Data selection - early experiments
Collection
Collection of Whisper FT models using different data selection approaches (metadata, classifier, full corpus)
•
4 items
•
Updated
This model is a fine-tuned version of openai/whisper-large-v2 on the JASMIN-CGN dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.9942 | 0.2 | 100 | 1.1448 | 36.9041 |
| 0.7153 | 0.4 | 200 | 0.7109 | 33.2237 |
| 0.4752 | 0.6 | 300 | 0.4312 | 21.6157 |
| 0.4388 | 0.8 | 400 | 0.3911 | 20.1932 |
| 0.4234 | 1.0 | 500 | 0.3737 | 18.9419 |
| 0.417 | 1.2 | 600 | 0.3623 | 18.1199 |
| 0.4012 | 1.4 | 700 | 0.3544 | 17.8549 |
| 0.3898 | 1.6 | 800 | 0.3487 | 17.5127 |
| 0.4018 | 1.8 | 900 | 0.3445 | 17.3785 |
| 0.3736 | 2.0 | 1000 | 0.3415 | 15.7815 |
| 0.3804 | 2.2 | 1100 | 0.3389 | 16.2277 |
| 0.397 | 2.4 | 1200 | 0.3369 | 16.1338 |
| 0.3772 | 2.6 | 1300 | 0.3356 | 16.0935 |
| 0.3781 | 2.8 | 1400 | 0.3350 | 16.5968 |
| 0.3675 | 3.0 | 1500 | 0.3347 | 16.0466 |
Base model
openai/whisper-large-v2