Dataset Viewer
Auto-converted to Parquet Duplicate
index
int64
repo_name
string
branch_name
string
path
string
content
string
import_graph
string
36
Yuliashka/Snake-Game
refs/heads/main
/food.py
from turtle import Turtle import random # we want this Food class to inherit from the Turtle class, so it will have all the capapibilities from # the turtle class, but also some specific things that we want class Food(Turtle): # creating initializer for this class def __init__(self): # we inherit things from the super class: super().__init__() # below we are using methods from Turtle class: self.shape("circle") self.penup() # normal sise is 20x20, we want to stretch the length and the width for 0.5 so we have 10x10 self.shapesize(stretch_len=0.5, stretch_wid=0.5) self.color("blue") self.speed("fastest") # call the method refresh so the food goes in random location self.refresh() def refresh(self): # our screen is 600x600 # we want to place our food from -280 to 280 in coordinates: random_x = random.randint(-280, 280) random_y = random.randint(-280, 280) # telling our food to go to random_y and random_x: self.goto(random_x, random_y) # All this methods will happen as soon as we create a new object # This food object we initialize in main.py
{"/main.py": ["/snake.py", "/food.py", "/scoreboard.py"]}
37
Yuliashka/Snake-Game
refs/heads/main
/snake.py
from turtle import Turtle STARTING_POSITIONS = [(0, 0), (-20, 0), (-40, 0)] MOVE_DISTANCE = 20 UP = 90 DOWN = 270 RIGHT = 0 LEFT = 180 class Snake: # The code here is going to determine what should happen when we initialize a new snake object def __init__(self): # below we create a new attribute for our class self.segments = [] # We create a snake: self.create_snake() self.head = self.segments[0] # CREATING SNAKE (2 functions) def create_snake(self): for position in STARTING_POSITIONS: # we are calling the function and passing there the position that we are looping through self.add_segment(position) def add_segment(self, position): new_segment = Turtle("square") new_segment.color("white") new_segment.penup() new_segment.goto(position) self.segments.append(new_segment) # Creating a snake extend function def extend(self): # we are using the list of segments and counting from the end of list to get the last one segment of the snake # after we are going to hold segment's position using a method of Turtle class # then we add the new_segment to the same position as the last segment self.add_segment(self.segments[-1].position()) # Creating another method for snake class def move(self): for seg_num in range(len(self.segments)-1, 0, -1): new_x = self.segments[seg_num - 1].xcor() new_y = self.segments[seg_num - 1].ycor() self.segments[seg_num].goto(new_x, new_y) self.head.forward(MOVE_DISTANCE) def up(self): # if the current heading is pointed down it can't move up # because the snake can't go backword if self.head.heading() != DOWN: self.head.setheading(UP) def down(self): if self.head.heading() != UP: self.head.setheading(DOWN) def left(self): if self.head.heading() != RIGHT: self.head.setheading(LEFT) def right(self): if self.head.heading() != LEFT: self.head.setheading(RIGHT)
{"/main.py": ["/snake.py", "/food.py", "/scoreboard.py"]}
38
Yuliashka/Snake-Game
refs/heads/main
/main.py
from turtle import Screen import time from snake import Snake from food import Food from scoreboard import Score # SETTING UP THE SCREEN: screen = Screen() screen.setup(width=600, height=600) screen.bgcolor("black") screen.title("My Snake Game") # to turn off the screen tracer screen.tracer(0) # CREATING A SNAKE OBJECT: snake = Snake() # CREATING A FOOD OBJECT: food = Food() # CREATING A SCORE OBJECT: score = Score() # CREATING A KEY CONTROL: screen.listen() # these methods snake.up ,,, we have in a snake class (up = 90, down = 270, left = 180, right = 0) screen.onkey(key="Up", fun=snake.up) screen.onkey(key="Down", fun=snake.down) screen.onkey(key="Left", fun=snake.left) screen.onkey(key="Right", fun=snake.right) game_is_on = True while game_is_on: # while the game is on the screen is going to be updated every 0.1 second # It is saying delay for 0.1 sec and then update: screen.update() time.sleep(0.1) # every time the screen refreshes we get the snake to move forwards by one step snake.move() # DETECT COLLISION WITH THE FOOD # if the snake head is within 15 px of the food or closer they have collided if snake.head.distance(food) < 15: food.refresh() snake.extend() print("nom nom nom") # when the snake collide with the food we increase the score: score.increase_score() # # DETECT COLLISION WITH THE TAIL METHOD 1: # # we can loop through our list of segments in the snake # for segment in snake.segments: # # if head has distance from any segment in segments list less than 10 px - that a collision # # if the head collides with any segment in the tail: trigger GAME OVER # # the first segment is the head so we should exclude it from the list of segments # if segment == snake.head: # pass # elif snake.head.distance(segment) < 10: # game_is_on = False # score.game_over() # DETECT COLLISION WITH THE TAIL METHOD 2 SLICING: # we can loop through our list of segments in the snake using slicing method of python # we are taking all positions inside the list without the first head segment for segment in snake.segments[1:]: # if head has distance from any segment in segments list less than 10 px - that a collision # if the head collides with any segment in the tail: trigger GAME OVER if snake.head.distance(segment) < 10: game_is_on = False score.game_over() # DETECT COLLISION WITH THE WALL if snake.head.xcor() >280 or snake.head.xcor() < -280 or snake.head.ycor() > 280 or snake.head.ycor() < -280: score.game_over() game_is_on = False screen.exitonclick()
{"/main.py": ["/snake.py", "/food.py", "/scoreboard.py"]}
39
Yuliashka/Snake-Game
refs/heads/main
/scoreboard.py
from turtle import Turtle ALIGMENT = "center" FONT = ("Arial", 18, "normal") class Score(Turtle): def __init__(self): super().__init__() self.score = 0 self.color("white") self.penup() self.goto(0, 270) self.write(f"Current score: {self.score}", align="center", font=("Arial", 18, "normal")) self.hideturtle() self.update_score() def update_score(self): self.write(f"Current score: {self.score}", align="center", font=("Arial", 18, "normal")) def game_over(self): self.goto(0, 0) self.write("GAME OVER", align=ALIGMENT, font=FONT) def increase_score(self): self.score += 1 # to clear the previous score before we update: self.clear() self.update_score()
{"/main.py": ["/snake.py", "/food.py", "/scoreboard.py"]}
46
marcin-mulawa/Water-Sort-Puzzle-Bot
refs/heads/main
/loading_phone.py
import numpy as np import cv2 import imutils picture = 'puzzle.jpg' def load_transform_img(picture): image = cv2.imread(picture) image = imutils.resize(image, height=800) org = image.copy() #cv2.imshow('orginal', image) mask = np.zeros(image.shape[:2], dtype = "uint8") cv2.rectangle(mask, (15, 150), (440, 700), 255, -1) #cv2.imshow("Mask", mask) image = cv2.bitwise_and(image, image, mask = mask) #cv2.imshow("Applying the Mask", image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #cv2.imshow('image', image) blurred = cv2.GaussianBlur(image, (5, 5), 0) edged = cv2.Canny(blurred, 140, 230) #cv2.imshow("Canny", edged) (cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) print(len(cnts)) cv2.fillPoly(edged, pts =cnts, color=(255,255,255)) #cv2.imshow('filled', edged) fedged = cv2.Canny(edged, 140, 230) #cv2.imshow("fedged", fedged) (cnts, _) = cv2.findContours(fedged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) boxes = fedged.copy() #cv2.drawContours(boxes, cnts, 10, (100 , 200, 100), 2) #cv2.imshow("Boxes", boxes) image = cv2.bitwise_and(org, org, mask = edged) #cv2.imshow("Applying the Mask2", image) puzzlelist = [] for (i, c) in enumerate(cnts): (x, y, w, h) = cv2.boundingRect(c) print("Box #{}".format(i + 1)) box = org[y:y + h, x:x + w] cv2.imwrite(f'temp/box{i+1}.jpg',box) #cv2.imshow("Box", box) gray = cv2.cvtColor(box, cv2.COLOR_BGR2GRAY) #cv2.imshow("gray", gray) mask = np.zeros(gray.shape[:2], dtype = "uint8") y1,y2 = 35, 50 for i in range(4): cv2.rectangle(mask, (15, y1), (37, y2), 255, -1) y1,y2 = y1+40, y2+40 #cv2.imshow("Mask2 ", mask) masked = cv2.bitwise_and(gray, gray, mask = mask) y1,y2 = 35, 50 temp = [] for i in range(4): value = masked[y1:y2,15:37] #cv2.imshow(f'val{i}',value) max_val = max(value.flatten()) if max_val >= 45: temp.append(max_val) y1,y2 = y1+40, y2+40 puzzlelist.append(temp[::-1]) #cv2.waitKey(0) return puzzlelist[::-1] , len(cnts)
{"/auto_puzzle.py": ["/solver.py"], "/solver.py": ["/loading_pc.py"]}
47
marcin-mulawa/Water-Sort-Puzzle-Bot
refs/heads/main
/loading_pc.py
import numpy as np import cv2 import imutils picture = 'puzzle.jpg' def load_transform_img(picture): image = cv2.imread(picture) #image = imutils.resize(image, height=800) org = image.copy() #cv2.imshow('orginal', image) mask = np.zeros(image.shape[:2], dtype = "uint8") cv2.rectangle(mask, (680, 260), (1160, 910), 255, -1) #cv2.imshow("Mask", mask) image = cv2.bitwise_and(image, image, mask = mask) #cv2.imshow("Applying the Mask", image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #cv2.imshow('image', image) blurred = cv2.GaussianBlur(image, (5, 5), 0) edged = cv2.Canny(blurred, 140, 230) #cv2.imshow("Canny", edged) (cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #print(len(cnts)) cv2.fillPoly(edged, pts =cnts, color=(255,255,255)) #cv2.imshow('filled', edged) fedged = cv2.Canny(edged, 140, 230) #cv2.imshow("fedged", fedged) (cnts, _) = cv2.findContours(fedged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # boxes = fedged.copy() # cv2.drawContours(boxes, cnts, 10, (100 , 200, 100), 2) # cv2.imshow("Boxes", boxes) image = cv2.bitwise_and(org, org, mask = edged) #cv2.imshow("Applying the Mask2", image) puzzlelist = [] boxes_positon = [] for (i, c) in enumerate(cnts): (x, y, w, h) = cv2.boundingRect(c) #print("Box #{}".format(i + 1)) box = org[y:y + h, x:x + w] boxes_positon.append( ( (x+x+w)/2, (y+y+h)/2 ) ) cv2.imwrite(f'temp/box{i+1}.jpg',box) #cv2.imshow("Box", box) gray = cv2.cvtColor(box, cv2.COLOR_BGR2GRAY) #cv2.imshow("gray", gray) mask = np.zeros(gray.shape[:2], dtype = "uint8") y1,y2 = 45, 60 for i in range(4): cv2.rectangle(mask, (15, y1), (37, y2), 255, -1) y1,y2 = y1+45, y2+45 #cv2.imshow("Mask2 ", mask) masked = cv2.bitwise_and(gray, gray, mask = mask) #cv2.imshow('Masked', masked) y1,y2 = 45, 60 temp = [] for i in range(4): value = masked[y1:y2,15:37] #cv2.imshow(f'val{i}',value) max_val = max(value.flatten()) if max_val >= 45: temp.append(max_val) y1,y2 = y1+45, y2+45 puzzlelist.append(temp[::-1]) #cv2.waitKey(0) print(f'Pozycja początkowa: {puzzlelist[::-1]}\n') print(f'Pozycje boksow: {boxes_positon[::-1]}\n') return puzzlelist[::-1], boxes_positon[::-1], len(cnts) if __name__ == '__main__': answer, boxes_positon[::-1], boxes = load_transform_img('level/screen.jpg') print(answer)
{"/auto_puzzle.py": ["/solver.py"], "/solver.py": ["/loading_pc.py"]}
48
marcin-mulawa/Water-Sort-Puzzle-Bot
refs/heads/main
/auto_puzzle.py
import pyautogui as pya import solver import time import glob import os import numpy as np import cv2 import shutil path = os.getcwd() path1 = path + r'/temp' path2 = path +r'/level' try: shutil.rmtree(path1) except: pass try: os.mkdir('temp') except: pass try: os.mkdir('level') except: pass bluestacks = pya.locateCenterOnScreen('static/bluestacks.jpg', confidence=.9) print(bluestacks) pya.click(bluestacks) time.sleep(3) full = pya.locateCenterOnScreen('static/full.jpg', confidence=.8) pya.click(full) time.sleep(15) mojeGry = pya.locateCenterOnScreen('static/mojegry.jpg', confidence=.8) print(mojeGry) if mojeGry: pya.click(mojeGry) time.sleep(2) game = pya.locateCenterOnScreen('static/watersort.jpg', confidence=.5) print(game) if game: pya.click(game) time.sleep(6) record = pya.locateCenterOnScreen('static/record.jpg', confidence=.8) for m in range(4): pya.click(record) time.sleep(4.5) for k in range(10): screenshoot = pya.screenshot() screenshoot = cv2.cvtColor(np.array(screenshoot), cv2.COLOR_RGB2BGR) cv2.imwrite("level/screen.jpg", screenshoot) moves, boxes_position = solver.game_loop("level/screen.jpg") print(f'Steps to solve level: {len(moves)}') print(moves) for i,j in moves: pya.click(boxes_position[i]) time.sleep(0.3) pya.click(boxes_position[j]) pya.sleep(2.5) next_level = pya.locateCenterOnScreen('static/next.jpg', confidence=.7) pya.click(next_level) time.sleep(3) x_location = pya.locateCenterOnScreen('static/x.jpg', confidence=.7) if x_location: pya.click(x_location) time.sleep(2) x_location = pya.locateCenterOnScreen('static/x.jpg', confidence=.7) if x_location: pya.click(x_location) time.sleep(2) pya.click(record) time.sleep(2)
{"/auto_puzzle.py": ["/solver.py"], "/solver.py": ["/loading_pc.py"]}
49
marcin-mulawa/Water-Sort-Puzzle-Bot
refs/heads/main
/solver.py
from collections import deque import random import copy import sys import loading_pc import os def move(new_list, from_, to): temp = new_list[from_].pop() for _i in range(0,4): if len(new_list[from_])>0 and abs(int(temp) - int(new_list[from_][-1]))<3 and len(new_list[to])<3: temp = new_list[from_].pop() new_list[to].append(temp) new_list[to].append(temp) return new_list def possible_moves(table, boxes): pos=[] for i in range(0, boxes): for j in range(0, boxes): pos.append((i,j)) possible = [] for from_, to in pos: if (len(table[from_])>=1 and len(table[to])<4 and to != from_ and (len(table[to]) == 0 or (abs(int(table[from_][-1]) - int(table[to][-1]))<3)) and not (len(table[from_])==4 and len(set(table[from_]))==1) and not (len(set(table[from_]))==1 and len(table[to]) ==0)): possible.append((from_,to)) return possible def check_win(table): temp = [] not_full =[] for i in table: temp.append(len(set(i))) if len(i)<4: not_full.append(i) if len(not_full)>2: return False for i in temp: if i>1: return False print(table) return True def game_loop(agent, picture): table, boxes_position, boxes = loading_pc.load_transform_img(picture) print(len(boxes_position)) answer = agent(table, boxes) return answer, boxes_position def random_agent(table, boxes): k=5 l=0 while True: print(l) table_copy = copy.deepcopy(table) if l%1000 == 0: k+=1 correct_moves = [] for i in range(boxes*k): pmove = possible_moves(table_copy, boxes) if len(pmove) == 0: win = check_win(table_copy) if win: return correct_moves else: break x, y = random.choice(pmove) table_copy = move(table_copy, x, y) correct_moves.append((x,y)) l+=1 if __name__ == '__main__': answer, boxes_position = game_loop(random_agent, 'level/screen.jpg') print('answer', answer)
{"/auto_puzzle.py": ["/solver.py"], "/solver.py": ["/loading_pc.py"]}
54
TheDinner22/lightning-sim
refs/heads/main
/lib/board.py
# represent the "board" in code # dependencies import random class Board: def __init__(self, width=10): self.width = width self.height = width * 2 self.WALL_CHANCE = .25 self.FLOOR_CHANCE = .15 # create the grid self.create_random_grid() def create_random_grid(self): # reset old grid self.grid = [] # generate cells for new grid for i in range(self.width * self.height): # is the cell at the left, right, top, or bottom? is_left = True if i % self.width == 0 else False is_right = True if i % self.width == self.width-1 else False is_top = True if i < self.width else False is_bottom = True if i > (self.width * self.height - self.width) else False # create the cell cell = { "left" : is_left, "right" : is_right, "roof" : is_top, "floor" : is_bottom, "ID" : i } # append to grid self.grid.append(cell) # randomly generate walls total = self.width * self.height horizontal_amount = int(total * self.FLOOR_CHANCE) verticle_amount = int(total * self.WALL_CHANCE) # generate the walls for _i in range(verticle_amount): random_index = random.randrange(0, total) adding_num = -1 if random_index == total - 1 else 1 first = "right" if adding_num == 1 else "left" second = "right" if first == "left" else "left" self.grid[random_index][first] = True self.grid[random_index + adding_num][second] = True # generate the floors for _i in range(horizontal_amount): random_index = random.randrange(0, total) adding_num = self.width * -1 if random_index > (total - self.width) else self.width first = "floor" if adding_num == self.width else "roof" second = "floor" if first == "roof" else "roof" self.grid[random_index][first] = True self.grid[random_index + adding_num - 1][second] = True def can_move_from(self, cell_index): # TODO this works but its a lot of repeated code. Can it be made better? # can you move left can_move_left = False is_left = True if cell_index % self.width == 0 else False if not is_left and self.grid[cell_index]["left"] == False: left_cell = self.grid[cell_index - 1] is_wall_left = True if left_cell["right"] == True else False can_move_left = True if not is_wall_left else False # can you move right can_move_right = False is_right = True if cell_index % self.width == self.width-1 else False if not is_right and self.grid[cell_index]["right"] == False: right_cell = self.grid[cell_index + 1] is_wall_right = True if right_cell["left"] == True else False can_move_right = True if not is_wall_right else False # can you move up can_move_up = False is_top = True if cell_index < self.width else False if not is_top and self.grid[cell_index]["roof"] == False: top_cell = self.grid[cell_index - self.width] is_wall_top = True if top_cell["floor"] == True else False can_move_up = True if not is_wall_top else False # can you move down can_move_down = False is_bottom = True if cell_index > (self.width * self.height - self.width) else False if not is_bottom and self.grid[cell_index]["floor"] == False: bottom_cell = self.grid[cell_index + self.width] is_wall_bottom = True if bottom_cell["roof"] == True else False can_move_down = True if not is_wall_bottom else False # return the results return can_move_left, can_move_right, can_move_up, can_move_down def BFS(self): """breadth first search to find the quickest way to the bottom""" start_i = random.randrange(0,self.width) paths = [ [start_i] ] solved = False dead_ends = [] while not solved: for path in paths: # find all possibles moves from path if len(dead_ends) >= len(paths) or len(paths) > 10000: # TODO this solution sucks return False, False # NOTE order is left right up down if path[-1] >= (self.width * self.height - self.width): solved = True return paths, paths.index(path) possible_moves = self.can_move_from(path[-1]) if True in possible_moves: move_order = [-1, 1, (self.width) * -1, self.width] first_append_flag = False origonal_path = path.copy() for i in range(4): possible_move = possible_moves[i] if possible_move: move = move_order[i] next_index = origonal_path[-1] + move if not next_index in origonal_path: if not first_append_flag: path.append(next_index) first_append_flag = True else: new_path = origonal_path.copy() new_path.append(next_index) paths.append(new_path) if not first_append_flag: dead_ends.append(paths.index(path)) else: dead_ends.append(paths.index(path)) def pretty_print_BFS(self, path): for i in range(self.width * self.height): cell = self.grid[i] in_path = True if cell["ID"] in path else False number_str = str(i) if len(number_str) == 1: number_str += " " elif len(number_str) == 2: number_str += " " end_str = "\n" if i % self.width == self.width-1 else " " if in_path: print('\033[92m' + number_str + '\033[0m', end=end_str) else: print(number_str, end=end_str) print(path) if __name__ == "__main__": b = Board(10) paths, index = b.BFS() if paths and index: b.pretty_print_BFS(paths[index]) else: print('ljfdsakfdl') # can_move_left, can_move_right, can_move_up, can_move_down = b.can_move_from(0) # print("can_move_left ", can_move_left) # print("can_move_right ", can_move_right) # print("can_move_up ", can_move_up) # print("can_move_down ", can_move_down)
{"/main.py": ["/lib/board.py", "/lib/window.py"]}
