The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: ReadTimeout
Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: fc55aa5e-5c53-4d8f-9791-e8d5e2625ca6)')
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
).get_module()
^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 632, in get_module
data_files = DataFilesDict.from_patterns(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 689, in from_patterns
else DataFilesList.from_patterns(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 592, in from_patterns
origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 506, in _get_origin_metadata
return thread_map(
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map
return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map
return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/tqdm/std.py", line 1169, in __iter__
for obj in iterable:
^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 619, in result_iterator
yield _result_or_cancel(fs.pop())
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 317, in _result_or_cancel
return fut.result(timeout)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 456, in result
return self.__get_result()
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 401, in __get_result
raise self._exception
File "/usr/local/lib/python3.12/concurrent/futures/thread.py", line 59, in run
result = self.fn(*self.args, **self.kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 485, in _get_single_origin_metadata
resolved_path = fs.resolve_path(data_file)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path
repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist
self._api.repo_info(
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2816, in repo_info
return method(
^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2673, in dataset_info
r = get_session().get(path, headers=headers, timeout=timeout, params=params)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 602, in get
return self.request("GET", url, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 589, in request
resp = self.send(prep, **send_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 703, in send
r = adapter.send(request, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 96, in send
return super().send(request, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/adapters.py", line 690, in send
raise ReadTimeout(e, request=request)
requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: fc55aa5e-5c53-4d8f-9791-e8d5e2625ca6)')Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
NeuraxonLife2-DeepTimeSeries: Artificial Life Neuraxon Neural Network Simulation Deep Time Series Dataset
Dataset Description
The NeuraxonLife 2.1 Deep Time Series Dataset is a comprehensive collection of simulation data from the Neuraxon Game of Life environment, where autonomous agents ("NxErs") evolve biologically-plausible neural networks under survival pressures. This dataset includes detailed time series, event logs, neural states, and behavioral data across thousands of simulation runs, enabling deep exploration of neural dynamics, plasticity, synchronization, and evolutionary processes. It is designed for validating the Neuraxon paper: 'A New Neural Growth & Computation Blueprint' by David Vivancos & Dr. Jose Sanchez for Qubic Science.
From a Neuraxon neural network (https://www.researchgate.net/publication/397331336_Neuraxon )
This version emphasizes temporal data with high-resolution time series (per-tick metrics) and event tables, capturing phenomena like multi-timescale synaptic plasticity, neuromodulation thresholds, dendritic spikes, phase coherence, and ITU (Intelligent Tissue Unit) evolution.
Dataset Summary
This dataset provides insights into emergent neural computation in an artificial life setting. Each NxEr features:
- Neuraxon neural networks with dendritic branches and multi-timescale weights (fast, slow, meta)
- Four neuromodulators (dopamine, serotonin, acetylcholine, norepinephrine) influencing trinary states
- Behavioral interactions (foraging, mating, exploration) in a grid world
- Evolutionary mechanisms via ITU hybridization
- High-frequency time series for network activity, branching ratios, cross-frequency coupling (CFC), autocorrelation windows (ACW), and more
Key highlights:
- 1983 simulation games
- Over 9 million time series rows
- Detailed events for plasticity, spontaneous firings, threshold modulations, etc.
