 0.7391 0.3104 0.6659 0.3707 0.3099 0.2476
1.0381 30.2326 1300 0.7870 0.3218 0.6275 0.5519 0.4872 0.8913 0.7242 0.4072 0.4783 0.2642 0.2766 0.2682
0.9724 32.5581 1400 0.8018 0.3666 0.6549 0.6235 0.5878 0.8067 0.7556 0.4696 0.5716 0.3192 0.2645 0.3110
0.9812 34.8837 1500 0.7901 0.3407 0.6203 0.5876 0.5474 0.8960 0.5768 0.4611 0.5349 0.2594 0.2900 0.2784
0.9904 37.2093 1600 0.8698 0.3007 0.5293 0.5806 0.5723 0.8089 0.4723 0.2638 0.5450 0.2474 0.2128 0.1977
0.9809 39.5349 1700 0.7359 0.3870 0.6742 0.6538 0.6237 0.8505 0.7126 0.5098 0.6068 0.3316 0.2965 0.3133
0.9835 41.8605 1800 0.6637 0.4472 0.7122 0.7321 0.7221 0.8559 0.7314 0.5394 0.7020 0.4129 0.3383 0.3357
0.9693 44.1860 1900 0.7658 0.3631 0.6283 0.6547 0.6421 0.8321 0.6226 0.4163 0.6148 0.3350 0.2732 0.2295
0.9553 46.5116 2000 0.6570 0.4282 0.7234 0.7041 0.6783 0.8463 0.7924 0.5764 0.6634 0.4159 0.3154 0.3180
0.9579 48.8372 2100 0.7036 0.4030 0.6615 0.6909 0.6793 0.8306 0.7145 0.4218 0.6555 0.3455 0.3298 0.2812
0.9291 51.1628 2200 0.7865 0.3438 0.6064 0.6146 0.5937 0.8297 0.5907 0.4113 0.5702 0.2705 0.2910 0.2434
0.9129 53.4884 2300 0.6790 0.4314 0.7052 0.7182 0.7075 0.8079 0.7652 0.5404 0.6840 0.4149 0.3219 0.3047
0.9365 55.8140 2400 0.7916 0.3621 0.5994 0.6570 0.6591 0.7521 0.6349 0.3514 0.6255 0.3046 0.2695 0.2487
0.9193 58.1395 2500 0.6435 0.4449 0.7146 0.7302 0.7229 0.8068 0.7568 0.5720 0.6981 0.4204 0.3320 0.3290
0.9009 60.4651 2600 0.6424 0.4394 0.7117 0.7213 0.7065 0.8426 0.7664 0.5314 0.6865 0.3993 0.3441 0.3274
0.8991 62.7907 2700 0.6142 0.4516 0.7266 0.7392 0.7304 0.8494 0.7231 0.6034 0.7099 0.4150 0.3630 0.3186
0.9053 65.1163 2800 0.6652 0.4470 0.6885 0.7437 0.7524 0.8031 0.6762 0.5223 0.7202 0.3968 0.3475 0.3235
0.8173 67.4419 2900 0.7179 0.3810 0.6336 0.6698 0.6637 0.7913 0.6622 0.4171 0.6357 0.3190 0.2975 0.2718
0.945 69.7674 3000 0.6487 0.4442 0.6973 0.7385 0.7416 0.7962 0.7164 0.5350 0.7112 0.4082 0.3428 0.3147
0.8838 72.0930 3100 0.7113 0.3930 0.6474 0.6827 0.6784 0.8044 0.6459 0.4609 0.6496 0.3371 0.2970 0.2883
0.8921 74.4186 3200 0.6615 0.4231 0.6799 0.7145 0.7118 0.8045 0.7055 0.4978 0.6840 0.3764 0.3258 0.3060
0.8662 76.7442 3300 0.6605 0.4303 0.6886 0.7238 0.7243 0.8056 0.6833 0.5414 0.6968 0.3823 0.3321 0.3101
0.8779 79.0698 3400 0.6636 0.4293 0.6729 0.7259 0.7311 0.7904 0.6939 0.4761 0.6998 0.3753 0.3354 0.3068
0.9394 81.3953 3500 0.6623 0.4412 0.6789 0.7404 0.7513 0.7854 0.6833 0.4954 0.7155 0.3982 0.3380 0.3133
0.8704 83.7209 3600 0.6811 0.4265 0.6654 0.7272 0.7386 0.7762 0.6573 0.4896 0.7030 0.3744 0.3255 0.3029
0.9146 86.0465 3700 0.7154 0.4051 0.6390 0.7087 0.7233 0.7467 0.6305 0.4557 0.6845 0.3505 0.2980 0.2875
0.8139 88.3721 3800 0.7432 0.3867 0.6199 0.6916 0.7069 0.7281 0.6125 0.4322 0.6659 0.3320 0.2822 0.2666
0.8596 90.6977 3900 0.7091 0.4057 0.6419 0.7085 0.7207 0.7538 0.6455 0.4477 0.6836 0.3548 0.3001 0.2842
0.8117 93.0233 4000 0.7186 0.3985 0.6374 0.7012 0.7130 0.7491 0.6307 0.4569 0.6756 0.3476 0.2919 0.2788
0.8227 95.3488 4100 0.7220 0.4034 0.6334 0.7106 0.7287 0.7434 0.6130 0.4485 0.6878 0.3494 0.2968 0.2798
0.7746 97.6744 4200 0.7147 0.4095 0.6381 0.7172 0.7356 0.7497 0.6206 0.4463 0.6946 0.3573 0.3042 0.2818
0.8396 100.0 4300 0.7123 0.4066 0.6407 0.7120 0.7269 0.7533 0.6292 0.4534 0.6879 0.3563 0.3016 0.2805

Framework versions

  • Transformers 4.57.2
  • Pytorch 2.8.0+cu126
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
4
Safetensors
Model size
13.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for lwe0105/segformer-b1-GFB

Base model

nvidia/mit-b1
Finetuned
(23)
this model

Evaluation results