55
TheDinner22/lightning-sim
refs/heads/main
/lib/window.py
# use pygame to show the board on a window # dependencies import pygame, random class Window: def __init__(self, board): # init py game pygame.init() # width height self.WIDTH = 600 self.HEIGHT = 600 # diffenet display modes self.display_one = False self.display_all = False # place holder self.solution = [] self.display_all_c = 0 # the board to display on the window self.board = board # define the dimensions of the cells of the board self.cell_width = self.WIDTH // self.board.width # define the left padding for the grid total_width = self.cell_width * self.board.width self.left_padding = (self.WIDTH - total_width) // 2 # colors self.COLORS = { "BLACK" : (255, 255, 255), "GREY" : (230, 230, 230), "BLUE" : (0, 0, 255), "RED" : (255, 0, 0), "YELLOW" : (212, 175, 55) } def create_random_color(self): return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) def create_window(self): # define window self.WIN = pygame.display.set_mode( (self.WIDTH, self.HEIGHT) ) # name window pygame.display.set_caption("LIGHT NING") # logo/icon for window logo = pygame.image.load("images/logo.png") pygame.display.set_icon(logo) def get_BFS(self): solved = False while not solved: self.board.create_random_grid() paths, index = self.board.BFS() if paths != False and index != False: self.solution = paths[index] solved = True self.paths = paths self.solution_i = index def draw_grid_solution(self): fflag = True for i in range(self.board.width * self.board.height): if not i in self.solution: continue # might not work col_num = i % self.board.width row_num = i // self.board.width x_pos = self.left_padding + (col_num * self.cell_width) y_pos = row_num * self.cell_width # define rect r = pygame.Rect(x_pos, y_pos, self.cell_width, self.cell_width) # draw the rectangle pygame.draw.rect(self.WIN, self.COLORS["YELLOW"], r) def draw_BFS(self): if self.display_all_c >= len(self.paths): self.display_all_c = 0 # generate a color for each path path_colors = [] for path in self.paths: path_colors.append(self.create_random_color()) path_colors[-1] = (0, 0 ,0) temp = self.paths.pop(self.display_all_c) self.paths.append(temp) for path in self.paths: for i in path: # might not work col_num = i % self.board.width row_num = i // self.board.width x_pos = self.left_padding + (col_num * self.cell_width) y_pos = row_num * self.cell_width # define rect r = pygame.Rect(x_pos, y_pos, self.cell_width, self.cell_width) # draw the rectangle pygame.draw.rect(self.WIN, path_colors[self.paths.index(path)], r) self.display_all_c += 1 def draw_window(self): self.WIN.fill(self.COLORS["GREY"]) if self.display_one: self.draw_grid_solution() elif self.display_all: self.draw_BFS() pygame.display.update() def main(self): # create window self.create_window() self.running = True while self.running: for event in pygame.event.get(): if event.type == pygame.QUIT: self.running = False elif event.type == pygame.KEYDOWN: if event.key == pygame.K_0: self.get_BFS() elif event.key == pygame.K_1: # toggle display one self.display_one = not self.display_one if self.display_one: self.display_all = False elif event.key == pygame.K_2: # toggle display all self.display_all = not self.display_all if self.display_all: self.display_all_c = 0 self.display_one = False self.draw_window() if __name__ == "__main__": win = Window() win.main()
{"/main.py": ["/lib/board.py", "/lib/window.py"]}
56
TheDinner22/lightning-sim
refs/heads/main
/main.py
# this could and will be better i just needed to make it here as a # proof of concept but it will be online and better later import os, sys BASE_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # adds project dir to places it looks for the modules sys.path.append(BASE_PATH) from lib.board import Board from lib.window import Window b = Board() win = Window(b) win.main()
{"/main.py": ["/lib/board.py", "/lib/window.py"]}
79
igoryuha/wct
refs/heads/master
/eval.py
import torch from models import NormalisedVGG, Decoder from utils import load_image, preprocess, deprocess, extract_image_names from ops import style_decorator, wct import argparse import os parser = argparse.ArgumentParser(description='WCT') parser.add_argument('--content-path', type=str, help='path to the content image') parser.add_argument('--style-path', type=str, help='path to the style image') parser.add_argument('--content-dir', type=str, help='path to the content image folder') parser.add_argument('--style-dir', type=str, help='path to the style image folder') parser.add_argument('--style-decorator', type=int, default=1) parser.add_argument('--kernel-size', type=int, default=12) parser.add_argument('--stride', type=int, default=1) parser.add_argument('--alpha', type=float, default=0.8) parser.add_argument('--ss-alpha', type=float, default=0.6) parser.add_argument('--synthesis', type=int, default=0, help='0-transfer, 1-synthesis') parser.add_argument('--encoder-path', type=str, default='encoder/vgg_normalised_conv5_1.pth') parser.add_argument('--decoders-dir', type=str, default='decoders') parser.add_argument('--save-dir', type=str, default='./results') parser.add_argument('--save-name', type=str, default='result', help='save name for single output image') parser.add_argument('--save-ext', type=str, default='jpg', help='The extension name of the output image') parser.add_argument('--content-size', type=int, default=768, help='New (minimum) size for the content image') parser.add_argument('--style-size', type=int, default=768, help='New (minimum) size for the style image') parser.add_argument('--gpu', type=int, default=0, help='ID of the GPU to use; for CPU mode set --gpu = -1') args = parser.parse_args() assert args.content_path is not None or args.content_dir is not None, \ 'Either --content-path or --content-dir should be given.' assert args.style_path is not None or args.style_dir is not None, \ 'Either --style-path or --style-dir should be given.' device = torch.device('cuda:%s' % args.gpu if torch.cuda.is_available() and args.gpu != -1 else 'cpu') encoder = NormalisedVGG(pretrained_path=args.encoder_path).to(device) d5 = Decoder('relu5_1', pretrained_path=os.path.join(args.decoders_dir, 'd5.pth')).to(device) d4 = Decoder('relu4_1', pretrained_path=os.path.join(args.decoders_dir, 'd4.pth')).to(device) d3 = Decoder('relu3_1', pretrained_path=os.path.join(args.decoders_dir, 'd3.pth')).to(device) d2 = Decoder('relu2_1', pretrained_path=os.path.join(args.decoders_dir, 'd2.pth')).to(device) d1 = Decoder('relu1_1', pretrained_path=os.path.join(args.decoders_dir, 'd1.pth')).to(device) def style_transfer(content, style): if args.style_decorator: relu5_1_cf = encoder(content, 'relu5_1') relu5_1_sf = encoder(style, 'relu5_1') relu5_1_scf = style_decorator(relu5_1_cf, relu5_1_sf, args.kernel_size, args.stride, args.ss_alpha) relu5_1_recons = d5(relu5_1_scf) else: relu5_1_cf = encoder(content, 'relu5_1') relu5_1_sf = encoder(style, 'relu5_1') relu5_1_scf = wct(relu5_1_cf, relu5_1_sf, args.alpha) relu5_1_recons = d5(relu5_1_scf) relu4_1_cf = encoder(relu5_1_recons, 'relu4_1') relu4_1_sf = encoder(style, 'relu4_1') relu4_1_scf = wct(relu4_1_cf, relu4_1_sf, args.alpha) relu4_1_recons = d4(relu4_1_scf) relu3_1_cf = encoder(relu4_1_recons, 'relu3_1') relu3_1_sf = encoder(style, 'relu3_1') relu3_1_scf = wct(relu3_1_cf, relu3_1_sf, args.alpha) relu3_1_recons = d3(relu3_1_scf) relu2_1_cf = encoder(relu3_1_recons, 'relu2_1') relu2_1_sf = encoder(style, 'relu2_1') relu2_1_scf = wct(relu2_1_cf, relu2_1_sf, args.alpha) relu2_1_recons = d2(relu2_1_scf) relu1_1_cf = encoder(relu2_1_recons, 'relu1_1') relu1_1_sf = encoder(style, 'relu1_1') relu1_1_scf = wct(relu1_1_cf, relu1_1_sf, args.alpha) relu1_1_recons = d1(relu1_1_scf) return relu1_1_recons if not os.path.exists(args.save_dir): print('Creating save folder at', args.save_dir) os.mkdir(args.save_dir) content_paths = [] style_paths = [] if args.content_dir: # use a batch of content images content_paths = extract_image_names(args.content_dir) else: # use a single content image content_paths.append(args.content_path) if args.style_dir: # use a batch of style images style_paths = extract_image_names(args.style_dir) else: # use a single style image style_paths.append(args.style_path) print('Number content images:', len(content_paths)) print('Number style images:', len(style_paths)) with torch.no_grad(): for i in range(len(content_paths)): content = load_image(content_paths[i]) content = preprocess(content, args.content_size) content = content.to(device) for j in range(len(style_paths)): style = load_image(style_paths[j]) style = preprocess(style, args.style_size) style = style.to(device) if args.synthesis == 0: output = style_transfer(content, style) output = deprocess(output) if len(content_paths) == 1 and len(style_paths) == 1: # used a single content and style image save_path = '%s/%s.%s' % (args.save_dir, args.save_name, args.save_ext) else: # used a batch of content and style images save_path = '%s/%s_%s.%s' % (args.save_dir, i, j, args.save_ext) print('Output image saved at:', save_path) output.save(save_path) else: content = torch.rand(*content.shape).uniform_(0, 1).to(device) for iteration in range(3): output = style_transfer(content, style) content = output output = deprocess(output) if len(content_paths) == 1 and len(style_paths) == 1: # used a single content and style image save_path = '%s/%s_%s.%s' % (args.save_dir, args.save_name, iteration, args.save_ext) else: # used a batch of content and style images save_path = '%s/%s_%s_%s.%s' % (args.save_dir, i, j, iteration, args.save_ext) print('Output image saved at:', save_path) output.save(save_path)
{"/eval.py": ["/models.py", "/utils.py", "/ops.py"], "/utils.py": ["/ops.py"]}
80
igoryuha/wct
refs/heads/master
/models.py
import torch import torch.nn as nn import copy normalised_vgg_relu5_1 = nn.Sequential( nn.Conv2d(3, 3, 1), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(3, 64, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 64, 3), nn.ReLU(), nn.MaxPool2d(2, ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 128, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 128, 3), nn.ReLU(), nn.MaxPool2d(2, ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.MaxPool2d(2, ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.MaxPool2d(2, ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU() ) class NormalisedVGG(nn.Module): def __init__(self, pretrained_path=None): super().__init__() self.net = normalised_vgg_relu5_1 if pretrained_path is not None: self.net.load_state_dict(torch.load(pretrained_path, map_location=lambda storage, loc: storage)) def forward(self, x, target): if target == 'relu1_1': return self.net[:4](x) elif target == 'relu2_1': return self.net[:11](x) elif target == 'relu3_1': return self.net[:18](x) elif target == 'relu4_1': return self.net[:31](x) elif target == 'relu5_1': return self.net(x) vgg_decoder_relu5_1 = nn.Sequential( nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.Upsample(scale_factor=2), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 256, 3), nn.ReLU(), nn.Upsample(scale_factor=2), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 128, 3), nn.ReLU(), nn.Upsample(scale_factor=2), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 128, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 64, 3), nn.ReLU(), nn.Upsample(scale_factor=2), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 64, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 3, 3) ) class Decoder(nn.Module): def __init__(self, target, pretrained_path=None): super().__init__() if target == 'relu1_1': self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-5:])) # current -2 elif target == 'relu2_1': self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-9:])) elif target == 'relu3_1': self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-16:])) elif target == 'relu4_1': self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-29:])) elif target == 'relu5_1': self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children()))) if pretrained_path is not None: self.net.load_state_dict(torch.load(pretrained_path, map_location=lambda storage, loc: storage)) def forward(self, x): return self.net(x)
{"/eval.py": ["/models.py", "/utils.py", "/ops.py"], "/utils.py": ["/ops.py"]}
81
igoryuha/wct
refs/heads/master
/ops.py
import torch import torch.nn.functional as F def extract_image_patches_(image, kernel_size, strides): kh, kw = kernel_size sh, sw = strides patches = image.unfold(2, kh, sh).unfold(3, kw, sw) patches = patches.permute(0, 2, 3, 1, 4, 5) patches = patches.reshape(-1, *patches.shape[-3:]) # (patch_numbers, C, kh, kw) return patches def style_swap(c_features, s_features, kernel_size, stride=1): s_patches = extract_image_patches_(s_features, [kernel_size, kernel_size], [stride, stride]) s_patches_matrix = s_patches.reshape(s_patches.shape[0], -1) s_patch_wise_norm = torch.norm(s_patches_matrix, dim=1) s_patch_wise_norm = s_patch_wise_norm.reshape(-1, 1, 1, 1) s_patches_normalized = s_patches / (s_patch_wise_norm + 1e-8) # Computes the normalized cross-correlations. # At each spatial location, "K" is a vector of cross-correlations # between a content activation patch and all style activation patches. K = F.conv2d(c_features, s_patches_normalized, stride=stride) # Replace each vector "K" by a one-hot vector corresponding # to the best matching style activation patch. best_matching_idx = K.argmax(1, keepdim=True) one_hot = torch.zeros_like(K) one_hot.scatter_(1, best_matching_idx, 1) # At each spatial location, only the best matching style # activation patch is in the output, as the other patches # are multiplied by zero. F_ss = F.conv_transpose2d(one_hot, s_patches, stride=stride) overlap = F.conv_transpose2d(one_hot, torch.ones_like(s_patches), stride=stride) F_ss = F_ss / overlap return F_ss def relu_x_1_transform(c, s, encoder, decoder, relu_target, alpha=1): c_latent = encoder(c, relu_target) s_latent = encoder(s, relu_target) t_features = wct(c_latent, s_latent, alpha) return decoder(t_features) def relu_x_1_style_decorator_transform(c, s, encoder, decoder, relu_target, kernel_size, stride=1, alpha=1): c_latent = encoder(c, relu_target) s_latent = encoder(s, relu_target) t_features = style_decorator(c_latent, s_latent, kernel_size, stride, alpha) return decoder(t_features) def style_decorator(cf, sf, kernel_size, stride=1, alpha=1): cf_shape = cf.shape sf_shape = sf.shape b, c, h, w = cf_shape cf_vectorized = cf.reshape(c, h * w) b, c, h, w = sf.shape sf_vectorized = sf.reshape(c, h * w) # map features to normalized domain cf_whiten = whitening(cf_vectorized) sf_whiten = whitening(sf_vectorized) # in this normalized domain, we want to align # any element in cf with the nearest element in sf reassembling_f = style_swap( cf_whiten.reshape(cf_shape), sf_whiten.reshape(sf_shape), kernel_size, stride ) b, c, h, w = reassembling_f.shape reassembling_vectorized = reassembling_f.reshape(c, h*w) # reconstruct reassembling features into the # domain of the style features result = coloring(reassembling_vectorized, sf_vectorized) result = result.reshape(cf_shape) bland = alpha * result + (1 - alpha) * cf return bland def wct(cf, sf, alpha=1): cf_shape = cf.shape b, c, h, w = cf_shape cf_vectorized = cf.reshape(c, h*w) b, c, h, w = sf.shape sf_vectorized = sf.reshape(c, h*w) cf_transformed = whitening(cf_vectorized) cf_transformed = coloring(cf_transformed, sf_vectorized) cf_transformed = cf_transformed.reshape(cf_shape) bland = alpha * cf_transformed + (1 - alpha) * cf return bland def feature_decomposition(x): x_mean = x.mean(1, keepdims=True) x_center = x - x_mean x_cov = x_center.mm(x_center.t()) / (x_center.size(1) - 1) e, d, _ = torch.svd(x_cov) d = d[d > 0] e = e[:, :d.size(0)] return e, d, x_center, x_mean def whitening(x): e, d, x_center, _ = feature_decomposition(x) transform_matrix = e.mm(torch.diag(d ** -0.5)).mm(e.t()) return transform_matrix.mm(x_center) def coloring(x, y): e, d, _, y_mean = feature_decomposition(y) transform_matrix = e.mm(torch.diag(d ** 0.5)).mm(e.t()) return transform_matrix.mm(x) + y_mean
