Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses JohanHeinsen/Old_News_Segmentation_SBERT_V0.1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 1 |
|
| 0 |
|
| Label | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|
| all | 0.9886 | 0.9915 | 0.9944 | 0.9888 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("En Stuepige, som forstaaer hvad hun bør, søger til Paaske; er at finde i Dronningens Tvergade Nr. 363 i Stuen.")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 8 | 32.4388 | 176 |
| Label | Training Sample Count |
|---|---|
| 0 | 194 |
| 1 | 419 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0011 | 1 | 0.2907 | - |
| 0.0543 | 50 | 0.1827 | - |
| 0.1087 | 100 | 0.0153 | - |
| 0.1630 | 150 | 0.0097 | - |
| 0.2174 | 200 | 0.0008 | - |
| 0.2717 | 250 | 0.0003 | - |
| 0.3261 | 300 | 0.0002 | - |
| 0.3804 | 350 | 0.0002 | - |
| 0.4348 | 400 | 0.0001 | - |
| 0.4891 | 450 | 0.0001 | - |
| 0.5435 | 500 | 0.0001 | - |
| 0.5978 | 550 | 0.0001 | - |
| 0.6522 | 600 | 0.0001 | - |
| 0.7065 | 650 | 0.0001 | - |
| 0.7609 | 700 | 0.0001 | - |
| 0.8152 | 750 | 0.0001 | - |
| 0.8696 | 800 | 0.0001 | - |
| 0.9239 | 850 | 0.0001 | - |
| 0.9783 | 900 | 0.0001 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
Base model
CALDISS-AAU/DA-BERT_Old_News_V1