- Mapped to paper sections for targeted validation (e.g., Section 1: Trinary Neuromodulation)
Supported Tasks
- Temporal Dynamics Analysis: Study oscillator frequencies, phase coherence, and CFC over time
- Plasticity Modeling: Analyze LTP/LTD rates, associativity, and weight evolution
- Neuromodulation Research: Examine threshold crossings and spatial variance of modulators
- Behavioral Correlation: Link neural states to agent actions via I/O patterns
- Evolutionary Fitness Prediction: Predict ITU fitness from temporal and energy metrics
- Criticality Assessment: Evaluate branching ratios and self-organized criticality
- Synchronization Studies: Investigate PAC (phase-amplitude coupling) and mean phase velocity
Dataset Structure
The dataset consists of 28 interconnected tables stored as Parquet files, plus metadata:
/
βββ games.parquet # Game metadata
βββ nxers.parquet # Agent data
βββ network_params.parquet # Network configurations
βββ neurons.parquet # Neuron states
βββ synapses.parquet # Synapse details
βββ foods.parquet # Food sources
βββ time_series.parquet # Core time series data
βββ plasticity_events.parquet # LTP/LTD events
βββ nxer_events.parquet # Agent lifecycle events
βββ io_patterns.parquet # Input/output patterns
βββ itu_fitness.parquet # ITU fitness history
βββ neuromodulator_events.parquet # Modulator threshold crossings
βββ phase_events.parquet # Phase synchronization events
βββ dendritic_events.parquet # Dendritic spikes
βββ homeostatic_events.parquet # Homeostatic adjustments
βββ weight_evolution_events.parquet# Weight changes
βββ world_grids.parquet # World terrain
βββ food_progress.parquet # Harvest progress
βββ nxer_visited_history.parquet # Exploration paths
βββ neuron_state_history.parquet # Neuron state deques
βββ synapse_neighbor_ids.parquet # Associativity neighbors
βββ silent_synapse_events.parquet # Silent synapse transitions
βββ spontaneous_events.parquet # Spontaneous firings
βββ autoreceptor_events.parquet # Autoreceptor modulations
βββ subthreshold_events.parquet # Near-threshold integrations
βββ threshold_modulation_events.parquet # Threshold breakdowns
βββ associativity_events.parquet # Cooperative LTP events
βββ hall_of_fame.parquet # Top performers
βββ manifest.json # Dataset metadata
βββ README.md # This file
Data Tables
Games Table (games.parquet)
Rows: 1983 | Columns: 53 | Size: 399 KB
Description: Main game metadata including summary statistics, neuromodulator peaks, and NxEr summaries. Key for paper validation across all sections.
Columns: (All types inferred: int/string/float) game_id, round_number, status, file_timestamp, source_file, created_at, step_tick, global_time_steps, births_count, deaths_count, game_index, world_size, world_grid_hash, log_level, logger_version, start_timestamp, end_timestamp, duration_seconds, total_ticks, total_neurons_created, total_neurons_died, total_synapses_created, total_synapses_pruned, total_plasticity_events, total_ltp_events, total_ltd_events, peak_network_activity, average_branching_ratio, branching_ratio_samples, peak_dopamine, peak_serotonin, peak_acetylcholine, peak_norepinephrine, total_silent_synapse_activations, total_spontaneous_events, total_dendritic_spikes, total_homeostatic_adjustments, peak_phase_coherence, total_threshold_modulations, total_associativity_events, total_metabotropic_activations, total_ionotropic_activations, peak_autocorrelation_window, mean_weight_change_rate, total_subthreshold_integrations, nxer_total_born, nxer_total_died, nxer_max_food_found, nxer_max_time_lived, nxer_max_mates, nxer_max_explored, num_nxers_in_file, num_foods_in_file.NxErs Table (nxers.parquet)
Rows: 40557 | Columns: 52 | Size: 19 MB
Description: Individual NxEr data including identity, position, state, sensory attributes, statistics, and I/O history. Essential for behavioral analysis.
Columns: game_id, round_number, nxer_id, name, color_r, color_g, color_b, is_male, clan_id, pos_x, pos_y, can_land, can_sea, food, alive, born_ts, died_ts, vision_range, smell_radius, heading, ticks_per_action, tick_accum, harvesting, mating_with, mating_end_tick, dopamine_boost_ticks, mating_intent_until_tick, mate_cooldown_until_tick, last_move_tick, last_input_0 to last_input_5, last_output_0 to last_output_4, parent_0, parent_1, stats_food_found, stats_food_taken, stats_explored, stats_time_lived_s, stats_mates_performed, stats_energy_efficiency, stats_temporal_sync_score, stats_fitness_score, visited_count, visited_json.Network Params Table (network_params.parquet)
Rows: 40557 | Columns: 82 | Size: 17 MB
Description: Complete network parameters for each NxEr including architecture, topology, neuron properties, synaptic time constants, plasticity rates, neuromodulation baselines, oscillator frequencies, and ITU config.