{"/eval.py": ["/models.py", "/utils.py", "/ops.py"], "/utils.py": ["/ops.py"]}
82
igoryuha/wct
refs/heads/master
/utils.py
import torch from torchvision import transforms from ops import relu_x_1_style_decorator_transform, relu_x_1_transform from PIL import Image import os def eval_transform(size): return transforms.Compose([ transforms.Resize(size), transforms.ToTensor() ]) def load_image(path): return Image.open(path).convert('RGB') def preprocess(img, size): transform = eval_transform(size) return transform(img).unsqueeze(0) def deprocess(tensor): tensor = tensor.cpu() tensor = tensor.squeeze(0) tensor = torch.clamp(tensor, 0, 1) return transforms.ToPILImage()(tensor) def extract_image_names(path): r_ = [] valid_ext = ['.jpg', '.png'] items = os.listdir(path) for item in items: item_path = os.path.join(path, item) _, ext = os.path.splitext(item_path) if ext not in valid_ext: continue r_.append(item_path) return r_
{"/eval.py": ["/models.py", "/utils.py", "/ops.py"], "/utils.py": ["/ops.py"]}
89
tattle-made/archive-telegram-bot
refs/heads/master
/tattle_helper.py
import os import json import boto3 import requests from logger import log, logError from dotenv import load_dotenv load_dotenv() s3 = boto3.client("s3",aws_access_key_id=os.environ.get('S3_ACCESS_KEY'),aws_secret_access_key=os.environ.get('S3_SECRET_ACCESS_KEY')) API_BASE_URL = "https://archive-server.tattle.co.in" # API_BASE_URL = "https://postman-echo.com/post" ARCHIVE_TOKEN = os.environ.get('ARCHIVE_TOKEN') def register_post(data): """ registers a post on archive server """ url_to_post_to = API_BASE_URL+"/api/posts" payload = json.dumps(data) headers = { 'token': ARCHIVE_TOKEN, 'Content-Type': "application/json", 'cache-control': "no-cache", } try: r = requests.post(url_to_post_to, data=payload, headers=headers) if r.status_code==200: log('STATUS CODE 200 \n'+json.dumps(r.json(), indent=2)) else: log('STATUS CODE '+str(r.status_code)+'\n '+r.text) except: log('error with API call') def upload_file(file_name, s3=s3 ,acl="public-read"): bucket_name = os.environ.get('TGM_BUCKET_NAME') #opens file, reads it, and uploads it to the S3 bucket. try: with open(file_name, 'rb') as data: s3.upload_fileobj(data,bucket_name,file_name,ExtraArgs={"ACL": acl,"ContentType": file_name.split(".")[-1]}) except: logError('ERROR_S3_UPLOAD of '+file_name) file_url = "https://s3.ap-south-1.amazonaws.com/"+bucket_name+"/"+file_name return file_url def upload_file(file_name, s3=s3 ,acl="public-read"): bucket_name = os.environ.get('TGM_BUCKET_NAME') #opens file, reads it, and uploads it to the S3 bucket. try: with open(file_name, 'rb') as data: s3.upload_fileobj(data,bucket_name,file_name,ExtraArgs={"ACL": acl,"ContentType": file_name.split(".")[-1]}) except: logError('ERROR_S3_UPLOAD of '+file_name) file_url = "https://s3.ap-south-1.amazonaws.com/"+bucket_name+"/"+file_name return file_url
{"/tattle_helper.py": ["/logger.py"], "/test.py": ["/tattle_helper.py"], "/prototype.py": ["/logger.py", "/tattle_helper.py"]}
90
tattle-made/archive-telegram-bot
refs/heads/master
/post_request.py
token = "78a6fc20-fa83-11e9-a4ad-d1866a9a3c7b" # add your token here url = "<base-api-url>/api/posts" try: payload = d payload = json.dumps(payload) headers = { 'token': token, 'Content-Type': "application/json", 'cache-control': "no-cache", } r = requests.post(url, data=payload, headers=headers) if r.ok: print ('success') else: print ('something went wrong') except: logging.exception('error in POST request') raise { "type" : "image", # can be image, text, video "data" : "", "filename": "4bf4b1cc-516b-469d-aa38-be6762d417a5", #filename you put on s3 "userId" : 169 # for telegram_bot this should be 169 }
{"/tattle_helper.py": ["/logger.py"], "/test.py": ["/tattle_helper.py"], "/prototype.py": ["/logger.py", "/tattle_helper.py"]}
91
tattle-made/archive-telegram-bot
refs/heads/master
/test.py
from tattle_helper import register_post, upload_file data = { "type" : "image", "data" : "", "filename": "asdf", "userId" : 169 } response = upload_file(file_name='denny.txt') print(response) # register_post(data)
{"/tattle_helper.py": ["/logger.py"], "/test.py": ["/tattle_helper.py"], "/prototype.py": ["/logger.py", "/tattle_helper.py"]}
92
tattle-made/archive-telegram-bot
refs/heads/master
/prototype.py
import os import sys import json import requests import telegram import logging import re from threading import Thread from telegram.ext import CommandHandler, MessageHandler, Updater, Filters, InlineQueryHandler from telegram import InlineQueryResultArticle, InputTextMessageContent from telegram.ext.dispatcher import run_async from dotenv import load_dotenv from pymongo import MongoClient from logger import log, logError from tattle_helper import upload_file # loads all environment variables load_dotenv() log('STARTING APP v1') TOKEN = os.environ.get('ACCESS_TOKEN') PORT = int(os.environ.get('PORT', '8443')) print(TOKEN) # logging.basicConfig(filename='telegram_bot_log.log',filemode='a',format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) # Calls for Database modification and reads start def insert_document(document, required_collection): return db[required_collection].insert_one(document) def find_document(query, required_collection): return db[required_collection].find_one(query) def update_document(find_query, update_query, required_collection, upsert=False): return db[required_collection].update_one(find_query, update_query, upsert) def delete_document(find_query, required_collection): return db[required_collection].delete_one(find_query) # Calls for Database modification and reads end @run_async def start(update, context): # start message context.bot.send_message(chat_id=update.effective_chat.id, text="Hey! \n\nI'm the Tattle Bot. Here are some instructions to use me:\n\n1. You can send whatever content to me that you'd like. All mediums : Text, Video, and Photos are allowed.\n2. You can tag your content using hashtags. When uploading photos or videos you can mention the tags in the caption, with text you can just tag it at the end or in the beginning(anywhere else in the text will also work).\n3. You can edit your messages after you've sent them, we'll update them in our database accordingly.\n 4. In case you miss tagging a message, you can reply to that message and insert the tags required. Only tags will be extracted, so please don't write text while replying to messages.") def determine_type(message_json): # checks what type of content is being passed, and returns the type type_of_content = '' if(message_json.text): type_of_content = 'text' elif(message_json.photo): type_of_content = 'photo' elif(message_json.video): type_of_content = 'video' elif(message_json.document): type_of_content = 'document' return type_of_content def entity_extraction(all_entities, message_content): # entity extraction, which basically extracts all the hashtags out of the message list_of_tags = [] if(bool(all_entities)): # checks if there are any entities, and if so loops over them for each_entity in all_entities: if(each_entity['type'] == 'hashtag'): # string slicing based on offset and length values tag = message_content[each_entity['offset']:( each_entity['offset']+each_entity['length'])] list_of_tags.append(tag) if(bool(list_of_tags)): # converts to set to remove duplicates return list(set(list_of_tags)) else: return None def new_tags(message_json, current_document, all_tags): # adds or replaces tags in messages that had no tags or in case of edits new_tags = all_tags update_document({'message_id': message_json.reply_to_message.message_id}, { "$set": {"reply_tags": new_tags}}, 'messages') def error_message(message_json): # standard error message context.bot.send_message(chat_id=message_json.chat.id, text="Something went wrong with registering these tags, apologies for the same.") def reply_to_messages(message_json, edit_flag): all_tags = entity_extraction(message_json.entities, message_json.text) if(all_tags is not None): # first finds the document that the reply is being done to current_document = find_document( {'message_id': message_json.reply_to_message.message_id}, 'messages') try: # add reply tags with a new key called reply_tags new_tags(message_json, current_document, all_tags) except: # or, throw an error message and log error_message() raise def edit_message(message_json, final_dict, content_type, context): tags = [] # check content type before processing the data if(content_type == 'text'): # In case of edits, we need to replace file on S3. Replacing happens automatically as long as file name is same. file_name = str(message_json.message_id) + '.txt' with open(file_name, 'w') as open_file: open_file.write(message_json['text']) upload_file(file_name) os.remove(file_name) final_dict = process_text( message_json, final_dict, message_json['text'], False) else: final_dict = process_media( message_json, final_dict, content_type, context, False) # in case message is being edited, we first find the document being edited current_document = find_document( {'message_id': message_json.message_id}, 'messages') # we check if the document had any existing tags, if so we store them before deleting the document # FLAW IN CODE : If existing tags are being edited, it doesn't reflect this way. NEED TO FIX. try: tags = current_document['tags'] except KeyError: tags = None try: reply_tags = current_document['reply_tags'] except KeyError: reply_tags = None if(reply_tags is not None): final_dict['reply_tags'] = reply_tags # add tags to final dict for new, edited document if(tags is not None): final_dict['tags'] = tags # delete the document delete_document({'message_id': message_json.message_id}, 'messages') # insert edited document insert_document(final_dict, 'messages') def process_text(message_json, final_dict, message_content, caption_flag): # check if we're processing a caption or a text message if(caption_flag): all_tags = entity_extraction( message_json['caption_entities'], message_content) else: all_tags = entity_extraction(message_json['entities'], message_content) # check if any tags are present if(all_tags is not None): final_dict['tags'] = all_tags if(bool(message_content)): # cleans out the hashtags modified_message = re.sub(r'#\w+', '', message_content) # removes all excessive spacing cleaned_message = re.sub(' +', ' ', modified_message) # changes key based on whether it is a caption or not if(caption_flag): # removing leading and trailing spaces final_dict['caption'] = cleaned_message.strip() else: final_dict['text'] = cleaned_message.strip() return final_dict # just for testing # BASE_URL = "http://archive-telegram-bot.tattle.co.in.s3.amazonaws.com/" # print("{}{}".format(BASE_URL, file_name)) def make_post_request(dict_to_post): log('***') log(dict_to_post) API_BASE_URL = "https://archive-server.tattle.co.in" access_token = os.environ.get('ARCHIVE_TOKEN') url_to_post_to = API_BASE_URL+"/api/posts" payload = json.dumps(dict_to_post) headers = { 'token': access_token, 'Content-Type': "application/json", 'cache-control': "no-cache", } r = requests.post(url_to_post_to, data=payload, headers=headers) print('API response') print(r) # print(r.json()) def construct_dict(file_name, file_type): return {"type": file_type, "data": "", "filename": file_name, "userId": 169} def process_media(message_json, final_dict, content_type, context, creation_flag): # check if content type is photo, and constructs dict and file_name appropriately if(content_type == 'photo'): final_dict['photo'] = [{'file_id': each_photo.file_id, 'width': each_photo.width, 'height': each_photo.height, 'file_size': each_photo.file_size} for each_photo in message_json.photo] file_id = message_json.photo[-1].file_id file_name = str(message_json.message_id)+'.jpeg' post_request_type = 'image' # same with video as above elif(content_type == 'video'): final_dict['video'] = {'file_id': message_json.video.file_id, 'width': message_json.video.width, 'height': message_json.video.height, 'duration': message_json.video.duration, 'thumb': {'file_id': message_json.video.thumb.file_id, 'width': message_json.video.thumb.width, 'height': message_json.video.thumb.height, 'file_size': message_json.video.thumb.file_size}, 'mime_type': message_json.video.mime_type, 'file_size': message_json.video.file_size} file_id = message_json.video.file_id file_type = str(message_json.video.mime_type).split("/")[-1] file_name = str(message_json.message_id)+"."+file_type post_request_type = 'video' # process_media is only called from two places, one of which is when message is edited. Since we don't want duplicates, we set a flag to differentiate. if(creation_flag): try: new_file = context.bot.get_file(file_id) new_file.download(file_name) # downloads the file final_dict['file_name'] = file_name file_url = upload_file(file_name) # uploads to S3 final_dict['s3_url'] = file_url os.remove(file_name) # removes it from local runtime request_dict = construct_dict(file_name, post_request_type) make_post_request(request_dict) except: logging.exception( "The file_name when the error happened is: {}".format(file_name)) # process any caption or text found final_dict = process_text(message_json, final_dict, message_json.caption, True) return final_dict @run_async def storing_data(update, context): log(update) final_dict = {} # print(update) # selects just the effective_message part relevant_section = update.effective_message # some general data appended to each dict final_dict['message_id'] = relevant_section['message_id'] final_dict['date'] = relevant_section['date'] # final_dict['from'] = {'id':relevant_section.from_user.id,'type':relevant_section.chat.type,'first_name':relevant_section.from_user.first_name,'last_name':relevant_section.from_user.last_name,'username':relevant_section.from_user.username,'is_bot':relevant_section.from_user.is_bot} content_type = determine_type(relevant_section) final_dict['content_type'] = content_type # checks if the request is that of an edition if(relevant_section.edit_date): # if yes, checks if the edited message was replying to another message if(relevant_section.reply_to_message): # if yes, then deals with it by setting edit flag to True reply_to_messages(relevant_section, True) return else: # else, just edits the message normally edit_message(relevant_section, final_dict, content_type, context) return # if the message is a reply, then respond appropriately if(relevant_section.reply_to_message): # edit flag is set to false because we're just handling simple reply reply_to_messages(relevant_section, False) return if(content_type == 'text'): # creates file with message ID, then writes the text into the file and uploads it to S3 try: file_name = str(relevant_section.message_id) + '.txt' with open(file_name, 'w') as open_file: open_file.write(relevant_section['text']) file_url = upload_file(file_name) final_dict['s3_url'] = file_url os.remove(file_name) request_dict = construct_dict(file_name, content_type) r = make_post_request(request_dict) except Exception as e: logging.exception( "The file_name when the error happened is: {}".format(file_name)) logging.exception(e) # if new text message, process it and then insert it in the database final_dict = process_text( relevant_section, final_dict, relevant_section['text'], False) insert_document(final_dict, 'messages') else: final_dict = process_media( relevant_section, final_dict, content_type, context, True) insert_document(final_dict, 'messages') context.bot.send_message( chat_id=update.effective_chat.id, text='message archived') # context.bot.send_message(chat_id=update.effective_chat.id, text=update.message.text) def stop_and_restart(): """Gracefully stop the Updater and replace the current process with a new one""" updater.stop() os.execl(sys.executable, sys.executable, *sys.argv) def restart(update, context): update.message.reply_text('Bot is restarting...') Thread(target=stop_and_restart).start() try: client = MongoClient("mongodb+srv://"+os.environ.get("TGM_DB_USERNAME")+":"+os.environ.get("TGM_DB_PASSWORD") + "@tattle-data-fkpmg.mongodb.net/test?retryWrites=true&w=majority&ssl=true&ssl_cert_reqs=CERT_NONE") db = client[os.environ.get("TGM_DB_NAME")] except error_message: print('error connecting to db') print(error_message) updater = Updater(token=TOKEN, use_context=True, workers=32) dispatcher = updater.dispatcher start_handler = CommandHandler('start', start) storing_data_handler = MessageHandler(Filters.all, storing_data) restart_handler = CommandHandler( 'r', restart, filters=Filters.user(username='@thenerdyouknow')) dispatcher.add_handler(restart_handler) dispatcher.add_handler(start_handler) dispatcher.add_handler(storing_data_handler) # updater.start_webhook(listen="0.0.0.0", # port=PORT, # url_path=TOKEN) # updater.bot.set_webhook("https://services-server.tattle.co.in/" + TOKEN) updater.start_polling() updater.idle() log('STARTING SERVER v1.0')
