TurboWan2.1-T2V-14B-480P
This HuggingFace repo contains the
TurboWan2.1-T2V-14B-480Pmodel.For RTX 5090 or similar GPUs, please use the
TurboWan2.1-T2V-14B-480P-quant. For other GPUs with a bigger GPU memory than 40GB, we recommend usingTurboWan2.1-T2V-14B-480P.For usage instructions, please see https://github.com/thu-ml/TurboDiffusion
Paper: TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times
Citation
@article{zhang2025turbodiffusion,
title={TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times},
author={Zhang, Jintao and Zheng, Kaiwen and Jiang, Kai and Wang, Haoxu and Stoica, Ion and Gonzalez, Joseph E and Chen, Jianfei and Zhu, Jun},
journal={arXiv preprint arXiv:2512.16093},
year={2025}
}
@software{turbodiffusion2025,
title={TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times},
author={The TurboDiffusion Team},
url={https://github.com/thu-ml/TurboDiffusion},
year={2025}
}
@inproceedings{zhang2025sageattention,
title={SageAttention: Accurate 8-Bit Attention for Plug-and-play Inference Acceleration},
author={Zhang, Jintao and Wei, Jia and Zhang, Pengle and Zhu, Jun and Chen, Jianfei},
booktitle={International Conference on Learning Representations (ICLR)},
year={2025}
}
@article{zhang2025sla,
title={SLA: Beyond Sparsity in Diffusion Transformers via Fine-Tunable Sparse-Linear Attention},
author={Zhang, Jintao and Wang, Haoxu and Jiang, Kai and Yang, Shuo and Zheng, Kaiwen and Xi, Haocheng and Wang, Ziteng and Zhu, Hongzhou and Zhao, Min and Stoica, Ion and others},
journal={arXiv preprint arXiv:2509.24006},
year={2025}
}
@article{zheng2025rcm,
title={Large Scale Diffusion Distillation via Score-Regularized Continuous-Time Consistency},
author={Zheng, Kaiwen and Wang, Yuji and Ma, Qianli and Chen, Huayu and Zhang, Jintao and Balaji, Yogesh and Chen, Jianfei and Liu, Ming-Yu and Zhu, Jun and Zhang, Qinsheng},
journal={arXiv preprint arXiv:2510.08431},
year={2025}
}
@inproceedings{zhang2024sageattention2,
title={Sageattention2: Efficient attention with thorough outlier smoothing and per-thread int4 quantization},
author={Zhang, Jintao and Huang, Haofeng and Zhang, Pengle and Wei, Jia and Zhu, Jun and Chen, Jianfei},
booktitle={International Conference on Machine Learning (ICML)},
year={2025}
}
@article{zhang2025sageattention2++,
title={Sageattention2++: A more efficient implementation of sageattention2},
author={Zhang, Jintao and Xu, Xiaoming and Wei, Jia and Huang, Haofeng and Zhang, Pengle and Xiang, Chendong and Zhu, Jun and Chen, Jianfei},
journal={arXiv preprint arXiv:2505.21136},
year={2025}
}
@article{zhang2025sageattention3,
title={SageAttention3: Microscaling FP4 Attention for Inference and An Exploration of 8-Bit Training},
author={Zhang, Jintao and Wei, Jia and Zhang, Pengle and Xu, Xiaoming and Huang, Haofeng and Wang, Haoxu and Jiang, Kai and Zhu, Jun and Chen, Jianfei},
journal={arXiv preprint arXiv:2505.11594},
year={2025}
}
Model tree for TurboDiffusion/TurboWan2.1-T2V-14B-480P
Base model
Wan-AI/Wan2.1-T2V-14B