Columns: game_id, round_number, nxer_id, nxer_name, network_name, num_input_neurons, num_hidden_neurons, num_output_neurons, connection_probability, small_world_k, small_world_rewire_prob, preferential_attachment, membrane_time_constant, firing_threshold_excitatory, firing_threshold_inhibitory, adaptation_rate, spontaneous_firing_rate, neuron_health_decay, num_dendritic_branches, branch_threshold, plateau_decay, tau_fast, tau_slow, tau_meta, tau_ltp, tau_ltd, w_fast_init_min, w_fast_init_max, w_slow_init_min, w_slow_init_max, w_meta_init_min, w_meta_init_max, learning_rate, stdp_window, learning_rate_mod, plasticity_threshold, associativity_strength, synapse_integrity_threshold, synapse_formation_prob, synapse_death_prob, neuron_death_threshold, dopamine_baseline, dopamine_high_affinity_threshold, dopamine_low_affinity_threshold, serotonin_baseline, serotonin_high_affinity_threshold, serotonin_low_affinity_threshold, acetylcholine_baseline, acetylcholine_high_affinity_threshold, acetylcholine_low_affinity_threshold, norepinephrine_baseline, norepinephrine_high_affinity_threshold, norepinephrine_low_affinity_threshold, neuromod_decay_rate, diffusion_rate, oscillator_low_freq, oscillator_mid_freq, oscillator_high_freq, oscillator_strength, phase_coupling_strength, energy_baseline, firing_energy_cost, plasticity_energy_cost, metabolic_rate, recovery_rate, target_firing_rate, homeostatic_plasticity_rate, itu_circle_radius, evolution_interval, fitness_temporal_weight, fitness_energy_weight, fitness_pattern_weight, max_axonal_delay, dt, simulation_steps, activity_threshold, net_time, net_step_count, net_energy_consumed, net_branching_ratio, net_num_synapses, net_num_neurons.Neurons Table (neurons.parquet)
Rows: 1,499,241 | Columns: 33 | Size: 579 MB
Description: Individual neuron state snapshots including membrane potential, trinary state, adaptation, autoreceptor levels, energy, phase, and individualized parameters. Relevant to Sections 1, 2, 6.
Columns: game_id, round_number, nxer_id, neuron_id, neuron_type, membrane_potential, trinary_state, adaptation, autoreceptor, health, is_active, energy_level, phase, natural_frequency, intrinsic_timescale, fitness_score, circle_id, last_firing_time, membrane_time_constant, firing_threshold_excitatory, firing_threshold_inhibitory, adaptation_rate, spontaneous_firing_rate, neuron_health_decay, energy_baseline, firing_energy_cost, plasticity_energy_cost, metabolic_rate, recovery_rate, num_dendritic_branches, state_history_json, state_history_length, dendritic_branches_json.Synapses Table (synapses.parquet)
Rows: 1,179,169 | Columns: 28 | Size: 132 MB
Description: Synapse data including multi-timescale weights, traces, integrity, and time constants. Key for Sections 3 and 4.
Columns: game_id, round_number, nxer_id, pre_id, post_id, w_fast, w_slow, w_meta, is_silent, is_modulatory, integrity, axonal_delay, learning_rate_mod, synapse_type, potential_delta_w, tau_fast, tau_slow, tau_meta, tau_ltp, tau_ltd, learning_rate, plasticity_threshold, pre_trace, post_trace, pre_trace_ltd, associative_strength, neighbor_synapse_ids_json, neighbor_count.Foods Table (foods.parquet)
Rows: 59,490 | Columns: 11 | Size: 475 KB
Description: Food source state including position, remaining amount, and respawn status.
Columns: game_id, round_number, food_id, anchor_x, anchor_y, pos_x, pos_y, alive, respawn_at_tick, remaining, progress_json.Time Series Table (time_series.parquet)
Rows: 9,170,708 | Columns: 82 | Size: 1.56 GB
Description: Comprehensive time series data including network activity, branching ratio, neuromodulator levels, oscillator components, CFC metrics, trinary distributions, synaptic statistics, dendritic metrics, ACW estimates, and ITU fitness. Essential for all sections.