{"/tattle_helper.py": ["/logger.py"], "/test.py": ["/tattle_helper.py"], "/prototype.py": ["/logger.py", "/tattle_helper.py"]}
93
tattle-made/archive-telegram-bot
refs/heads/master
/logger.py
from datetime import datetime def log(data): print('----', datetime.now(), '----') print(data) def logError(error): print('****', datetime.now(), '****') print(error)
{"/tattle_helper.py": ["/logger.py"], "/test.py": ["/tattle_helper.py"], "/prototype.py": ["/logger.py", "/tattle_helper.py"]}
143
shuishen112/pairwise-rnn
refs/heads/master
/main.py
import data_helper import time import datetime import os import tensorflow as tf import numpy as np import evaluation now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) timeDay = time.strftime("%Y%m%d", timeArray) print (timeStamp) def main(args): args._parse_flags() print("\nParameters:") for attr, value in sorted(args.__flags.items()): print(("{}={}".format(attr.upper(), value))) log_dir = 'log/'+ timeDay if not os.path.exists(log_dir): os.makedirs(log_dir) data_file = log_dir + '/test_' + args.data + timeStamp precision = data_file + 'precise' print('load data ...........') train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev]) print('the number of words',len(alphabet)) print('get embedding') if args.data=="quora": embedding = data_helper.get_embedding(alphabet,language="cn") else: embedding = data_helper.get_embedding(alphabet) with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model = QA_CNN_extend(max_input_left = q_max_sent_length, max_input_right = a_max_sent_length, batch_size = args.batch_size, vocab_size = len(alphabet), embedding_size = args.embedding_dim, filter_sizes = list(map(int, args.filter_sizes.split(","))), num_filters = args.num_filters, hidden_size = args.hidden_size, dropout_keep_prob = args.dropout_keep_prob, embeddings = embedding, l2_reg_lambda = args.l2_reg_lambda, trainable = args.trainable, pooling = args.pooling, conv = args.conv) model.build_graph() sess.run(tf.global_variables_initializer()) def train_step(model,sess,batch): for data in batch: feed_dict = { model.question:data[0], model.answer:data[1], model.answer_negative:data[2], model.q_mask:data[3], model.a_mask:data[4], model.a_neg_mask:data[5] } _, summary, step, loss, accuracy,score12, score13, see = sess.run( [model.train_op, model.merged,model.global_step,model.loss, model.accuracy,model.score12,model.score13, model.see], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) def predict(model,sess,batch,test): scores = [] for data in batch: feed_dict = { model.question:data[0], model.answer:data[1], model.q_mask:data[2], model.a_mask:data[3] } score = sess.run( model.score12, feed_dict) scores.extend(score) return np.array(scores[:len(test)]) for i in range(args.num_epoches): datas = data_helper.get_mini_batch(train,alphabet,args.batch_size) train_step(model,sess,datas) test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) predicted_test = predict(model,sess,test_datas,test) print(len(predicted_test)) print(len(test)) map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) print('map_mrr test',map_mrr_test)
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
144
shuishen112/pairwise-rnn
refs/heads/master
/config.py
class Singleton(object): __instance=None def __init__(self): pass def getInstance(self): if Singleton.__instance is None: # Singleton.__instance=object.__new__(cls,*args,**kwd) Singleton.__instance=self.get_test_flag() print("build FLAGS over") return Singleton.__instance def get_test_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 1, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 5e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "cnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_rnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 1, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 0.001, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "rnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") # flags.DEFINE_string('data','8008','data set') flags.DEFINE_string('data','trec','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',False,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_cnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 5e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "cnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_qcnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 0.001, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "qcnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','mean','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_8008_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",200, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 1e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "rnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 250, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','8008','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',False,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS if __name__=="__main__": args=Singleton().get_test_flag() for attr, value in sorted(args.__flags.items()): print(("{}={}".format(attr.upper(), value)))
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
145
shuishen112/pairwise-rnn
refs/heads/master
/run.py
from tensorflow import flags import tensorflow as tf from config import Singleton import data_helper import datetime,os import models import numpy as np import evaluation import sys import logging import time now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) log_filename = "log/" +time.strftime("%Y%m%d", timeArray) program = os.path.basename('program') logger = logging.getLogger(program) if not os.path.exists(log_filename): os.makedirs(log_filename) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s',datefmt='%a, %d %b %Y %H:%M:%S',filename=log_filename+'/qa.log',filemode='w') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) from data_helper import log_time_delta,getLogger logger=getLogger() args = Singleton().get_qcnn_flag() args._parse_flags() opts=dict() logger.info("\nParameters:") for attr, value in sorted(args.__flags.items()): logger.info(("{}={}".format(attr.upper(), value))) opts[attr]=value train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev],dataset=args.data ) logger.info('the number of words :%d '%len(alphabet)) if args.data=="quora" or args.data=="8008" : print("cn embedding") embedding = data_helper.get_embedding(alphabet,dim=200,language="cn",dataset=args.data ) train_data_loader = data_helper.getBatch48008 else: embedding = data_helper.get_embedding(alphabet,dim=300,dataset=args.data ) train_data_loader = data_helper.get_mini_batch opts["embeddings"] =embedding opts["vocab_size"]=len(alphabet) opts["max_input_right"]=a_max_sent_length opts["max_input_left"]=q_max_sent_length opts["filter_sizes"]=list(map(int, args.filter_sizes.split(","))) print("innitilize over") #with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): with tf.Graph().as_default(): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model=models.setup(opts) model.build_graph() saver = tf.train.Saver() # ckpt = tf.train.get_checkpoint_state("checkpoint") # if ckpt and ckpt.model_checkpoint_path: # # Restores from checkpoint # saver.restore(sess, ckpt.model_checkpoint_path) # if os.path.exists("model") : # import shutil # shutil.rmtree("model") # builder = tf.saved_model.builder.SavedModelBuilder("./model") # builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) # builder.save(True) # variable_averages = tf.train.ExponentialMovingAverage( model) # variables_to_restore = variable_averages.variables_to_restore() # saver = tf.train.Saver(variables_to_restore) # for name in variables_to_restore: # print(name) sess.run(tf.global_variables_initializer()) @log_time_delta def predict(model,sess,batch,test): scores = [] for data in batch: score = model.predict(sess,data) scores.extend(score) return np.array(scores[:len(test)]) best_p1=0 for i in range(args.num_epoches): for data in train_data_loader(train,alphabet,args.batch_size,model=model,sess=sess): # for data in data_helper.getBatch48008(train,alphabet,args.batch_size): _, summary, step, loss, accuracy,score12, score13, see = model.train(sess,data) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) logger.info("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) #<<<<<<< HEAD # # # if i>0 and i % 5 ==0: # test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) # # predicted_test = predict(model,sess,test_datas,test) # map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) # # logger.info('map_mrr test' +str(map_mrr_test)) # print('map_mrr test' +str(map_mrr_test)) # # test_datas = data_helper.get_mini_batch_test(dev,alphabet,args.batch_size) # predicted_test = predict(model,sess,test_datas,dev) # map_mrr_test = evaluation.evaluationBypandas(dev,predicted_test) # # logger.info('map_mrr dev' +str(map_mrr_test)) # print('map_mrr dev' +str(map_mrr_test)) # map,mrr,p1 = map_mrr_test # if p1>best_p1: # best_p1=p1 # filename= "checkpoint/"+args.data+"_"+str(p1)+".model" # save_path = saver.save(sess, filename) # # load_path = saver.restore(sess, model_path) # # import shutil # shutil.rmtree("model") # builder = tf.saved_model.builder.SavedModelBuilder("./model") # builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) # builder.save(True) # # #======= test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) predicted_test = predict(model,sess,test_datas,test) map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) logger.info('map_mrr test' +str(map_mrr_test)) print('epoch '+ str(i) + 'map_mrr test' +str(map_mrr_test))
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
146
shuishen112/pairwise-rnn
refs/heads/master
/models/QA_CNN_pairwise.py
#coding:utf-8 import tensorflow as tf import numpy as np from tensorflow.contrib import rnn import models.blocks as blocks # model_type :apn or qacnn class QA_CNN_extend(object): # def __init__(self,max_input_left,max_input_right,batch_size,vocab_size,embedding_size,filter_sizes,num_filters,hidden_size, # dropout_keep_prob = 1,learning_rate = 0.001,embeddings = None,l2_reg_lambda = 0.0,trainable = True,pooling = 'attentive',conv = 'narrow'): # # """ # QA_RNN model for question answering # # Args: # self.dropout_keep_prob: dropout rate # self.num_filters : number of filters # self.para : parameter list # self.extend_feature_dim : my extend feature dimension # self.max_input_left : the length of question # self.max_input_right : the length of answer # self.pooling : pooling strategy :max pooling or attentive pooling # # """ # self.dropout_keep_prob = tf.placeholder(tf.float32,name = 'dropout_keep_prob') # self.num_filters = num_filters # self.embeddings = embeddings # self.embedding_size = embedding_size # self.batch_size = batch_size # self.filter_sizes = filter_sizes # self.l2_reg_lambda = l2_reg_lambda # self.para = [] # # self.max_input_left = max_input_left # self.max_input_right = max_input_right # self.trainable = trainable # self.vocab_size = vocab_size # self.pooling = pooling # self.total_num_filter = len(self.filter_sizes) * self.num_filters # # self.conv = conv # self.pooling = 'traditional' # self.learning_rate = learning_rate # # self.hidden_size = hidden_size # # self.attention_size = 100 def __init__(self,opt): for key,value in opt.items(): self.__setattr__(key,value) self.attention_size = 100 self.pooling = 'mean' self.total_num_filter = len(self.filter_sizes) * self.num_filters self.para = [] self.dropout_keep_prob_holder = tf.placeholder(tf.float32,name = 'dropout_keep_prob') def create_placeholder(self): print(('Create placeholders')) # he length of the sentence is varied according to the batch,so the None,None self.question = tf.placeholder(tf.int32,[None,None],name = 'input_question') self.max_input_left = tf.shape(self.question)[1] self.batch_size = tf.shape(self.question)[0] self.answer = tf.placeholder(tf.int32,[None,None],name = 'input_answer') self.max_input_right = tf.shape(self.answer)[1] self.answer_negative = tf.placeholder(tf.int32,[None,None],name = 'input_right') # self.q_mask = tf.placeholder(tf.int32,[None,None],name = 'q_mask') # self.a_mask = tf.placeholder(tf.int32,[None,None],name = 'a_mask') # self.a_neg_mask = tf.placeholder(tf.int32,[None,None],name = 'a_neg_mask') def add_embeddings(self): print( 'add embeddings') if self.embeddings is not None: print( "load embedding") W = tf.Variable(np.array(self.embeddings),name = "W" ,dtype="float32",trainable = self.trainable) else: print( "random embedding") W = tf.Variable(tf.random_uniform([self.vocab_size, self.embedding_size], -1.0, 1.0),name="W",trainable = self.trainable) self.embedding_W = W # self.overlap_W = tf.Variable(a,name="W",trainable = True) self.para.append(self.embedding_W) self.q_embedding = tf.nn.embedding_lookup(self.embedding_W,self.question) self.a_embedding = tf.nn.embedding_lookup(self.embedding_W,self.answer) self.a_neg_embedding = tf.nn.embedding_lookup(self.embedding_W,self.answer_negative) #real length self.q_len,self.q_mask = blocks.length(self.question) self.a_len,self.a_mask = blocks.length(self.answer) self.a_neg_len,self.a_neg_mask = blocks.length(self.answer_negative) def convolution(self): print( 'convolution:wide_convolution') self.kernels = [] for i,filter_size in enumerate(self.filter_sizes): with tf.name_scope('conv-max-pool-%s' % filter_size): filter_shape = [filter_size,self.embedding_size,1,self.num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev = 0.1), name="W") b = tf.Variable(tf.constant(0.0, shape=[self.num_filters]), name="b") self.kernels.append((W,b)) self.para.append(W) self.para.append(b) embeddings = [self.q_embedding,self.a_embedding,self.a_neg_embedding] self.q_cnn,self.a_cnn,self.a_neg_cnn = [self.wide_convolution(tf.expand_dims(embedding,-1)) for embedding in embeddings] #convolution def pooling_graph(self): if self.pooling == 'mean': self.q_pos_cnn = self.mean_pooling(self.q_cnn,self.q_mask) self.q_neg_cnn = self.mean_pooling(self.q_cnn,self.q_mask) self.a_pos_cnn = self.mean_pooling(self.a_cnn,self.a_mask) self.a_neg_cnn = self.mean_pooling(self.a_neg_cnn,self.a_neg_mask) elif self.pooling == 'attentive': self.q_pos_cnn,self.a_pos_cnn = self.attentive_pooling(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.attentive_pooling(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) elif self.pooling == 'position': self.q_pos_cnn,self.a_pos_cnn = self.position_attention(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.position_attention(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) elif self.pooling == 'traditional': print( self.pooling) print(self.q_cnn) self.q_pos_cnn,self.a_pos_cnn = self.traditional_attention(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.traditional_attention(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) def para_initial(self): # print(("---------")) # self.W_qp = tf.Variable(tf.truncated_normal(shape = [self.hidden_size * 2,1],stddev = 0.01,name = 'W_qp')) self.U = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'U')) self.W_hm = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'W_hm')) self.W_qm = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'W_qm')) self.W_ms = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,1],stddev = 0.01,name = 'W_ms')) self.M_qi = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.embedding_size],stddev = 0.01,name = 'M_qi')) def mean_pooling(self,conv,mask): conv = tf.squeeze(conv,2) print( tf.expand_dims(tf.cast(mask,tf.float32),-1)) # conv_mask = tf.multiply(conv,tf.expand_dims(tf.cast(mask,tf.float32),-1)) # self.see = conv_mask # print( conv_mask) return tf.reduce_mean(conv,axis = 1); def attentive_pooling(self,input_left,input_right,q_mask,a_mask): Q = tf.squeeze(input_left,axis = 2) A = tf.squeeze(input_right,axis = 2) print( Q) print( A) # Q = tf.reshape(input_left,[-1,self.max_input_left,len(self.filter_sizes) * self.num_filters],name = 'Q') # A = tf.reshape(input_right,[-1,self.max_input_right,len(self.filter_sizes) * self.num_filters],name = 'A') # G = tf.tanh(tf.matmul(tf.matmul(Q,self.U),\ # A,transpose_b = True),name = 'G') first = tf.matmul(tf.reshape(Q,[-1,len(self.filter_sizes) * self.num_filters]),self.U) second_step = tf.reshape(first,[-1,self.max_input_left,len(self.filter_sizes) * self.num_filters]) result = tf.matmul(second_step,tf.transpose(A,perm = [0,2,1])) print( second_step) print( tf.transpose(A,perm = [0,2,1])) # print( 'result',result) G = tf.tanh(result) # G = result # column-wise pooling ,row-wise pooling row_pooling = tf.reduce_max(G,1,True,name = 'row_pooling') col_pooling = tf.reduce_max(G,2,True,name = 'col_pooling') self.attention_q = tf.nn.softmax(col_pooling,1,name = 'attention_q') self.attention_q_mask = tf.multiply(self.attention_q,tf.expand_dims(tf.cast(q_mask,tf.float32),-1)) self.attention_a = tf.nn.softmax(row_pooling,name = 'attention_a') self.attention_a_mask = tf.multiply(self.attention_a,tf.expand_dims(tf.cast(a_mask,tf.float32),1)) self.see = G R_q = tf.reshape(tf.matmul(Q,self.attention_q_mask,transpose_a = 1),[-1,self.num_filters * len(self.filter_sizes)],name = 'R_q') R_a = tf.reshape(tf.matmul(self.attention_a_mask,A),[-1,self.num_filters * len(self.filter_sizes)],name = 'R_a') return R_q,R_a