WeatherFlow / diff2flow.py
JacobLinCool's picture
Upload folder using huggingface_hub
4c7009f verified
import argparse
import os
import yaml
import torch
import torch.nn as nn
import numpy as np
import torchvision
import utils
from models.unet import DiffusionUNet
import torchdiffeq
import math
from torchvision.transforms.functional import crop
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps):
def sigmoid(x):
return 1 / (np.exp(-x) + 1)
if beta_schedule == "quad":
betas = (
np.linspace(
beta_start**0.5,
beta_end**0.5,
num_diffusion_timesteps,
dtype=np.float64,
)
** 2
)
elif beta_schedule == "linear":
betas = np.linspace(
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
)
elif beta_schedule == "const":
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1
betas = 1.0 / np.linspace(
num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64
)
elif beta_schedule == "sigmoid":
betas = np.linspace(-6, 6, num_diffusion_timesteps)
betas = sigmoid(betas) * (beta_end - beta_start) + beta_start
else:
raise NotImplementedError(beta_schedule)
return betas
class VPDiffusionFlow:
def __init__(self, args, config):
self.args = args
self.flow_mode = getattr(args, "flow_mode", "vp")
self.config = config
self.device = config.device
# Load model
self.model = DiffusionUNet(config)
self.model.to(self.device)
# self.model = nn.DataParallel(self.model)
# Schedules
self.num_timesteps = config.diffusion.num_diffusion_timesteps
betas = get_beta_schedule(
beta_schedule=config.diffusion.beta_schedule,
beta_start=config.diffusion.beta_start,
beta_end=config.diffusion.beta_end,
num_diffusion_timesteps=self.num_timesteps,
)
self.betas = torch.from_numpy(betas).float().to(self.device)
# Precompute alphas for continuous time interpolation if needed
# But for VP-ODE, we need beta(t) continuously.
# Linear schedule: beta(t) = beta_start + t * (beta_end - beta_start)
# where t is [0, 1].
# In discrete case: betas are discrete steps.
# The config says "linear", betas = linspace(start, end, N).
# This approximates beta(t) = start + k * t.
self.beta_start = config.diffusion.beta_start
self.beta_end = config.diffusion.beta_end
# Calculate alpha_bar (cumulative product) equivalent for continuous time
# Discrete: alpha = 1 - beta. alpha_bar = cumprod(alpha).
# Continuous: alpha_bar(t) = exp(- integral_0^t beta(s) ds).
# if beta(s) = a + b*s, integral is a*t + 0.5*b*t^2.
# log_alpha_bar(t) = - (a*t + 0.5*b*t^2)?
# Let's verify against discrete steps.
# Discrete index i corresponds to t = i / N (approx).
# Actually discrete usually means t_discrete = 1..N.
# We will treat t in [0, 1].
# Precompute alpha_bar array for lookups if we trust discrete more
alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(alphas, dim=0)
def load_ckpt(self, load_path):
checkpoint = torch.load(load_path, map_location=self.device)
# Handle state dict
if "state_dict" in checkpoint:
state_dict = checkpoint["state_dict"]
else:
state_dict = checkpoint
# Strip module. prefix if present
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith("module."):
new_state_dict[k[7:]] = v
else:
new_state_dict[k] = v
state_dict = new_state_dict
self.model.load_state_dict(state_dict, strict=True)
print(f"=> loaded checkpoint '{load_path}'")
self.model.eval()
def get_beta_t(self, t):
# t is float scalar or tensor in [0, 1]
# Linear interpolation of beta
scalar_t = t.item() if isinstance(t, torch.Tensor) else t
# Clamp t to [0, 1]
scalar_t = max(0.0, min(1.0, scalar_t))
return self.beta_start + scalar_t * (self.beta_end - self.beta_start)
def get_alpha_bar_t(self, t):
# Calculate alpha_bar analytically for linear beta schedule
scalar_t = t.item() if isinstance(t, torch.Tensor) else t
scalar_t = max(0.0, min(1.0, scalar_t))
N = self.num_timesteps