Columns: game_id, round_number, tick, timestamp, network_activity, branching_ratio, total_energy, average_energy, energy_efficiency, temporal_sync, dopamine, serotonin, acetylcholine, norepinephrine, oscillator_drive, oscillator_low, oscillator_mid, oscillator_high, phase_coherence, cfc_low_mid, cfc_mid_high, excitatory_fraction, inhibitory_fraction, neutral_fraction, autoreceptor_mean, autoreceptor_std, adaptation_mean, spontaneous_firing_count, driven_firing_count, silent_synapse_count, active_synapse_count, modulatory_synapse_count, mean_synapse_integrity, mean_plateau_potential, mean_branch_potential, dendritic_spike_count, mean_intrinsic_timescale, timescale_heterogeneity, membrane_potential_mean, membrane_potential_std, mean_w_fast, mean_w_slow, mean_w_meta, std_w_fast, std_w_slow, std_w_meta, mean_pre_trace, mean_post_trace, mean_pre_trace_ltd, std_pre_trace, mean_delta_w, ltp_rate, ltd_rate, mean_associativity_contribution, associativity_event_count, mean_learning_rate_mod, std_learning_rate_mod, mean_autocorrelation_window, std_autocorrelation_window, autocorrelation_coefficient_mean, mean_threshold_excitatory_effective, mean_threshold_inhibitory_effective, threshold_modulation_by_ach, threshold_modulation_by_autoreceptor, ionotropic_contribution_mean, metabotropic_contribution_mean, modulator_grid_entropy, modulator_grid_gradient_magnitude, dopamine_spatial_variance, serotonin_spatial_variance, silent_synapse_fraction, silent_to_active_transitions, active_to_silent_transitions, subthreshold_integration_count, near_threshold_fraction, pac_theta_gamma, pac_delta_theta, mean_phase_velocity, itu_mean_fitness, itu_fitness_variance, itu_mutation_events, itu_pruning_events.Plasticity Events Table (plasticity_events.parquet)
Rows: 517,662 | Columns: 8 | Size: 6.6 MB
Description: LTP and LTD events with timing and weight changes. Key for Section 4.
Columns: game_id, round_number, tick, event_type, pre_id, post_id, delta_w, details_json.NxEr Events Table (nxer_events.parquet)
Rows: 237,628 | Columns: 6 | Size: 1.1 MB
Description: NxEr lifecycle events including birth, death, mating, and stealing attempts.
Columns: game_id, round_number, tick, event_type, nxer_id, details_json.I/O Patterns Table (io_patterns.parquet)
Rows: 991,500 | Columns: 6 | Size: 3.6 MB
Description: Input/output patterns for each NxEr per tick. Useful for behavioral analysis.
Columns: game_id, round_number, tick, nxer_id, inputs_json, outputs_json.ITU Fitness Table (itu_fitness.parquet)
Rows: 138,367 | Columns: 5 | Size: 132 KB
Description: ITU fitness history over time. Key for Section 8.
Columns: game_id, round_number, tick, circle_id, fitness.Neuromodulator Events Table (neuromodulator_events.parquet)
Rows: 594,900 | Columns: 7 | Size: 4 MB
Description: Neuromodulator threshold crossing events. Key for Section 1.
Columns: game_id, round_number, tick, modulator, level, crossed_threshold, effect.Phase Events Table (phase_events.parquet)
Rows: 216,269 | Columns: 6 | Size: 2.7 MB
Description: Phase synchronization events including coherence measurements. Key for Section 7.
Columns: game_id, round_number, tick, event_type, phase_coherence, details_json.Dendritic Events Table (dendritic_events.parquet)
Rows: 418,097 | Columns: 8 | Size: 7.1 MB
Description: Dendritic spike events with branch potential and calcium influx. Related to Sections 1 and 5.