def traditional_attention(self,input_left,input_right,q_mask,a_mask): input_left = tf.squeeze(input_left,axis = 2) input_right = tf.squeeze(input_right,axis = 2) input_left_mask = tf.multiply(input_left, tf.expand_dims(tf.cast(q_mask,tf.float32),2)) Q = tf.reduce_mean(input_left_mask,1) a_shape = tf.shape(input_right) A = tf.reshape(input_right,[-1,self.total_num_filter]) m_t = tf.nn.tanh(tf.reshape(tf.matmul(A,self.W_hm),[-1,a_shape[1],self.total_num_filter]) + tf.expand_dims(tf.matmul(Q,self.W_qm),1)) f_attention = tf.exp(tf.reshape(tf.matmul(tf.reshape(m_t,[-1,self.total_num_filter]),self.W_ms),[-1,a_shape[1],1])) self.f_attention_mask = tf.multiply(f_attention,tf.expand_dims(tf.cast(a_mask,tf.float32),2)) self.f_attention_norm = tf.divide(self.f_attention_mask,tf.reduce_sum(self.f_attention_mask,1,keep_dims = True)) self.see = self.f_attention_norm a_attention = tf.reduce_sum(tf.multiply(input_right,self.f_attention_norm),1) return Q,a_attention def position_attention(self,input_left,input_right,q_mask,a_mask): input_left = tf.squeeze(input_left,axis = 2) input_right = tf.squeeze(input_right,axis = 2) # Q = tf.reshape(input_left,[-1,self.max_input_left,self.hidden_size*2],name = 'Q') # A = tf.reshape(input_right,[-1,self.max_input_right,self.hidden_size*2],name = 'A') Q = tf.reduce_mean(tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)),1) QU = tf.matmul(Q,self.U) QUA = tf.multiply(tf.expand_dims(QU,1),input_right) self.attention_a = tf.cast(tf.argmax(QUA,2) ,tf.float32) # q_shape = tf.shape(input_left) # Q_1 = tf.reshape(input_left,[-1,self.total_num_filter]) # QU = tf.matmul(Q_1,self.U) # QU_1 = tf.reshape(QU,[-1,q_shape[1],self.total_num_filter]) # A_1 = tf.transpose(input_right,[0,2,1]) # QUA = tf.matmul(QU_1,A_1) # QUA = tf.nn.l2_normalize(QUA,1) # G = tf.tanh(QUA) # Q = tf.reduce_mean(tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)),1) # # self.Q_mask = tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)) # row_pooling = tf.reduce_max(G,1,name="row_pooling") # col_pooling = tf.reduce_max(G,2,name="col_pooling") # self.attention_a = tf.nn.softmax(row_pooling,1,name = "attention_a") self.attention_a_mask = tf.multiply(self.attention_a,tf.cast(a_mask,tf.float32)) self.see = self.attention_a self.attention_a_norm = tf.divide(self.attention_a_mask,tf.reduce_sum(self.attention_a_mask,1,keep_dims =True)) self.r_a = tf.reshape(tf.matmul(tf.transpose(input_right,[0,2,1]) ,tf.expand_dims(self.attention_a_norm,2)),[-1,self.total_num_filter]) return Q ,self.r_a def create_loss(self): with tf.name_scope('score'): self.score12 = self.getCosine(self.q_pos_cnn,self.a_pos_cnn) self.score13 = self.getCosine(self.q_neg_cnn,self.a_neg_cnn) l2_loss = tf.constant(0.0) for p in self.para: l2_loss += tf.nn.l2_loss(p) with tf.name_scope("loss"): self.losses = tf.maximum(0.0, tf.subtract(0.05, tf.subtract(self.score12, self.score13))) self.loss = tf.reduce_sum(self.losses) + self.l2_reg_lambda * l2_loss tf.summary.scalar('loss', self.loss) # Accuracy with tf.name_scope("accuracy"): self.correct = tf.equal(0.0, self.losses) self.accuracy = tf.reduce_mean(tf.cast(self.correct, "float"), name="accuracy") tf.summary.scalar('accuracy', self.accuracy) def create_op(self): self.global_step = tf.Variable(0, name = "global_step", trainable = False) self.optimizer = tf.train.AdamOptimizer(self.learning_rate) self.grads_and_vars = self.optimizer.compute_gradients(self.loss) self.train_op = self.optimizer.apply_gradients(self.grads_and_vars, global_step = self.global_step) def max_pooling(self,conv,input_length): pooled = tf.nn.max_pool( conv, ksize = [1, input_length, 1, 1], strides = [1, 1, 1, 1], padding = 'VALID', name="pool") return pooled def getCosine(self,q,a): pooled_flat_1 = tf.nn.dropout(q, self.dropout_keep_prob_holder) pooled_flat_2 = tf.nn.dropout(a, self.dropout_keep_prob_holder) pooled_len_1 = tf.sqrt(tf.reduce_sum(tf.multiply(pooled_flat_1, pooled_flat_1), 1)) pooled_len_2 = tf.sqrt(tf.reduce_sum(tf.multiply(pooled_flat_2, pooled_flat_2), 1)) pooled_mul_12 = tf.reduce_sum(tf.multiply(pooled_flat_1, pooled_flat_2), 1) score = tf.div(pooled_mul_12, tf.multiply(pooled_len_1, pooled_len_2), name="scores") return score def wide_convolution(self,embedding): cnn_outputs = [] for i,filter_size in enumerate(self.filter_sizes): conv = tf.nn.conv2d( embedding, self.kernels[i][0], strides=[1, 1, self.embedding_size, 1], padding='SAME', name="conv-1" ) h = tf.nn.relu(tf.nn.bias_add(conv, self.kernels[i][1]), name="relu-1") cnn_outputs.append(h) cnn_reshaped = tf.concat(cnn_outputs,3) return cnn_reshaped def variable_summaries(self,var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) def build_graph(self): self.create_placeholder() self.add_embeddings() self.para_initial() self.convolution() self.pooling_graph() self.create_loss() self.create_op() self.merged = tf.summary.merge_all() def train(self,sess,data): feed_dict = { self.question:data[0], self.answer:data[1], self.answer_negative:data[2], # self.q_mask:data[3], # self.a_mask:data[4], # self.a_neg_mask:data[5], self.dropout_keep_prob_holder:self.dropout_keep_prob } _, summary, step, loss, accuracy,score12, score13, see = sess.run( [self.train_op, self.merged,self.global_step,self.loss, self.accuracy,self.score12,self.score13, self.see], feed_dict) return _, summary, step, loss, accuracy,score12, score13, see def predict(self,sess,data): feed_dict = { self.question:data[0], self.answer:data[1], # self.q_mask:data[2], # self.a_mask:data[3], self.dropout_keep_prob_holder:1.0 } score = sess.run( self.score12, feed_dict) return score if __name__ == '__main__': cnn = QA_CNN_extend( max_input_left = 33, max_input_right = 40, batch_size = 3, vocab_size = 5000, embedding_size = 100, filter_sizes = [3,4,5], num_filters = 64, hidden_size = 100, dropout_keep_prob = 1.0, embeddings = None, l2_reg_lambda = 0.0, trainable = True, pooling = 'max', conv = 'wide') cnn.build_graph() input_x_1 = np.reshape(np.arange(3 * 33),[3,33]) input_x_2 = np.reshape(np.arange(3 * 40),[3,40]) input_x_3 = np.reshape(np.arange(3 * 40),[3,40]) q_mask = np.ones((3,33)) a_mask = np.ones((3,40)) a_neg_mask = np.ones((3,40)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) feed_dict = { cnn.question:input_x_1, cnn.answer:input_x_2, # cnn.answer_negative:input_x_3, cnn.q_mask:q_mask, cnn.a_mask:a_mask, cnn.dropout_keep_prob_holder:cnn.dropout_keep # cnn.a_neg_mask:a_neg_mask # cnn.q_pos_overlap:q_pos_embedding, # cnn.q_neg_overlap:q_neg_embedding, # cnn.a_pos_overlap:a_pos_embedding, # cnn.a_neg_overlap:a_neg_embedding, # cnn.q_position:q_position, # cnn.a_pos_position:a_pos_position, # cnn.a_neg_position:a_neg_position } question,answer,score = sess.run([cnn.question,cnn.answer,cnn.score12],feed_dict) print( question.shape,answer.shape) print( score)
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
147
shuishen112/pairwise-rnn
refs/heads/master
/models/my/nn.py
from my.general import flatten, reconstruct, add_wd, exp_mask import numpy as np import tensorflow as tf _BIAS_VARIABLE_NAME = "bias" _WEIGHTS_VARIABLE_NAME = "kernel" def linear(args, output_size, bias, bias_start=0.0, scope=None, squeeze=False, wd=0.0, input_keep_prob=1.0, is_train=None):#, name_w='', name_b='' # if args is None or (nest.is_sequence(args) and not args): # raise ValueError("`args` must be specified") # if not nest.is_sequence(args): # args = [args] flat_args = [flatten(arg, 1) for arg in args]#[210,20] # if input_keep_prob < 1.0: # assert is_train is not None flat_args = [tf.nn.dropout(arg, input_keep_prob) for arg in flat_args] total_arg_size = 0#[60] shapes = [a.get_shape() for a in flat_args] for shape in shapes: if shape.ndims != 2: raise ValueError("linear is expecting 2D arguments: %s" % shapes) if shape[1].value is None: raise ValueError("linear expects shape[1] to be provided for shape %s, " "but saw %s" % (shape, shape[1])) else: total_arg_size += shape[1].value # print(total_arg_size) # exit() dtype = [a.dtype for a in flat_args][0] # scope = tf.get_variable_scope() with tf.variable_scope(scope) as outer_scope: weights = tf.get_variable(_WEIGHTS_VARIABLE_NAME, [total_arg_size, output_size], dtype=dtype) if len(flat_args) == 1: res = tf.matmul(flat_args[0], weights) else: res = tf.matmul(tf.concat(flat_args, 1), weights) if not bias: flat_out = res else: with tf.variable_scope(outer_scope) as inner_scope: inner_scope.set_partitioner(None) biases = tf.get_variable( _BIAS_VARIABLE_NAME, [output_size], dtype=dtype, initializer=tf.constant_initializer(bias_start, dtype=dtype)) flat_out = tf.nn.bias_add(res, biases) out = reconstruct(flat_out, args[0], 1) if squeeze: out = tf.squeeze(out, [len(args[0].get_shape().as_list())-1]) if wd: add_wd(wd) return out def softmax(logits, mask=None, scope=None): with tf.name_scope(scope or "Softmax"): if mask is not None: logits = exp_mask(logits, mask) flat_logits = flatten(logits, 1) flat_out = tf.nn.softmax(flat_logits) out = reconstruct(flat_out, logits, 1) return out def softsel(target, logits, mask=None, scope=None): """ :param target: [ ..., J, d] dtype=float :param logits: [ ..., J], dtype=float :param mask: [ ..., J], dtype=bool :param scope: :return: [..., d], dtype=float """ with tf.name_scope(scope or "Softsel"): a = softmax(logits, mask = mask) target_rank = len(target.get_shape().as_list()) out = tf.reduce_sum(tf.expand_dims(a, -1) * target, target_rank - 2) return out def highway_layer(arg, bias, bias_start=0.0, scope=None, wd=0.0, input_keep_prob=1.0): with tf.variable_scope(scope or "highway_layer"): d = arg.get_shape()[-1] trans = linear([arg], d, bias, bias_start=bias_start, scope='trans', wd=wd, input_keep_prob=input_keep_prob) trans = tf.nn.relu(trans) gate = linear([arg], d, bias, bias_start=bias_start, scope='gate', wd=wd, input_keep_prob=input_keep_prob) gate = tf.nn.sigmoid(gate) out = gate * trans + (1 - gate) * arg return out def highway_network(arg, num_layers, bias, bias_start=0.0, scope=None, wd=0.0, input_keep_prob=1.0): with tf.variable_scope(scope or "highway_network"): prev = arg cur = None for layer_idx in range(num_layers): cur = highway_layer(prev, bias, bias_start=bias_start, scope="layer_{}".format(layer_idx), wd=wd, input_keep_prob=input_keep_prob) prev = cur return cur def conv1d(in_, filter_size, height, padding, keep_prob=1.0, scope=None): with tf.variable_scope(scope or "conv1d"): num_channels = in_.get_shape()[-1] filter_ = tf.get_variable("filter", shape=[1, height, num_channels, filter_size], dtype='float') bias = tf.get_variable("bias", shape=[filter_size], dtype='float') strides = [1, 1, 1, 1] in_ = tf.nn.dropout(in_, keep_prob) xxc = tf.nn.conv2d(in_, filter_, strides, padding) + bias # [N*M, JX, W/filter_stride, d] out = tf.reduce_max(tf.nn.relu(xxc), 2) # [-1, JX, d] return out def multi_conv1d(in_, filter_sizes, heights, padding, keep_prob=1.0, scope=None): with tf.variable_scope(scope or "multi_conv1d"): assert len(filter_sizes) == len(heights) outs = [] for filter_size, height in zip(filter_sizes, heights): if filter_size == 0: continue out = conv1d(in_, filter_size, height, padding, keep_prob=keep_prob, scope="conv1d_{}".format(height)) outs.append(out) concat_out = tf.concat(outs, axis=2) return concat_out if __name__ == '__main__': a = tf.Variable(np.random.random(size=(2,2,4))) b = tf.Variable(np.random.random(size=(2,3,4))) c = tf.tile(tf.expand_dims(a, 2), [1, 1, 3, 1]) test = flatten(c,1) out = reconstruct(test, c, 1) d = tf.tile(tf.expand_dims(b, 1), [1, 2, 1, 1]) e = linear([c,d,c*d],1,bias = False,scope = "test",) # f = softsel(d, e) with tf.Session() as sess: tf.global_variables_initializer().run() print(sess.run(test)) print(sess.run(tf.shape(out))) exit() print(sess.run(tf.shape(a))) print(sess.run(a)) print(sess.run(tf.shape(b))) print(sess.run(b)) print(sess.run(tf.shape(c))) print(sess.run(c)) print(sess.run(tf.shape(d))) print(sess.run(d)) print(sess.run(tf.shape(e))) print(sess.run(e))
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
148
shuishen112/pairwise-rnn
refs/heads/master
/models/__init__.py
from .QA_CNN_pairwise import QA_CNN_extend as CNN from .QA_RNN_pairwise import QA_RNN_extend as RNN from .QA_CNN_quantum_pairwise import QA_CNN_extend as QCNN def setup(opt): if opt["model_name"]=="cnn": model=CNN(opt) elif opt["model_name"]=="rnn": model=RNN(opt) elif opt['model_name']=='qcnn': model=QCNN(opt) else: print("no model") exit(0) return model
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
149
shuishen112/pairwise-rnn
refs/heads/master
/test.py
# -*- coding: utf-8 -*- from tensorflow import flags import tensorflow as tf from config import Singleton import data_helper import datetime import os import models import numpy as np import evaluation from data_helper import log_time_delta,getLogger logger=getLogger() args = Singleton().get_rnn_flag() #args = Singleton().get_8008_flag() args._parse_flags() opts=dict() logger.info("\nParameters:") for attr, value in sorted(args.__flags.items()): logger.info(("{}={}".format(attr.upper(), value))) opts[attr]=value train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev],dataset=args.data ) logger.info('the number of words :%d '%len(alphabet)) if args.data=="quora" or args.data=="8008" : print("cn embedding") embedding = data_helper.get_embedding(alphabet,dim=200,language="cn",dataset=args.data ) train_data_loader = data_helper.getBatch48008 else: embedding = data_helper.get_embedding(alphabet,dim=300,dataset=args.data ) train_data_loader = data_helper.get_mini_batch opts["embeddings"] =embedding opts["vocab_size"]=len(alphabet) opts["max_input_right"]=a_max_sent_length opts["max_input_left"]=q_max_sent_length opts["filter_sizes"]=list(map(int, args.filter_sizes.split(","))) print("innitilize over") #with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): with tf.Graph().as_default(): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model=models.setup(opts) model.build_graph() saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) # fun first than print or save ckpt = tf.train.get_checkpoint_state("checkpoint") if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) print(sess.run(model.position_embedding)[0]) if os.path.exists("model") : import shutil shutil.rmtree("model") builder = tf.saved_model.builder.SavedModelBuilder("./model") builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) builder.save(True) variable_averages = tf.train.ExponentialMovingAverage( model) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) for name in variables_to_restore: print(name) @log_time_delta def predict(model,sess,batch,test): scores = [] for data in batch: score = model.predict(sess,data) scores.extend(score) return np.array(scores[:len(test)]) text = "怎么 提取 公积金 ?" splited_text=data_helper.encode_to_split(text,alphabet) mb_q,mb_q_mask = data_helper.prepare_data([splited_text]) mb_a,mb_a_mask = data_helper.prepare_data([splited_text]) data = (mb_q,mb_a,mb_q_mask,mb_a_mask) score = model.predict(sess,data) print(score) feed_dict = { model.question:data[0], model.answer:data[1], model.q_mask:data[2], model.a_mask:data[3], model.dropout_keep_prob_holder:1.0 } sess.run(model.position_embedding,feed_dict=feed_dict)[0]
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
150
shuishen112/pairwise-rnn
refs/heads/master
/data_helper.py