# Integral of N * (b0 + (b1-b0)*s) ds from 0 to t
# = N * [ b0*t + 0.5*(b1-b0)*t^2 ]
b0 = self.beta_start
b1 = self.beta_end
integral = N * (b0 * scalar_t + 0.5 * (b1 - b0) * scalar_t**2)
return math.exp(-integral)
def overlapping_grid_indices(self, x_cond, output_size, r=None):
_, c, h, w = x_cond.shape
r = 16 if r is None else r
h_list = [i for i in range(0, h - output_size + 1, r)]
w_list = [i for i in range(0, w - output_size + 1, r)]
return h_list, w_list
def get_blending_window(self, patch_size):
# Hanning window (cosine-based, smooth goes to 0 at edges)
# Using periodic=False (symmetric window)
w = torch.hann_window(patch_size, periodic=False, device=self.device)
w2d = w.unsqueeze(0) * w.unsqueeze(1)
return w2d.view(1, 1, patch_size, patch_size)
def get_velocity(self, x, t, x_cond, patch_size=None, r_stride=16):
# If no patching needed (x fits in patch_size or patch_size None), do normal
if patch_size is None or (
x.shape[2] == patch_size and x.shape[3] == patch_size
):
return self._get_velocity_single(x, t, x_cond)
# Full image inference with patching
N = self.num_timesteps
t_idx = min(int(t * N), N - 1)
t_input_scalar = t_idx
# --- Padding to handle edges ---
# Pad by patch_size // 2 to ensure original edges are covered by window center
pad_size = patch_size // 2
x_padded = torch.nn.functional.pad(
x, (pad_size, pad_size, pad_size, pad_size), mode="reflect"
)
x_cond_padded = torch.nn.functional.pad(
x_cond, (pad_size, pad_size, pad_size, pad_size), mode="reflect"
)
# Grid setup on PADDED image
h_list, w_list = self.overlapping_grid_indices(x_padded, patch_size, r=r_stride)
corners = [(i, j) for i in h_list for j in w_list]
# Use Weighted Averaging (Hanning Window) to reduce grid artifacts
window = self.get_blending_window(patch_size)
# Mask for overlap averaging
x_grid_mask = torch.zeros_like(x_padded, device=self.device)
for hi, wi in corners:
x_grid_mask[:, :, hi : hi + patch_size, wi : wi + patch_size] += window
# Accumulate output (epsilon or velocity)
output_accum = torch.zeros_like(x_padded, device=self.device)
# Process in batches
batch_size = 64 # From restoration.py logic or config
# Prepare params if VP
if self.flow_mode == "vp":
beta_discrete = self.get_beta_t(t)
beta_cont = beta_discrete * N
ab = self.alphas_cumprod[t_idx]
# Loop over patches
# NOTE: drift depends on x (noisy) and x_cond (clean/cond).
for i in range(0, len(corners), batch_size):
batch_corners = corners[i : i + batch_size]
# Crop batch from PADDED input
x_batch = torch.cat(
[
crop(x_padded, hi, wi, patch_size, patch_size)
for (hi, wi) in batch_corners
],
dim=0,
)
cond_batch = torch.cat(
[
crop(x_cond_padded, hi, wi, patch_size, patch_size)
for (hi, wi) in batch_corners
],
dim=0,
)
t_batch = torch.tensor(
[t_input_scalar] * x_batch.size(0), device=self.device
)
with torch.no_grad():
model_output = self.model(
torch.cat([cond_batch, x_batch], dim=1), t_batch
)
# Scatter back with window weighting
# model_output: [B, C, P, P]
weighted_output = model_output * window
for idx, (hi, wi) in enumerate(batch_corners):
output_accum[0, :, hi : hi + patch_size, wi : wi + patch_size] += (
weighted_output[idx]
)
# Average
# Add epsilon to mask to avoid division by zero
model_output_full = torch.div(output_accum, x_grid_mask + 1e-8)
# --- Crop back to original size ---
# x_padded was padded by pad_size on all sides.
# Original is at pad_size : -pad_size
if pad_size > 0:
model_output_full = model_output_full[
:, :, pad_size:-pad_size, pad_size:-pad_size
]
# Compute v
if self.flow_mode == "reflow":
# In Reflow, model output is velocity
v = model_output_full
else:
# VP-ODE
epsilon = model_output_full
coeff1 = -0.5 * beta_cont
coeff2 = 0.5 * beta_cont / torch.sqrt(1 - ab)
v = coeff1 * x + coeff2 * epsilon
return v
def _get_velocity_single(self, x, t, x_cond):