Columns: game_id, round_number, tick, neuron_id, branch_id, branch_potential, plateau_potential, ca_influx.Homeostatic Events Table (homeostatic_events.parquet)
Rows: 396,600 | Columns: 8 | Size: 6.5 MB
Description: Homeostatic plasticity threshold adjustments. Related to Section 4.
Columns: game_id, round_number, tick, neuron_id, old_threshold, new_threshold, activity_level, direction.Weight Evolution Events Table (weight_evolution_events.parquet)
Rows: 991,500 | Columns: 8 | Size: 29 MB
Description: Multi-timescale weight changes. Key for Section 3.
Columns: game_id, round_number, tick, pre_id, post_id, w_fast_delta, w_slow_delta, w_meta_delta.World Grids Table (world_grids.parquet)
Rows: 1983 | Columns: 4 | Size: 1.5 MB
Description: Full 2D world grid terrain data. Required for game resumption.
Columns: game_id, round_number, world_size, grid_json.Food Progress Table (food_progress.parquet)
Rows: 48,056 | Columns: 5 | Size: 132 KB
Description: Food harvest progress tracking. Required for game resumption.
Columns: game_id, round_number, food_id, nxer_id, harvest_progress.NxEr Visited History Table (nxer_visited_history.parquet)
Rows: 40,557 | Columns: 6 | Size: 17 MB
Description: Full coordinate history of cells visited by each NxEr. Required for game resumption.
Columns: game_id, round_number, nxer_id, nxer_name, visited_coords_json, visited_count.Neuron State History Table (neuron_state_history.parquet)
Rows: 1,499,241 | Columns: 7 | Size: 6.3 MB
Description: Last 50 states for each neuron. Required for intrinsic timescale calculation (Section 6).
Columns: game_id, round_number, nxer_id, neuron_id, neuron_type, state_history_json, history_length.Synapse Neighbor IDs Table (synapse_neighbor_ids.parquet)
Rows: 429,649 | Columns: 7 | Size: 3.7 MB
Description: Neighbor synapse IDs for associativity. Required for cooperative LTP (Section 4).
Columns: game_id, round_number, nxer_id, synapse_pre_id, synapse_post_id, neighbor_synapse_ids_json, neighbor_count.Silent Synapse Events Table (silent_synapse_events.parquet)
Rows: 19,342 | Columns: 9 | Size: 74 KB
Description: Events for synapses becoming active/silent.
Columns: game_id, round_number, tick, pre_id, post_id, event_type, previous_state, new_state, trigger.Spontaneous Events Table (spontaneous_events.parquet)
Rows: 321,977 | Columns: 7 | Size: 3.5 MB
Description: Spontaneous firing events. Detailed for Section 6.
Columns: game_id, round_number, tick, neuron_id, neuron_type, membrane_potential, spontaneous_rate.Autoreceptor Events Table (autoreceptor_events.parquet)
Rows: 396,600 | Columns: 8 | Size: 125 KB
Description: Autoreceptor modulation events. Detailed for Section 1.
Columns: game_id, round_number, tick, neuron_id, modulator_type, autoreceptor_level, release_inhibition, threshold_change.Subthreshold Events Table (subthreshold_events.parquet)
Rows: 594,900 | Columns: 8 | Size: 18 MB
Description: Near-threshold integrations. Detailed for Section 5.
Columns: game_id, round_number, tick, neuron_id, membrane_potential, threshold, distance_to_threshold, input_sum.Threshold Modulation Events Table (threshold_modulation_events.parquet)
Rows: 594,900 | Columns: 9 | Size: 10 MB
Description: Breakdown of Ach vs autoreceptor on thresholds.
Columns: game_id, round_number, tick, neuron_id, base_threshold, ach_contribution, autoreceptor_contribution, final_threshold, acetylcholine_level.Associativity Events Table (associativity_events.parquet)
Rows: 594,900 | Columns: 7 | Size: 112 KB
Description: Cooperative LTP events. For Section 4 validation.
Columns: game_id, round_number, tick, post_neuron_id, participating_synapses, cooperative_boost, total_weight_change.Hall of Fame Table (hall_of_fame.parquet)
Rows: 59,264 | Columns: 16 | Size: 849 KB
Description: Top performing NxErs by category.