#-*- coding:utf-8 -*- import os import numpy as np import tensorflow as tf import string from collections import Counter import pandas as pd from tqdm import tqdm import random from functools import wraps import time import pickle def log_time_delta(func): @wraps(func) def _deco(*args, **kwargs): start = time.time() ret = func(*args, **kwargs) end = time.time() delta = end - start print( "%s runed %.2f seconds"% (func.__name__,delta)) return ret return _deco import tqdm from nltk.corpus import stopwords OVERLAP = 237 class Alphabet(dict): def __init__(self, start_feature_id = 1): self.fid = start_feature_id def add(self, item): idx = self.get(item, None) if idx is None: idx = self.fid self[item] = idx # self[idx] = item self.fid += 1 return idx def dump(self, fname): with open(fname, "w") as out: for k in sorted(self.keys()): out.write("{}\t{}\n".format(k, self[k])) def cut(sentence): tokens = sentence.lower().split() # tokens = [w for w in tokens if w not in stopwords.words('english')] return tokens @log_time_delta def load(dataset, filter = False): data_dir = "data/" + dataset datas = [] for data_name in ['train.txt','test.txt','dev.txt']: data_file = os.path.join(data_dir,data_name) data = pd.read_csv(data_file,header = None,sep="\t",names=["question","answer","flag"]).fillna('0') # data = pd.read_csv(data_file,header = None,sep="\t",names=["question","answer","flag"],quoting =3).fillna('0') if filter == True: datas.append(removeUnanswerdQuestion(data)) else: datas.append(data) # sub_file = os.path.join(data_dir,'submit.txt') # submit = pd.read_csv(sub_file,header = None,sep = "\t",names = ['question','answer'],quoting = 3) # datas.append(submit) return tuple(datas) @log_time_delta def removeUnanswerdQuestion(df): counter= df.groupby("question").apply(lambda group: sum(group["flag"])) questions_have_correct=counter[counter>0].index counter= df.groupby("question").apply(lambda group: sum(group["flag"]==0)) questions_have_uncorrect=counter[counter>0].index counter=df.groupby("question").apply(lambda group: len(group["flag"])) questions_multi=counter[counter>1].index return df[df["question"].isin(questions_have_correct) & df["question"].isin(questions_have_correct) & df["question"].isin(questions_have_uncorrect)].reset_index() @log_time_delta def get_alphabet(corpuses=None,dataset=""): pkl_name="temp/"+dataset+".alphabet.pkl" if os.path.exists(pkl_name): return pickle.load(open(pkl_name,"rb")) alphabet = Alphabet(start_feature_id = 0) alphabet.add('[UNK]') alphabet.add('END') count = 0 for corpus in corpuses: for texts in [corpus["question"].unique(),corpus["answer"]]: for sentence in texts: tokens = cut(sentence) for token in set(tokens): alphabet.add(token) print("alphabet size %d" % len(alphabet.keys()) ) if not os.path.exists("temp"): os.mkdir("temp") pickle.dump( alphabet,open(pkl_name,"wb")) return alphabet @log_time_delta def getSubVectorsFromDict(vectors,vocab,dim = 300): embedding = np.zeros((len(vocab),dim)) count = 1 for word in vocab: if word in vectors: count += 1 embedding[vocab[word]]= vectors[word] else: embedding[vocab[word]]= np.random.uniform(-0.5,+0.5,dim)#vectors['[UNKNOW]'] #.tolist() print( 'word in embedding',count) return embedding def encode_to_split(sentence,alphabet): indices = [] tokens = cut(sentence) seq = [alphabet[w] if w in alphabet else alphabet['[UNK]'] for w in tokens] return seq @log_time_delta def load_text_vec(alphabet,filename="",embedding_size = 100): vectors = {} with open(filename,encoding='utf-8') as f: i = 0 for line in f: i += 1 if i % 100000 == 0: print( 'epch %d' % i) items = line.strip().split(' ') if len(items) == 2: vocab_size, embedding_size= items[0],items[1] print( ( vocab_size, embedding_size)) else: word = items[0] if word in alphabet: vectors[word] = items[1:] print( 'embedding_size',embedding_size) print( 'done') print( 'words found in wor2vec embedding ',len(vectors.keys())) return vectors @log_time_delta def get_embedding(alphabet,dim = 300,language ="en",dataset=""): pkl_name="temp/"+dataset+".subembedding.pkl" if os.path.exists(pkl_name): return pickle.load(open(pkl_name,"rb")) if language=="en": fname = 'embedding/glove.6B/glove.6B.300d.txt' else: fname= "embedding/embedding.200.header_txt" embeddings = load_text_vec(alphabet,fname,embedding_size = dim) sub_embeddings = getSubVectorsFromDict(embeddings,alphabet,dim) pickle.dump( sub_embeddings,open(pkl_name,"wb")) return sub_embeddings @log_time_delta def get_mini_batch_test(df,alphabet,batch_size): q = [] a = [] pos_overlap = [] for index,row in df.iterrows(): question = encode_to_split(row["question"],alphabet) answer = encode_to_split(row["answer"],alphabet) overlap_pos = overlap_index(row['question'],row['answer']) q.append(question) a.append(answer) pos_overlap.append(overlap_pos) m = 0 n = len(q) idx_list = np.arange(m,n,batch_size) mini_batches = [] for idx in idx_list: mini_batches.append(np.arange(idx,min(idx + batch_size,n))) for mini_batch in mini_batches: mb_q = [ q[t] for t in mini_batch] mb_a = [ a[t] for t in mini_batch] mb_pos_overlap = [pos_overlap[t] for t in mini_batch] mb_q,mb_q_mask = prepare_data(mb_q) mb_a,mb_pos_overlaps = prepare_data(mb_a,mb_pos_overlap) yield(mb_q,mb_a) # calculate the overlap_index def overlap_index(question,answer,stopwords = []): ans_token = cut(answer) qset = set(cut(question)) aset = set(ans_token) a_len = len(ans_token) # q_index = np.arange(1,q_len) a_index = np.arange(1,a_len + 1) overlap = qset.intersection(aset) # for i,q in enumerate(cut(question)[:q_len]): # value = 1 # if q in overlap: # value = 2 # q_index[i] = value for i,a in enumerate(ans_token): if a in overlap: a_index[i] = OVERLAP return a_index def getBatch48008(df,alphabet,batch_size,sort_by_len = True,shuffle = False): q,a,neg_a=[],[],[] answers=df["answer"][:250] ground_truth=df.groupby("question").apply(lambda group: group[group.flag==1].index[0]%250 ).to_dict() for question in tqdm(df['question'].unique()): index= ground_truth[question] canindates = [i for i in range(250)] canindates.remove(index) a_neg_index = random.choice(canindates) seq_q = encode_to_split(question,alphabet) seq_a = encode_to_split(answers[index],alphabet) seq_neg_a = encode_to_split(answers[a_neg_index],alphabet) q.append(seq_q) a.append( seq_a) neg_a.append(seq_neg_a ) return iteration_batch(q,a,neg_a,batch_size,sort_by_len,shuffle) def iteration_batch(q,a,neg_a,batch_size,sort_by_len = True,shuffle = False): if sort_by_len: sorted_index = sorted(range(len(q)), key=lambda x: len(q[x]), reverse=True) q = [ q[i] for i in sorted_index] a = [a[i] for i in sorted_index] neg_a = [ neg_a[i] for i in sorted_index] pos_overlap = [pos_overlap[i] for i in sorted_index] neg_overlap = [neg_overlap[i] for i in sorted_index] #get batch m = 0 n = len(q) idx_list = np.arange(m,n,batch_size) if shuffle: np.random.shuffle(idx_list) mini_batches = [] for idx in idx_list: mini_batches.append(np.arange(idx,min(idx + batch_size,n))) for mini_batch in tqdm(mini_batches): mb_q = [ q[t] for t in mini_batch] mb_a = [ a[t] for t in mini_batch] mb_neg_a = [ neg_a[t] for t in mini_batch] mb_pos_overlap = [pos_overlap[t] for t in mini_batch] mb_neg_overlap = [neg_overlap[t] for t in mini_batch] mb_q,mb_q_mask = prepare_data(mb_q) mb_a,mb_pos_overlaps = prepare_data(mb_a,mb_pos_overlap) mb_neg_a,mb_neg_overlaps = prepare_data(mb_neg_a,mb_neg_overlap) # mb_a,mb_a_mask = prepare_data(mb_a,mb_pos_overlap) # mb_neg_a , mb_a_neg_mask = prepare_data(mb_neg_a) yield(mb_q,mb_a,mb_neg_a,mb_q_mask,mb_a_mask,mb_a_neg_mask) def get_mini_batch(df,alphabet,batch_size,sort_by_len = True,shuffle = False,model=None,sess=None): q = [] a = [] neg_a = [] for question in df['question'].unique(): # group = df[df["question"]==question] # pos_answers = group[df["flag"] == 1]["answer"] # neg_answers = group[df["flag"] == 0]["answer"].reset_index() group = df[df["question"]==question] pos_answers = group[group["flag"] == 1]["answer"] neg_answers = group[group["flag"] == 0]["answer"]#.reset_index() for pos in pos_answers: if model is not None and sess is not None: pos_sent= encode_to_split(pos,alphabet) q_sent,q_mask= prepare_data([pos_sent]) neg_sents = [encode_to_split(sent,alphabet) for sent in neg_answers] a_sent,a_mask= prepare_data(neg_sents) scores = model.predict(sess,(np.tile(q_sent,(len(neg_answers),1)),a_sent,np.tile(q_mask,(len(neg_answers),1)),a_mask)) neg_index = scores.argmax() else: if len(neg_answers.index) > 0: neg_index = np.random.choice(neg_answers.index) neg = neg_answers.reset_index().loc[neg_index,]["answer"] seq_q = encode_to_split(question,alphabet) seq_a = encode_to_split(pos,alphabet) seq_neg_a = encode_to_split(neg,alphabet) q.append(seq_q) a.append(seq_a) neg_a.append(seq_neg_a) return iteration_batch(q,a,neg_a,batch_size,sort_by_len,shuffle) def prepare_data(seqs,overlap = None): lengths = [len(seq) for seq in seqs] n_samples = len(seqs) max_len = np.max(lengths) x = np.zeros((n_samples,max_len)).astype('int32') if overlap is not None: overlap_position = np.zeros((n_samples,max_len)).astype('float') for idx ,seq in enumerate(seqs): x[idx,:lengths[idx]] = seq overlap_position[idx,:lengths[idx]] = overlap[idx] return x,overlap_position else: x_mask = np.zeros((n_samples, max_len)).astype('float') for idx, seq in enumerate(seqs): x[idx, :lengths[idx]] = seq x_mask[idx, :lengths[idx]] = 1.0 # print( x, x_mask) return x, x_mask # def prepare_data(seqs): # lengths = [len(seq) for seq in seqs] # n_samples = len(seqs) # max_len = np.max(lengths) # x = np.zeros((n_samples, max_len)).astype('int32') # x_mask = np.zeros((n_samples, max_len)).astype('float') # for idx, seq in enumerate(seqs): # x[idx, :lengths[idx]] = seq # x_mask[idx, :lengths[idx]] = 1.0 # # print( x, x_mask) # return x, x_mask def getLogger(): import sys import logging import os import time now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) log_filename = "log/" +time.strftime("%Y%m%d", timeArray) program = os.path.basename(sys.argv[0]) logger = logging.getLogger(program) if not os.path.exists(log_filename): os.mkdir(log_filename) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s',datefmt='%a, %d %b %Y %H:%M:%S',filename=log_filename+'/qa'+timeStamp+'.log',filemode='w') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) return logger
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
158
pedromeldola/Desafio
refs/heads/master
/core/models.py
from django.db import models #criação da classe com os atributos class Jogo(models.Model): idJogo = models.AutoField(primary_key=True) placar = models.IntegerField() placarMin = models.IntegerField() placarMax = models.IntegerField() quebraRecMin = models.IntegerField() quebraRecMax = models.IntegerField() def __str__(self): return str(self.idJogo)
{"/core/views.py": ["/core/models.py"]}
159
pedromeldola/Desafio
refs/heads/master
/core/views.py
from django.shortcuts import render,redirect from .models import Jogo from django.views.decorators.csrf import csrf_protect #método para chamar todos os objetos que estão na classe Jogo quando entrar na home page def home_page(request): jogo = Jogo.objects.all() return render (request,'home.html',{'jogo':jogo}) #método para inserir os dados na tabela quando o botão ser clicado def inserir(request): placar = request.POST.get('nPlacar') #método para buscar os valores do objeto anterior try: placarMin = int(Jogo.objects.earliest('placarMin').placarMin) placarMax = int(Jogo.objects.latest('placarMax').placarMax) quebraRecMin = int(Jogo.objects.latest('quebraRecMin').quebraRecMin) quebraRecMax = int(Jogo.objects.latest('quebraRecMax').quebraRecMax) except: placarMin = False placarMax = False quebraRecMin = False quebraRecMax = False placar = int(placar) #condição para adicionar o placar nos demais atributos alem dele mesmo if placarMin is False: placarMin = placar placarMax = placar elif placar < placarMin: placarMin = placar quebraRecMin += 1 elif placar > placarMax or placarMax is False: placarMax = placar quebraRecMax += 1 else: quebraRecMin = quebraRecMin+ 0 quebraRecMmax = quebraRecMax+ 0 #método para criar o objeto já com os atributos populados jogo = Jogo.objects.create(placarMin=placarMin,placar=placar,placarMax=placarMax,quebraRecMin=quebraRecMin,quebraRecMax=quebraRecMax) return redirect('/') #função para ficar home page após inserir o dado e clica no botão inserir
{"/core/views.py": ["/core/models.py"]}
160
pedromeldola/Desafio
refs/heads/master
/core/migrations/0002_auto_20200930_2254.py
# Generated by Django 3.1 on 2020-10-01 01:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='jogo', name='id', ), migrations.AlterField( model_name='jogo', name='idJogo', field=models.AutoField(primary_key=True, serialize=False), ), migrations.AlterField( model_name='jogo', name='placar', field=models.IntegerField(), ), ]
{"/core/views.py": ["/core/models.py"]}
161
pedromeldola/Desafio
refs/heads/master
/core/migrations/0001_initial.py
# Generated by Django 3.1.1 on 2020-09-28 18:50 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Jogo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('idJogo', models.IntegerField()), ('placar', models.IntegerField(max_length=3)), ('placarMin', models.IntegerField()), ('placarMax', models.IntegerField()), ('quebraRecMin', models.IntegerField()), ('quebraRecMax', models.IntegerField()), ], ), ]
{"/core/views.py": ["/core/models.py"]}
185
andrewjschuang/Turing
refs/heads/master
/turing.py
import time from datetime import datetime from flask import (Flask, abort, flash, redirect, render_template, request, session, url_for) from sqlalchemy.exc import IntegrityError from wtforms import (Form, RadioField, StringField, SubmitField, TextAreaField, TextField, validators) from models.model import User, Project, Task, Questionnaire, Question, Response from models.shared import db class SignUp(Form): name = TextField('Name:', validators=[validators.required()]) email = TextField('Email:', validators=[ validators.required(), validators.Length(min=6, max=35)]) password = TextField('Password:', validators=[ validators.required(), validators.Length(min=3, max=35)]) class Login(Form): email = TextField('Email:', validators=[ validators.required(), validators.Length(min=6, max=35)]) password = TextField('Password:', validators=[ validators.required(), validators.Length(min=3, max=35)]) def create_app(config=None): app = Flask(__name__) if config: app.config.from_mapping(config) else: app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///prod.db' app.config['SECRET_KEY'] = '7d441f27d441f27567d441f2b6176a' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True db.init_app(app) @app.errorhandler(404) def page_not_found(e): return render_template('404.html'), 404 @app.route('/signup', methods=['GET', 'POST']) def signup(): form = SignUp(request.form) if request.method == 'POST': if form.validate(): name = request.form['name'] password = request.form['password'] email = request.form['email'] u = User(email=email, name=name, password=password) db.session.add(u) db.session.commit() session['auth'] = {'name': name, 'email': email, 'timestamp': time.time()} return redirect(url_for('index')) else: flash('All the form fields are required.', category='error') return render_template('signup.html', form=form) @app.route('/login', methods=['GET', 'POST']) def login(): form = Login(request.form) if request.method == 'POST': if form.validate(): password = request.form['password'] email = request.form['email'] user = User.query.filter_by(email=email).first() print(user) if user: print(user) if user.password == password: session['auth'] = {'name': user.name, 'email': user.email, 'timestamp': time.time() } return redirect(url_for('index')) else: flash('Authentication failed', category='error') else: flash('Authentication failed', category='error') else: flash('All the form fields are required', category='error') return render_template('login.html', form=form) @app.route('/', methods=['GET']) def index(): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') info = user.get_index_data() print(info) return render_template('index.html', **info) return redirect('/login') @app.route('/responses') def responses(): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') quests = Questionnaire.query.all() return render_template('responses.html', quests=quests) @app.route('/respond/<int:ref>', methods=['GET', 'POST']) def respond(ref): quest = Questionnaire.query.get(ref) if not quest: print('no questionnaire found with id %s' % ref) return abort(404) if request.method == 'GET': return render_template('feedback.html', name=quest.name, questions=quest.questions) elif request.method == 'POST': for question_id in request.form: question = Question.query.get(question_id) resp = Response(question=question.id, rating=request.form.get(question_id)) db.session.add(resp) db.session.commit() return render_template('feedback_received.html') @app.route('/projects', methods=['GET', 'POST']) def projects(): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') if request.method == 'POST': name = request.form['projectName'] description = request.form['projectDescription'] pro = Project(name=name,description=description) db.session.add(pro) user.project.append(pro) db.session.commit() grid = user.get_project_grid(3) return render_template('projects.html', projectgrid=grid) return redirect('/login') @app.route('/tasks/user') @app.route('/tasks/user/<int:ref>', methods=['GET', 'POST']) def user_tasks(ref=None): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') if ref: user: User = User.query.filter_by(id=ref).first() if not user: return abort(404) if request.method == 'POST': name = request.form.get('taskName') description = request.form.get('taskDescription') t_time = request.form.get('taskTime') if not all((name, description, t_time)): abort(404) t_time = datetime.strptime(t_time,'%Y-%m-%dT%H:%M:%S.%fZ') n_task: Task = Task(name=name, description=description, end_time=t_time) user.tasks.append(n_task) db.session.commit() return abort(200) else: return render_template('tasks.html', data=user) @app.route('/tasks/project/<int:ref>', methods=['GET', 'POST']) def proj_tasks(ref): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') project:Project = Project.query.filter_by(id=ref).first() if not project: return abort(404) if request.method == 'POST': name = request.form.get('taskName') description = request.form.get('taskDescription') t_time = request.form.get('taskDate') if not all((name, description, t_time)): abort(404) t_time = datetime.strptime(t_time,'%Y-%m-%dT%H:%M:%S.%fZ') n_task: Task = Task(name=name, description=description, end_time=t_time) project.tasks.append(n_task) user.tasks.append(n_task) db.session.commit() return ('' ,200) else: return render_template('tasks.html', data=project) @app.route('/tasks/task/<int:ref>', methods=['GET', 'POST']) def task_tasks(ref): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') task:Task = Task.query.filter_by(id=ref).first() if not task: return abort(404) if request.method == 'POST': name = request.form.get('taskName') description = request.form.get('taskDescription') t_time = request.form.get('taskDate') if not all((name, description, t_time)): abort(404) t_time = datetime.strptime(t_time,'%Y-%m-%dT%H:%M:%S.%fZ') n_task: Task = Task(name=name, description=description, end_time=t_time) db.session.add(n_task) task.tasks.append(n_task) db.session.commit() user.tasks.append(n_task) db.session.commit() print(task, task.tasks) print(n_task, n_task.tasks) return ('' ,200) else: print(task, task.tasks) return render_template('tasks.html', data=task) @app.route('/test', methods=['GET']) def test(): return render_template('newQuestionnaire.html') @app.route('/questionnaire/<int:ref>', methods=['GET', 'POST']) def questionnaire(ref): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') task:Task = Task.query.filter_by(id=ref).first() if not task: return abort(404) if request.method == 'POST': name = request.form.get('name') if not name: return abort(404) quest = Questionnaire(name=name,task=task) task.questionnaires.append(quest) for key, value in request.form.items(): if not value or key == 'name': continue else: quest.questions.append(Question(text=value,questionnaire=quest)) db.session.commit() return render_template('newQuestionnaire.html') @app.route('/logout', methods=['GET']) def logout(): session.pop('auth') return redirect(url_for('index')) return app if __name__ == '__main__': app = create_app() db.create_all(app=app) app.run(host='localhost', port=3000, debug=True)
