File size: 15,091 Bytes
2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 4c7009f 2368e93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import argparse
import os
import yaml
import torch
import torch.nn as nn
import numpy as np
import torchvision
import utils
from models.unet import DiffusionUNet
import torchdiffeq
import math
from torchvision.transforms.functional import crop
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps):
def sigmoid(x):
return 1 / (np.exp(-x) + 1)
if beta_schedule == "quad":
betas = (
np.linspace(
beta_start**0.5,
beta_end**0.5,
num_diffusion_timesteps,
dtype=np.float64,
)
** 2
)
elif beta_schedule == "linear":
betas = np.linspace(
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
)
elif beta_schedule == "const":
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1
betas = 1.0 / np.linspace(
num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64
)
elif beta_schedule == "sigmoid":
betas = np.linspace(-6, 6, num_diffusion_timesteps)
betas = sigmoid(betas) * (beta_end - beta_start) + beta_start
else:
raise NotImplementedError(beta_schedule)
return betas
class VPDiffusionFlow:
def __init__(self, args, config):
self.args = args
self.flow_mode = getattr(args, "flow_mode", "vp")
self.config = config
self.device = config.device
# Load model
self.model = DiffusionUNet(config)
self.model.to(self.device)
# self.model = nn.DataParallel(self.model)
# Schedules
self.num_timesteps = config.diffusion.num_diffusion_timesteps
betas = get_beta_schedule(
beta_schedule=config.diffusion.beta_schedule,
beta_start=config.diffusion.beta_start,
beta_end=config.diffusion.beta_end,
num_diffusion_timesteps=self.num_timesteps,
)
self.betas = torch.from_numpy(betas).float().to(self.device)
# Precompute alphas for continuous time interpolation if needed
# But for VP-ODE, we need beta(t) continuously.
# Linear schedule: beta(t) = beta_start + t * (beta_end - beta_start)
# where t is [0, 1].
# In discrete case: betas are discrete steps.
# The config says "linear", betas = linspace(start, end, N).
# This approximates beta(t) = start + k * t.
self.beta_start = config.diffusion.beta_start
self.beta_end = config.diffusion.beta_end
# Calculate alpha_bar (cumulative product) equivalent for continuous time
# Discrete: alpha = 1 - beta. alpha_bar = cumprod(alpha).
# Continuous: alpha_bar(t) = exp(- integral_0^t beta(s) ds).
# if beta(s) = a + b*s, integral is a*t + 0.5*b*t^2.
# log_alpha_bar(t) = - (a*t + 0.5*b*t^2)?
# Let's verify against discrete steps.
# Discrete index i corresponds to t = i / N (approx).
# Actually discrete usually means t_discrete = 1..N.
# We will treat t in [0, 1].
# Precompute alpha_bar array for lookups if we trust discrete more
alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(alphas, dim=0)
def load_ckpt(self, load_path):
checkpoint = torch.load(load_path, map_location=self.device)
# Handle state dict
if "state_dict" in checkpoint:
state_dict = checkpoint["state_dict"]
else:
state_dict = checkpoint
# Strip module. prefix if present
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith("module."):
new_state_dict[k[7:]] = v
else:
new_state_dict[k] = v
state_dict = new_state_dict
self.model.load_state_dict(state_dict, strict=True)
print(f"=> loaded checkpoint '{load_path}'")
self.model.eval()
def get_beta_t(self, t):
# t is float scalar or tensor in [0, 1]
# Linear interpolation of beta
scalar_t = t.item() if isinstance(t, torch.Tensor) else t
# Clamp t to [0, 1]
scalar_t = max(0.0, min(1.0, scalar_t))