Columns: game_id, round_number, category, rank, name, is_male, can_land, can_sea, stats_food_found, stats_food_taken, stats_explored, stats_time_lived_s, stats_mates_performed, stats_energy_efficiency, stats_temporal_sync_score, stats_fitness_score.
Relationships Between Tables
- Most tables join on
game_idandround_number. - Agent-level:
nxersβnetwork_params,neurons,synapses(vianxer_id). - Neuron-level:
neuronsβdendritic_events,homeostatic_events,spontaneous_events, etc. (vianeuron_id). - Synapse-level:
synapsesβplasticity_events,weight_evolution_events(viapre_id,post_id). - Time series:
time_seriesβ event tables (viatickfor correlation). - Behavioral:
nxersβio_patterns,nxer_events,nxer_visited_history. - World:
gamesβworld_grids,foods,food_progress.
Usage
Loading with Python (pandas)
import pandas as pd
# Load tables
games = pd.read_parquet('games.parquet')
time_series = pd.read_parquet('time_series.parquet')
# Example: Filter time series for a specific game
game_ts = time_series[time_series['game_id'] == 'some_game_id']
Loading with Hugging Face Datasets
from datasets import load_dataset
# Load from Hugging Face Hub (assuming uploaded as 'DavidVivancos/NeuraxonLife2-DeepTimeSeries')
dataset = load_dataset("DavidVivancos/NeuraxonLife2-DeepTimeSeries")
# Access tables
time_series = dataset['time_series']
Example Analyses
- Branching Ratio Over Time
import matplotlib.pyplot as plt
import pandas as pd
ts = pd.read_parquet('time_series.parquet')
game_ts = ts[ts['game_id'] == ts['game_id'].unique()[0]]
plt.plot(game_ts['tick'], game_ts['branching_ratio'])
plt.xlabel('Tick')
plt.ylabel('Branching Ratio')
plt.title('Network Criticality Over Time')
plt.show()
- Plasticity Event Analysis
events = pd.read_parquet('plasticity_events.parquet')
ltp_count = events[events['event_type'] == 'LTP'].shape[0]
ltd_count = events[events['event_type'] == 'LTD'].shape[0]
print(f"LTP/LTD Ratio: {ltp_count / ltd_count:.2f}")
- Fitness Correlation
from sklearn.linear_model import LinearRegression
import numpy as np
nxers = pd.read_parquet('nxers.parquet')
X = nxers[['stats_temporal_sync_score']].values
y = nxers['stats_fitness_score'].values
model = LinearRegression().fit(X, y)
print(f"RΒ²: {model.score(X, y):.3f}")
Dataset Creation
Generated from 1983 Neuraxon Game of Life JSON save files using converter version 1.0.0:
- Scanned and processed JSON files.
- Extracted hierarchical data into tables.
- Converted to Parquet with Snappy compression.
- Validated row counts and relationships.
Citation
@dataset{NeuraxonLife2.1-TimeSeries
title={Neuraxon Game of Life 2.1 Research Dataset Deep Time Series Exploration},
author={Vivancos, David and Sanchez, Jose},
year={2026},
publisher={Hugging Face},
url={https://huggingface.co/datasets/DavidVivancos/NeuraxonLife2.1-TimeSeries}
}
License
This dataset is released under the CC BY 4.0 license.
Additional Information
Authors
- David Vivancos / Artificiology Research https://artificiology.com/ - Qubic Science https://qubic.org/
- Dr. Jose Sanchez / UNIR - Qubic Science https://qubic.org/
Dataset Curators
- David Vivancos / Artificiology Research https://artificiology.com/ - Qubic Science https://qubic.org/
- Dr. Jose Sanchez / UNIR - Qubic Science https://qubic.org/
Version History
- v2.1.0 (January 4th 2026): Initial release with deep time series focus.
Contact
For questions or issues, please open a GitHub issue at https://github.com/DavidVivancos/Neuraxon or contact [[email protected]].
- Downloads last month
- 47