{"/test.py": ["/turing.py"]}
186
andrewjschuang/Turing
refs/heads/master
/test.py
from flask_testing import TestCase from models.shared import db from models.model import User, Task, Project, Question, Response, Questionnaire from turing import create_app import unittest class MyTest(TestCase): def create_app(self): config = { 'SQLALCHEMY_DATABASE_URI': 'sqlite:///test.db', 'TESTING': True, 'SECRET_KEY': 'secret', 'SQLALCHEMY_TRACK_MODIFICATIONS': True } return create_app(config) def setUp(self): db.create_all() def tearDown(self): db.session.remove() db.drop_all() def test_nothing(self): assert True def test_user(self): user = User(email='em', name='us', password='pass') db.session.add(user) db.session.commit() assert user in db.session def test_project(self): project = Project(name='n',description='desc') db.session.add(project) db.session.commit() assert project in db.session def test_task(self): task = Task(name='n', description='desc') db.session.add(task) db.session.commit() assert task in db.session def test_usr_add_tsk2_prj(self): user = User(email='em', name='us', password='pass') db.session.add(user) db.session.commit() project = Project(name='n',description='desc') db.session.add(project) user.project.append(project) db.session.commit() project: Project= User.query.filter_by(email='em').first().project[0] task = Task(name='n', description='desc') db.session.add(task) project.tasks.append(task) db.session.commit() assert user.project[0].tasks[0] == task def test_sub_tasks(self): task = Task(name='n', description='desc') db.session.add(task) assert task in db.session s_task = Task(name='n', description='desc') db.session.add(s_task) assert task in db.session db.session.commit() task.tasks.append(s_task) db.session.commit() assert task.tasks[0] == s_task def test_questionnaire(self): questionnaire = Questionnaire(name='Questions') db.session.add(questionnaire) question0 = Question(text="ola ?", questionnaire=questionnaire) question1 = Question(text="tudo bem ?", questionnaire=questionnaire) questionnaire.questions.append(question0) questionnaire.questions.append(question1) for i in range(10): question0.responses.append(Response(rating=5,question=question0)) for i in range(10): question1.responses.append(Response(rating=5,question=question1)) rs = [x.rating for x in questionnaire.questions[0].responses] assert sum(rs)/len(rs) == 5 rs = [x.rating for x in questionnaire.questions[1].responses] assert sum(rs)/len(rs) == 5 if __name__ == '__main__': unittest.main()
{"/test.py": ["/turing.py"]}
187
andrewjschuang/Turing
refs/heads/master
/functionalities.py
functionalities = { 'Login': 'Login page', 'Feedback': 'This feedback form', 'Todo': 'To do module', 'Projects': 'Anything related to projects', 'Code': 'Code editor', 'Forum': 'The forum', 'Profile': 'Your profile page', }
{"/test.py": ["/turing.py"]}
188
yywang0514/dsnre
refs/heads/master
/train.py
import sys import os import time import numpy as np import torch import torch.nn.functional as F import argparse import logging from lib import * from model import * def train(options): if not os.path.exists(options.folder): os.mkdir(options.folder) logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s: %(name)s: %(levelname)s: %(message)s") hdlr = logging.FileHandler(os.path.join(options.folder, options.file_log), mode = "w") hdlr.setFormatter(formatter) logger.addHandler(hdlr) logger.info("python %s" %(" ".join(sys.argv))) ################################################################################# start_time = time.time() msg = "Loading dicts from %s..." %(options.file_dic) display(msg) vocab = dicfold(options.file_dic) word2idx, pre_train_emb, part_point = build_word2idx(vocab, options.file_emb) msg = "Loading data from %s..." %(options.file_train) display(msg) train = datafold(options.file_train) msg = "Loading data from %s..." %(options.file_test) display(msg) test = datafold(options.file_test) end_time = time.time() msg = "Loading data time: %f seconds" %(end_time - start_time) display(msg) options.size_vocab = len(word2idx) if options.devFreq == -1: options.devFreq = (len(train) + options.batch_size - 1) // options.batch_size msg = "#inst in train: %d" %(len(train)) display(msg) msg = "#inst in test %d" %(len(test)) display(msg) msg = "#word vocab: %d" %(options.size_vocab) display(msg) msg = "=" * 30 + "Hyperparameter:" + "=" * 30 display(msg) for attr, value in sorted(vars(options).items(), key = lambda x: x[0]): msg = "{}={}".format(attr.upper(), value) display(msg) ################################################################################# msg = "=" * 30 + "model:" + "=" * 30 display(msg) os.environ["CUDA_VISIBLE_DEVICES"] = options.gpus if options.seed is not None: torch.manual_seed(options.seed) np.random.seed(options.seed) model = Model(options.fine_tune, pre_train_emb, part_point, options.size_vocab, options.dim_emb, options.dim_proj, options.head_count, options.dim_FNN, options.act_str, options.num_layer, options.num_class, options.dropout_rate).cuda() if os.path.exists("{}.pt".format(options.reload_model)): model.load_state_dict(torch.load("{}.pt".format(options.reload_model))) parameters = filter(lambda param: param.requires_grad, model.parameters()) optimizer = optimizer_wrapper(options.optimizer, options.lr, parameters) msg = "\n{}".format(model) display(msg) ################################################################################# checkpoint_dir = os.path.join(options.folder, "checkpoints") if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) best_path = os.path.join(checkpoint_dir, options.saveto) ################################################################################# msg = "=" * 30 + "Optimizing:" + "=" * 30 display(msg) [train_rels, train_nums, train_sents, train_poss, train_eposs] = bags_decompose(train) [test_rels, test_nums, test_sents, test_poss, test_eposs] = bags_decompose(test) # batch_index = [0, 1, 2] # batch_rels = [train_rels[m][0] for m in batch_index] # batch_nums = [train_nums[m] for m in batch_index] # batch_sents = [train_sents[m] for m in batch_index] # batch_poss = [train_poss[m] for m in batch_index] # batch_eposs = [train_eposs[m] for m in batch_index] # batch_data = select_instance(batch_rels, # batch_nums, # batch_sents, # batch_poss, # batch_eposs, # model) # for sent in batch_data[0]: # print(sent) # print(batch_data[1]) # print(batch_data[2]) # print(batch_data[3]) train_idx_list = np.arange(len(train)) steps_per_epoch = (len(train) + options.batch_size - 1) // options.batch_size n_updates = 0 for e in range(options.nepochs): np.random.shuffle(train_idx_list) for step in range(steps_per_epoch): batch_index = train_idx_list[step * options.batch_size: (step + 1) * options.batch_size] batch_rels = [train_rels[m][0] for m in batch_index] batch_nums = [train_nums[m] for m in batch_index] batch_sents = [train_sents[m] for m in batch_index] batch_poss = [train_poss[m] for m in batch_index] batch_eposs = [train_eposs[m] for m in batch_index] batch_data = select_instance(batch_rels, batch_nums, batch_sents, batch_poss, batch_eposs, model) disp_start = time.time() model.train() n_updates += 1 optimizer.zero_grad() logit = model(batch_data[0], batch_data[1], batch_data[2]) loss = F.cross_entropy(logit, batch_data[3]) loss.backward() if options.clip_c != 0: total_norm = torch.nn.utils.clip_grad_norm_(parameters, options.clip_c) optimizer.step() disp_end = time.time() if np.mod(n_updates, options.dispFreq) == 0: msg = "Epoch: %d, Step: %d, Loss: %f, Time: %.2f sec" %(e, n_updates, loss.cpu().item(), disp_end - disp_start) display(msg) if np.mod(n_updates, options.devFreq) == 0: msg = "=" * 30 + "Evaluating" + "=" * 30 display(msg) model.eval() test_predict = predict(test_rels, test_nums, test_sents, test_poss, test_eposs, model) test_pr = positive_evaluation(test_predict) msg = 'test set PR = [' + str(test_pr[0][-1]) + ' ' + str(test_pr[1][-1]) + ']' display(msg) msg = "Saving model..." display(msg) torch.save(model.state_dict(), "{}_step_{}.pt".format(best_path, n_updates)) msg = "Model checkpoint has been saved to {}_step_{}.pt".format(best_path, n_updates) display(msg) end_time = time.time() msg = "Optimizing time: %f seconds" %(end_time - start_time) display(msg) def predict(rels, nums, sents, poss, eposs, model): numBags = len(rels) predict_y = np.zeros((numBags), dtype=np.int32) predict_y_prob = np.zeros((numBags), dtype=np.float32) y = np.asarray(rels, dtype='int32') for bagIndex, insRel in enumerate(rels): insNum = nums[bagIndex] maxP = -1 pred_rel_type = 0 max_pos_p = -1 positive_flag = False for m in range(insNum): insX = sents[bagIndex][m] epos = eposs[bagIndex][m] sel_x, sel_len, sel_epos = prepare_data([insX], [epos]) results = model(sel_x, sel_len, sel_epos) rel_type = results.argmax() if positive_flag and rel_type == 0: continue else: # at least one instance is positive tmpMax = results.max() if rel_type > 0: positive_flag = True if tmpMax > max_pos_p: max_pos_p = tmpMax pred_rel_type = rel_type else: if tmpMax > maxP: maxP = tmpMax if positive_flag: predict_y_prob[bagIndex] = max_pos_p else: predict_y_prob[bagIndex] = maxP predict_y[bagIndex] = pred_rel_type return [predict_y, predict_y_prob, y] def main(argv): parser = argparse.ArgumentParser() parser.add_argument("--folder", help = "the dir of model", default = "workshop") parser.add_argument("--file_dic", help = "the file of vocabulary", default = "./data/50/dict.txt") parser.add_argument("--file_train", help = "the file of training data", default = "./data/gap_40_len_80/train_filtered.data") parser.add_argument("--file_test", help = "the file of testing data", default = "./data/gap_40_len_80/test_filtered.data") # parser.add_argument("--file_emb", help = "the file of embedding", default = "./data/50/dict_emb.txt") parser.add_argument("--file_emb", help = "the file of embedding", default = "") parser.add_argument("--file_log", help = "the log file", default = "train.log") parser.add_argument("--reload_model", help = "the pretrained model", default = "") parser.add_argument("--saveto", help = "the file to save the parameter", default = "model") parser.add_argument("--seed", help = "the random seed", default = 1234, type = int) parser.add_argument("--size_vocab", help = "the size of vocabulary", default = 10000, type = int) parser.add_argument("--dim_emb", help = "the dimension of the word embedding", default = 256, type = int) parser.add_argument("--dim_proj", help = "the dimension of the hidden state", default = 256, type = int) parser.add_argument("--head_count", help = "the num of head in multi head attention", default = 8, type = int) parser.add_argument("--dim_FNN", help = "the dimension of the positionwise FNN", default = 256, type = int) parser.add_argument("--act_str", help = "the activation function of the positionwise FNN", default = "relu") parser.add_argument("--num_layer", help = "the num of layers", default = 6, type = int) parser.add_argument("--num_class", help = "the number of labels", default = 27, type = int) parser.add_argument("--position_emb", help = "if true, the position embedding will be used", default = False, action = "store_true") parser.add_argument("--fine_tune", help = "if true, the pretrained embedding will be fine tuned", default = False, action = "store_true") parser.add_argument("--optimizer", help = "optimization algorithm", default = "adam") parser.add_argument("--lr", help = "learning rate", default = 0.0004, type = float) parser.add_argument("--dropout_rate", help = "dropout rate", default = 0.5, type = float) parser.add_argument("--clip_c", help = "grad clip", default = 10.0, type = float) parser.add_argument("--nepochs", help = "the max epoch", default = 30, type = int) parser.add_argument("--batch_size", help = "batch size", default = 32, type = int) parser.add_argument("--dispFreq", help = "the frequence of display", default = 100, type = int) parser.add_argument("--devFreq", help = "the frequence of evaluation", default = -1, type = int) parser.add_argument("--wait_N", help = "use to early stop", default = 1, type = int) parser.add_argument("--patience", help = "use to early stop", default = 7, type = int) parser.add_argument("--maxlen", help = "max length of sentence", default = 100, type = int) parser.add_argument("--gpus", help = "specify the GPU IDs", default = "0") options = parser.parse_args(argv) train(options) if "__main__" == __name__: main(sys.argv[1:])
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
189
yywang0514/dsnre
refs/heads/master
/lib/module.py
import torch import torch.nn as nn import math class LayerNorm(nn.Module): """Layer Normalization class""" def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class MLP(nn.Module): def __init__(self, dim_in, dim_out): super(MLP, self).__init__() self.dim_in = dim_in self.dim_out = dim_out self._init_params() def _init_params(self): self.mlp = nn.Linear(in_features = self.dim_in, out_features = self.dim_out) def forward(self, inp): proj_inp = self.mlp(inp) return proj_inp class BiLstm(nn.Module): def __init__(self, dim_in, dim_out): super(BiLstm, self).__init__() self.dim_in = dim_in self.dim_out = dim_out self._init_params() def _init_params(self): self.bilstm = nn.LSTM(input_size = self.dim_in, hidden_size = self.dim_out, bidirectional = True) def forward(self, inp, inp_len): sorted_inp_len, sorted_idx = torch.sort(inp_len, dim = 0, descending=True) sorted_inp = torch.index_select(inp, dim = 1, index = sorted_idx) pack_inp = torch.nn.utils.rnn.pack_padded_sequence(sorted_inp, sorted_inp_len) proj_inp, _ = self.bilstm(pack_inp) proj_inp = torch.nn.utils.rnn.pad_packed_sequence(proj_inp) unsorted_idx = torch.zeros(sorted_idx.size()).long().cuda().scatter_(0, sorted_idx, torch.arange(inp.size()[1]).long().cuda()) unsorted_proj_inp = torch.index_select(proj_inp[0], dim = 1, index = unsorted_idx) return unsorted_proj_inp class Word_Emb(nn.Module): def __init__(self, fine_tune, pre_train_emb, part_point, size_vocab, dim_emb): super(Word_Emb, self).__init__() self.fine_tune = fine_tune self.pre_train_emb = pre_train_emb self.part_point = part_point self.size_vocab = size_vocab self.dim_emb = dim_emb self._init_params() def _init_params(self): self.embedding = torch.nn.ModuleList() if (not self.fine_tune) and self.pre_train_emb: self.embedding.append(nn.Embedding(self.part_point, self.dim_emb)) self.embedding.append(nn.Embedding.from_pretrained(torch.Tensor(self.pre_train_emb), freeze = True)) elif self.fine_tune and self.pre_train_emb: init_embedding = 0.01 * np.random.randn(self.size_vocab, self.dim_emb).astype(np.float32) init_embedding[self.part_point: ] = self.pre_train_emb self.embedding.append(nn.Embedding.from_pretrained(torch.Tensor(init_embedding), freeze = False)) else: self.embedding.append(nn.Embedding(self.size_vocab, self.dim_emb)) def forward(self, inp): if (not self.fine_tune) and self.pre_train_emb: def get_emb(inp): mask = self.inp2mask(inp) inp_1 = inp * mask emb_1 = self.embedding[0](inp_1) * mask[:, :, None].float() inp_2 = (inp - self.part_point) * (1 - mask) emb_2 = self.embedding[1](inp_2) * (1 - mask)[:, :, None].float() emb = emb_1 + emb_2 return emb emb_inp = get_emb(inp) else: emb_inp = self.embedding[0](inp) return emb_inp def inp2mask(self, inp): mask = (inp < self.part_point).long() return mask class Position_Emb(nn.Module): def __init__(self, dim_emb): super(Position_Emb, self).__init__() self.dim_emb = dim_emb self._init_params() def _init_params(self): pass def forward(self, inp): pass class Wemb(nn.Module): """docstring for Wemb""" def __init__(self, fine_tune, pre_train_emb, part_point, size_vocab, dim_emb, position_emb, dropout_rate): super(Wemb, self).__init__() self.fine_tune = fine_tune self.pre_train_emb = pre_train_emb self.part_point = part_point self.size_vocab = size_vocab self.dim_emb = dim_emb self.position_emb = position_emb self.dropout_rate = dropout_rate self._init_params() def _init_params(self): self.wembs = torch.nn.ModuleList() self.wembs.append(Word_Emb(self.fine_tune, self.pre_train_emb, self.part_point, self.size_vocab, self.dim_emb)) if self.position_emb: self.wembs.append(Position_Emb(self.dim_emb)) self.layer_norm = LayerNorm(self.dim_emb) self.dropout = nn.Dropout(self.dropout_rate) def forward(self, inp): def add_n(inps): rval = inps[0] * 0 for inp in inps: rval += inp return rval emb_inps = [] for wemb in self.wembs: emb_inps.append(wemb(inp)) emb_inp = add_n(emb_inps) emb_inp = self.layer_norm(emb_inp) emb_inp = self.dropout(emb_inp) return emb_inp class Multi_Head_Attention(nn.Module): def __init__(self, dim_proj, head_count, dropout_rate): super(Multi_Head_Attention, self).