# Single image / patch velocity
# x: [B, C, H, W]
# t: continuous time in [0, 1].
# x_cond: condition (clean image part or conditional input)
N = self.num_timesteps
t_idx = min(int(t * N), N - 1)
t_input = torch.tensor([t_idx] * x.size(0), device=self.device)
with torch.no_grad():
model_output = self.model(torch.cat([x_cond, x], dim=1), t_input)
if self.flow_mode == "reflow":
return model_output
else:
epsilon = model_output
beta_discrete = self.get_beta_t(t)
beta_cont = beta_discrete * N
ab = self.alphas_cumprod[t_idx]
coeff1 = -0.5 * beta_cont
coeff2 = 0.5 * beta_cont / torch.sqrt(1 - ab)
v = coeff1 * x + coeff2 * epsilon
return v
def ode_solve(
flow_model,
x_init,
x_cond,
steps=100,
method="dopri5",
patch_size=64,
atol=1e-4,
rtol=1e-4,
):
# Define the drift function wrapper for torchdiffeq
step = 0
print(f"ODE Solve: Method={method}, Steps={steps}, atol={atol}, rtol={rtol}")
def drift_func(t, x):
nonlocal step
step += 1
print(f"Step {step}, t={t.item():.6f}")
# Assuming batch size 1 for full image inference usually
return flow_model.get_velocity(x, t, x_cond, patch_size=patch_size)
t_eval = torch.linspace(1.0, 0.0, steps + 1, device=x_init.device)
out = torchdiffeq.odeint(
drift_func, x_init, t_eval, method=method, atol=atol, rtol=rtol
)
return out[-1]
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--resume", type=str, required=True)
parser.add_argument(
"--data_dir", type=str, default=None, help="Override data_dir in config"
)
parser.add_argument(
"--dataset", type=str, default=None, help="Override dataset name"
)
parser.add_argument("--steps", type=int, default=100)
parser.add_argument("--output", type=str, default="results/diff2flow")
parser.add_argument("--seed", type=int, default=61)
parser.add_argument(
"--patch_size", type=int, default=64, help="Patch size for model"
)
parser.add_argument(
"--method", type=str, default="dopri5", help="ODE solver method"
)
parser.add_argument(
"--atol", type=float, default=1e-4, help="Absolute tolerance for ODE solver"
)
parser.add_argument(
"--rtol", type=float, default=1e-4, help="Relative tolerance for ODE solver"
)
parser.add_argument(
"--flow_mode",
type=str,
default="vp",
choices=["vp", "reflow"],
help="Flow mode: vp (default) or reflow",
)
args = parser.parse_args()
# ... (Config loading)
with open(os.path.join("configs", args.config), "r") as f:
config_dict = yaml.safe_load(f)
config = dict2namespace(config_dict)
if args.data_dir:
config.data.data_dir = args.data_dir
if args.dataset:
config.data.dataset = args.dataset
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
config.device = device
torch.manual_seed(args.seed)
np.random.seed(args.seed)
print("Initializing VPDiffusionFlow...")
flow = VPDiffusionFlow(args, config)
flow.load_ckpt(args.resume)
os.makedirs(args.output, exist_ok=True)
import datasets
print(f"Loading dataset {config.data.dataset}...")
DATASET = datasets.__dict__[config.data.dataset](config)
# Use parse_patches=False to get full images
_, val_loader = DATASET.get_loaders(
parse_patches=False,
validation=config.data.dataset if args.dataset else "raindrop",
)
for i, (x_batch, img_id) in enumerate(val_loader):
print(f"Processing image {img_id}...")
x_batch = x_batch.to(device)
# x_batch shape [1, 6, H, W] usually for full image due to concat in dataset?
x_cond = x_batch[:, :3, :, :] # Input
# x_target = x_batch[:, 3:, :, :] # GT
x_cond = utils.sampling.data_transform(x_cond)
B, C, H, W = x_cond.shape
x_init = torch.randn(B, 3, H, W, device=device)
print(f"Starting flow matching inference for image {img_id}, shape {H}x{W}...")
x_pred = ode_solve(
flow,
x_init,
x_cond,
steps=args.steps,
patch_size=args.patch_size,
method=args.method,
atol=args.atol,
rtol=args.rtol,
)
x_pred = utils.sampling.inverse_data_transform(x_pred)
x_cond_img = utils.sampling.inverse_data_transform(x_cond)
# Save
if isinstance(img_id, tuple) or isinstance(img_id, list):
idx = img_id[0]
else:
idx = img_id
utils.logging.save_image(
x_cond_img[0], os.path.join(args.output, f"{idx}_input.png")
)
utils.logging.save_image(
x_pred[0], os.path.join(args.output, f"{idx}_flow.png")
)
print("Done.")
if __name__ == "__main__":
main()