__init__() self.dim_proj = dim_proj self.head_count = head_count self.dim_per_head = self.dim_proj // self.head_count self.dropout_rate = dropout_rate self._init_params() def _init_params(self): self.linear_key = nn.Linear(self.dim_proj, self.head_count * self.dim_per_head) self.linear_value = nn.Linear(self.dim_proj, self.head_count * self.dim_per_head) self.linear_query = nn.Linear(self.dim_proj, self.head_count * self.dim_per_head) self.dropout = nn.Dropout(self.dropout_rate) self.softmax = nn.Softmax(dim=-1) def forward(self, key, value, query, mask = None): # key: batch X key_len X hidden # value: batch X value_len X hidden # query: batch X query_len X hidden # mask: batch X query_len X key_len batch_size = key.size()[0] key_ = self.linear_key(key) value_ = self.linear_value(value) query_ = self.linear_query(query) key_ = key_.reshape(batch_size, -1, self.head_count, self.dim_per_head).transpose(1, 2) value_ = value_.reshape(batch_size, -1, self.head_count, self.dim_per_head).transpose(1, 2) query_ = query_.reshape(batch_size, -1, self.head_count, self.dim_per_head).transpose(1, 2) attention_scores = torch.matmul(query_, key_.transpose(2, 3)) attention_scores = attention_scores / math.sqrt(float(self.dim_per_head)) if mask is not None: mask = mask.unsqueeze(1).expand_as(attention_scores) attention_scores = attention_scores.masked_fill(1 - mask, -1e18) attention_probs = self.softmax(attention_scores) attention_probs = self.dropout(attention_probs) context = torch.matmul(attention_probs, value_) context = context.transpose(1, 2).reshape(batch_size, -1, self.head_count * self.dim_per_head) return context class TransformerEncoderBlock(nn.Module): def __init__(self, dim_proj, head_count, dim_FNN, act_fn, dropout_rate): super(TransformerEncoderBlock, self).__init__() self.dim_proj = dim_proj self.head_count = head_count self.dim_FNN = dim_FNN self.act_fn = act_fn self.dropout_rate = dropout_rate self._init_params() def _init_params(self): self.multi_head_attention = Multi_Head_Attention(self.dim_proj, self.head_count, self.dropout_rate) self.linear_proj_context = MLP(self.dim_proj, self.dim_proj) self.layer_norm_context = LayerNorm(self.dim_proj) self.position_wise_fnn = MLP(self.dim_proj, self.dim_FNN) self.linear_proj_intermediate = MLP(self.dim_FNN, self.dim_proj) self.layer_norm_intermediate = LayerNorm(self.dim_proj) self.dropout = nn.Dropout(self.dropout_rate) def forward(self, inp, mask): context = self.multi_head_attention(inp, inp, inp, mask = mask) context = self.linear_proj_context(context) context = self.dropout(context) res_inp = self.layer_norm_context(inp + context) rval = self.act_fn(self.position_wise_fnn(res_inp)) rval = self.linear_proj_intermediate(rval) rval = self.dropout(rval) res_rval = self.layer_norm_intermediate(rval + res_inp) return res_rval def get_activation(act_str): if act_str == "relu": return torch.nn.ReLU() elif act_str == "tanh": return torch.nn.Tanh() elif act_str == "sigmoid": return torch.nn.Sigmoid() class TransformerEncoder(nn.Module): def __init__(self, dim_proj, head_count, dim_FNN, act_str, num_layers, dropout_rate): super(TransformerEncoder, self).__init__() self.dim_proj = dim_proj self.head_count = head_count self.dim_FNN = dim_FNN self.act_fn = get_activation(act_str) self.num_layers = num_layers self.dropout_rate = dropout_rate self._init_params() def _init_params(self): self.transformer = torch.nn.ModuleList([TransformerEncoderBlock(self.dim_proj, self.head_count, self.dim_FNN, self.act_fn, self.dropout_rate) for _ in range(self.num_layers)]) def forward(self, inp, mask = None): rval = [] pre_output = inp for i in range(self.num_layers): cur_output = self.transformer[i](pre_output, mask) rval.append(cur_output) pre_output = cur_output return pre_output, rval def optimizer_wrapper(optimizer, lr, parameters): if optimizer == "adam": opt = torch.optim.Adam(params = parameters, lr = lr) return opt
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
190
yywang0514/dsnre
refs/heads/master
/model.py
import torch import torch.nn as nn from lib import * class Model(nn.Module): def __init__(self, fine_tune, pre_train_emb, part_point, size_vocab, dim_emb, dim_proj, head_count, dim_FNN, act_str, num_layer, num_class, dropout_rate): super(Model, self).__init__() self.fine_tune = fine_tune self.pre_train_emb = pre_train_emb self.part_point = part_point self.size_vocab = size_vocab self.dim_emb = dim_emb self.dim_proj = dim_proj self.head_count = head_count self.dim_FNN = dim_FNN self.act_str = act_str self.num_layer = num_layer self.num_class = num_class self.dropout_rate = dropout_rate self._init_params() def _init_params(self): self.wemb = Word_Emb(self.fine_tune, self.pre_train_emb, self.part_point, self.size_vocab, self.dim_emb) self.encoder = TransformerEncoder(self.dim_proj, self.head_count, self.dim_FNN, self.act_str, self.num_layer, self.dropout_rate) self.dense = MLP(self.dim_proj * 3, self.dim_proj) self.relu = torch.nn.ReLU() self.classifier = MLP(self.dim_proj, self.num_class) self.dropout = nn.Dropout(self.dropout_rate) def forward(self, inp, lengths, epos): mask, mask_l, mask_m, mask_r = self.pos2mask(epos, lengths) emb_inp = self.wemb(inp) emb_inp = self.dropout(emb_inp) proj_inp, _ = self.encoder(emb_inp, self.create_attention_mask(mask, mask)) proj_inp = proj_inp * mask[:, :, None] pool_inp_l = torch.sum(proj_inp * mask_l[:, :, None], dim = 1) / torch.sum(mask_l, dim = 1)[:, None] pool_inp_m = torch.sum(proj_inp * mask_m[:, :, None], dim = 1) / torch.sum(mask_m, dim = 1)[:, None] pool_inp_r = torch.sum(proj_inp * mask_r[:, :, None], dim = 1) / torch.sum(mask_r, dim = 1)[:, None] pool_inp = torch.cat([pool_inp_l, pool_inp_m, pool_inp_r], dim = 1) pool_inp = self.dropout(pool_inp) logit = self.relu(self.dense(pool_inp)) logit = self.dropout(logit) logit = self.classifier(logit) return logit def pos2mask(self, epos, lengths): mask = self.len2mask(lengths) nsample = lengths.size()[0] max_len = torch.max(lengths) idxes = torch.arange(0, max_len).cuda() mask_l = (idxes < epos[:, 0].unsqueeze(1)).float() mask_r = mask - (idxes < epos[:, 1].unsqueeze(1)).float() mask_m = torch.ones([nsample, max_len]).float().cuda() - mask_l - mask_r return mask, mask_l, mask_m, mask_r def len2mask(self, lengths): max_len = torch.max(lengths) idxes = torch.arange(0, max_len).cuda() mask = (idxes < lengths.unsqueeze(1)).float() return mask def create_attention_mask(self, query_mask, key_mask): return torch.matmul(query_mask[:, :, None], key_mask[:, None, :]).byte()
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
191
yywang0514/dsnre
refs/heads/master
/lib/__init__.py
from module import * from util import * from data_iterator import *
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
192
yywang0514/dsnre
refs/heads/master
/format.py
import sys import codecs class InstanceBag(object): def __init__(self, entities, rel, num, sentences, positions, entitiesPos): self.entities = entities self.rel = rel self.num = num self.sentences = sentences self.positions = positions self.entitiesPos = entitiesPos def bags_decompose(data_bags): bag_sent = [data_bag.sentences for data_bag in data_bags] bag_pos = [data_bag.positions for data_bag in data_bags] bag_num = [data_bag.num for data_bag in data_bags] bag_rel = [data_bag.rel for data_bag in data_bags] bag_epos = [data_bag.entitiesPos for data_bag in data_bags] return [bag_rel, bag_num, bag_sent, bag_pos, bag_epos] def datafold(filename): f = open(filename, 'r') data = [] while 1: line = f.readline() if not line: break entities = map(int, line.split(' ')) line = f.readline() bagLabel = line.split(' ') rel = map(int, bagLabel[0:-1]) num = int(bagLabel[-1]) positions = [] sentences = [] entitiesPos = [] for i in range(0, num): sent = f.readline().split(' ') positions.append(map(int, sent[0:2])) epos = map(int, sent[0:2]) epos.sort() entitiesPos.append(epos) sentences.append(map(int, sent[2:-1])) ins = InstanceBag(entities, rel, num, sentences, positions, entitiesPos) data += [ins] f.close() return data def change_word_idx(data): new_data = [] for inst in data: entities = inst.entities rel = inst.rel num = inst.num sentences = inst.sentences positions = inst.positions entitiesPos = inst.entitiesPos new_sentences = [] for sent in sentences: new_sent = [] for word in sent: if word == 160696: new_sent.append(1) elif word == 0: new_sent.append(0) else: new_sent.append(word + 1) new_sentences.append(new_sent) new_inst = InstanceBag(entities, rel, num, new_sentences, positions, entitiesPos) new_data.append(new_inst) return new_data def save_data(data, textfile): with codecs.open(textfile, "w", encoding = "utf8") as f: for inst in data: f.write("%s\n" %(" ".join(map(str, inst.entities)))) f.write("%s %s\n" %(" ".join(map(str, inst.rel)), str(inst.num))) for pos, sent in zip(inst.positions, inst.sentences): f.write("%s %s\n" %(" ".join(map(str, pos)), " ".join(map(str, sent)))) def main(argv): data = datafold(argv[0]) new_data = change_word_idx(data) save_data(new_data, argv[1]) if "__main__" == __name__: main(sys.argv[1:])
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
193
yywang0514/dsnre
refs/heads/master
/lib/util.py
import sys import re import numpy as np import cPickle as pkl import codecs import logging from data_iterator import * logger = logging.getLogger() extra_token = ["<PAD>", "<UNK>"] def display(msg): print(msg) logger.info(msg) def datafold(filename): f = open(filename, 'r') data = [] while 1: line = f.readline() if not line: break entities = map(int, line.split(' ')) line = f.readline() bagLabel = line.split(' ') rel = map(int, bagLabel[0:-1]) num = int(bagLabel[-1]) positions = [] sentences = [] entitiesPos = [] for i in range(0, num): sent = f.readline().split(' ') positions.append(map(int, sent[0:2])) epos = map(int, sent[0:2]) epos.sort() entitiesPos.append(epos) sentences.append(map(int, sent[2:-1])) ins = InstanceBag(entities, rel, num, sentences, positions, entitiesPos) data += [ins] f.close() return data def dicfold(textfile): vocab = [] with codecs.open(textfile, "r", encoding = "utf8") as f: for line in f: line = line.strip() if line: vocab.append(line) return vocab def build_word2idx(vocab, textFile): msg = "Building word2idx..." display(msg) pre_train_emb = [] part_point = len(vocab) if textFile: word2emb = load_emb(vocab, textFile) pre_train_vocab = [] un_pre_train_vocab = [] for word in vocab: if word in word2emb: pre_train_vocab.append(word) pre_train_emb.append(word2emb[word]) else: un_pre_train_vocab.append(word) part_point = len(un_pre_train_vocab) un_pre_train_vocab.extend(pre_train_vocab) vocab = un_pre_train_vocab word2idx = {} for v, k in enumerate(extra_token): word2idx[k] = v for v, k in enumerate(vocab): word2idx[k] = v + 2 part_point += 2 return word2idx, pre_train_emb, part_point def load_emb(vocab, textFile): msg = 'load emb from ' + textFile display(msg) vocab_set = set(vocab) word2emb = {} emb_p = re.compile(r" |\t") count = 0 with codecs.open(textFile, "r", "utf8") as filein: for line in filein: count += 1 array = emb_p.split(line.strip()) word = array[0] if word in vocab_set: vector = [float(array[i]) for i in range(1, len(array))] word2emb[word] = vector del vocab_set msg = "find %d words in %s" %(count, textFile) display(msg) msg = "Summary: %d words in the vocabulary and %d of them appear in the %s" %(len(vocab), len(word2emb), textFile) display(msg) return word2emb def positive_evaluation(predict_results): predict_y = predict_results[0] predict_y_prob = predict_results[1] y_given = predict_results[2] positive_num = 0 #find the number of positive examples for yi in range(y_given.shape[0]): if y_given[yi, 0] > 0: positive_num += 1 # if positive_num == 0: # positive_num = 1 # sort prob index = np.argsort(predict_y_prob)[::-1] all_pre = [0] all_rec = [0] p_n = 0 p_p = 0 n_p = 0 # print y_given.shape[0] for i in range(y_given.shape[0]): labels = y_given[index[i],:] # key given labels py = predict_y[index[i]] # answer if labels[0] == 0: # NA bag if py > 0: n_p += 1 else: # positive bag if py == 0: p_n += 1 else: flag = False for j in range(y_given.shape[1]): if j == -1: break if py == labels[j]: flag = True # true positive break if flag: p_p += 1 if (p_p+n_p) == 0: precision = 1 else: precision = float(p_p)/(p_p+n_p) recall = float(p_p)/positive_num if precision != all_pre[-1] or recall != all_rec[-1]: all_pre.append(precision) all_rec.append(recall) return [all_pre[1:], all_rec[1:]]
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
194
yywang0514/dsnre
refs/heads/master
/lib/data_iterator.py
import time import cPickle import numpy as np import torch class InstanceBag(object): def __init__(self, entities, rel, num, sentences, positions, entitiesPos): self.entities = entities self.rel = rel self.num = num self.sentences = sentences self.positions = positions self.entitiesPos = entitiesPos def bags_decompose(data_bags): bag_sent = [data_bag.sentences for data_bag in data_bags] bag_pos = [data_bag.positions for data_bag in data_bags] bag_num = [data_bag.num for data_bag in data_bags] bag_rel = [data_bag.rel for data_bag in data_bags] bag_epos = [data_bag.entitiesPos for data_bag in data_bags] return [bag_rel, bag_num, bag_sent, bag_pos, bag_epos] def select_instance(rels, nums, sents, poss, eposs, model): batch_x = [] batch_len = [] batch_epos = [] batch_y = [] for bagIndex, insNum in enumerate(nums): maxIns = 0 maxP = -1 if insNum > 1: for m in range(insNum): insX = sents[bagIndex][m] epos = eposs[bagIndex][m] sel_x, sel_len, sel_epos = prepare_data([insX], [epos]) results = model(sel_x, sel_len, sel_epos) tmpMax = results.max() if tmpMax > maxP: maxIns = m maxP=tmpMax batch_x.append(sents[bagIndex][maxIns]) batch_epos.append(eposs[bagIndex][maxIns]) batch_y.append(rels[bagIndex]) batch_x, batch_len, batch_epos = prepare_data(batch_x, batch_epos) batch_y = torch.LongTensor(np.array(batch_y).astype("int32")).cuda() return [batch_x, batch_len, batch_epos, batch_y] def prepare_data(sents, epos): lens = [len(sent) for sent in sents] n_samples = len(lens) max_len = max(lens) batch_x = np.zeros((n_samples, max_len)).astype("int32") for idx, s in enumerate(sents): batch_x[idx, :lens[idx]] = s batch_len = np.array(lens).astype("int32") batch_epos = np.array(epos).astype("int32") return torch.LongTensor(batch_x).cuda(), torch.LongTensor(batch_len).cuda(), torch.LongTensor(batch_epos).cuda()
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
210
rodelrod/pomodoro-report
refs/heads/master
/test_notebook_parser.py
#!/usr/bin/env python import unittest from notebook_parser import * import os import errno from datetime import datetime def mkdir_p(path): try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST: pass else: raise class TestParser(unittest.TestCase): """Tests the RedNotebook monthly files parser.""" def setUp(self): self.nb_path = '/tmp/test_pomodoro_report' mkdir_p(self.nb_path) f = open(os.path.join(self.nb_path, '2012-10.txt'), 'w') f.write( "21: {text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 org desk'}\n" "25:\n" " Cat3: {Some other shit: null}\n" " text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 org desk'\n" "27:\n" " Cat1: {Some shit: null}\n" " text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 report incongruencias sewan pdf/cdr\n" " 1/1 fix b''illing db and run\n" " 0/2 guide entretien prestataire\n" " 0/1 org desk'\n") f.close() self.p = Parser(self.nb_path) def test_get_nb_filename(self): self.assertEqual( self.p._get_nb_filename(datetime(2012, 10, 14)), os.path.join(self.nb_path,'2012-10.txt')) def test_parse_day_block(self): block = ['', '5', 'some stuff', '26', 'some other stuff'] expected = {5: 'some stuff', 26: 'some other stuff'} self.assertEqual(self.p._parse_day_block(block), expected) def test_get_day_with_categories(self): """Get day 27.""" expected = ( "\n" " Cat1: {Some shit: null}\n" " text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 report incongruencias sewan pdf/cdr\n" " 1/1 fix b''illing db and run\n" " 0/2 guide entretien prestataire\n" " 0/1 org desk'\n") actual = self.p._get_day(datetime(2012, 10, 27)) self.assertEqual(actual, expected) def test_get_day_without_categories(self): """Get day 21.""" expected = ( " {text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 org desk'}\n") actual = self.p._get_day(datetime(2012, 10, 21)) self.assertEqual(actual, expected) def test_get_inexistant_day(self): """Get 14/10.""" with self.assertRaises(EmptyDayException): self.p._get_day(datetime(2012, 10, 14)) def test_get_inexistant_month(self): """Get 14/04.""" with self.assertRaises(EmptyDayException): self.p._get_day(datetime(2012, 4, 14)) def test_get_text_with_categories(self): block = ( "\n" " Cat1: {Some shit: null}\n" " text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 report incongruencias sewan pdf/cdr\n" " 1/1 fix b''illing db and run\n" " 0/2 guide entretien prestataire\n" " 0/1 org desk'\n") expected = ( "1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 report incongruencias sewan pdf/cdr\n" " 1/1 fix b'illing db and run\n" " 0/2 guide entretien prestataire\n" " 0/1 org desk") self.assertEqual(self.p._get_text(block), expected) def test_get_text_without_categories(self): block = ( " {text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 org desk'}\n") expected = ( "1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 org desk") self.assertEqual(self.p._get_text(block), expected) def test_get_pomodoros(self): # TODO pass def tearDown(self): os.remove(os.path.join(self.nb_path, '2012-10.txt')) if __name__ == '__main__': unittest.main()
{"/test_notebook_parser.py": ["/notebook_parser.py"]}
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
97