return self.beta_start + scalar_t * (self.beta_end - self.beta_start)
def get_alpha_bar_t(self, t):
# Calculate alpha_bar analytically for linear beta schedule
scalar_t = t.item() if isinstance(t, torch.Tensor) else t
scalar_t = max(0.0, min(1.0, scalar_t))
N = self.num_timesteps
# Integral of N * (b0 + (b1-b0)*s) ds from 0 to t
# = N * [ b0*t + 0.5*(b1-b0)*t^2 ]
b0 = self.beta_start
b1 = self.beta_end
integral = N * (b0 * scalar_t + 0.5 * (b1 - b0) * scalar_t**2)
return math.exp(-integral)
def overlapping_grid_indices(self, x_cond, output_size, r=None):
_, c, h, w = x_cond.shape
r = 16 if r is None else r
h_list = [i for i in range(0, h - output_size + 1, r)]
w_list = [i for i in range(0, w - output_size + 1, r)]
return h_list, w_list
def get_blending_window(self, patch_size):
# Hanning window (cosine-based, smooth goes to 0 at edges)
# Using periodic=False (symmetric window)
w = torch.hann_window(patch_size, periodic=False, device=self.device)
w2d = w.unsqueeze(0) * w.unsqueeze(1)
return w2d.view(1, 1, patch_size, patch_size)
def get_velocity(self, x, t, x_cond, patch_size=None, r_stride=16):
# If no patching needed (x fits in patch_size or patch_size None), do normal
if patch_size is None or (
x.shape[2] == patch_size and x.shape[3] == patch_size
):
return self._get_velocity_single(x, t, x_cond)
# Full image inference with patching
N = self.num_timesteps
t_idx = min(int(t * N), N - 1)
t_input_scalar = t_idx
# --- Padding to handle edges ---
# Pad by patch_size // 2 to ensure original edges are covered by window center
pad_size = patch_size // 2
x_padded = torch.nn.functional.pad(
x, (pad_size, pad_size, pad_size, pad_size), mode="reflect"
)
x_cond_padded = torch.nn.functional.pad(
x_cond, (pad_size, pad_size, pad_size, pad_size), mode="reflect"
)
# Grid setup on PADDED image
h_list, w_list = self.overlapping_grid_indices(x_padded, patch_size, r=r_stride)
corners = [(i, j) for i in h_list for j in w_list]
# Use Weighted Averaging (Hanning Window) to reduce grid artifacts
window = self.get_blending_window(patch_size)
# Mask for overlap averaging
x_grid_mask = torch.zeros_like(x_padded, device=self.device)
for hi, wi in corners:
x_grid_mask[:, :, hi : hi + patch_size, wi : wi + patch_size] += window
# Accumulate output (epsilon or velocity)
output_accum = torch.zeros_like(x_padded, device=self.device)
# Process in batches
batch_size = 64 # From restoration.py logic or config
# Prepare params if VP
if self.flow_mode == "vp":
beta_discrete = self.get_beta_t(t)
beta_cont = beta_discrete * N
ab = self.alphas_cumprod[t_idx]
# Loop over patches
# NOTE: drift depends on x (noisy) and x_cond (clean/cond).
for i in range(0, len(corners), batch_size):
batch_corners = corners[i : i + batch_size]
# Crop batch from PADDED input
x_batch = torch.cat(
[
crop(x_padded, hi, wi, patch_size, patch_size)
for (hi, wi) in batch_corners
],
dim=0,
)
cond_batch = torch.cat(
[
crop(x_cond_padded, hi, wi, patch_size, patch_size)
for (hi, wi) in batch_corners
],
dim=0,
)
t_batch = torch.tensor(
[t_input_scalar] * x_batch.size(0), device=self.device
)
with torch.no_grad():
model_output = self.model(
torch.cat([cond_batch, x_batch], dim=1), t_batch
)
# Scatter back with window weighting
# model_output: [B, C, P, P]
weighted_output = model_output * window
for idx, (hi, wi) in enumerate(batch_corners):
output_accum[0, :, hi : hi + patch_size, wi : wi + patch_size] += (
weighted_output[idx]
)
# Average
# Add epsilon to mask to avoid division by zero
model_output_full = torch.div(output_accum, x_grid_mask + 1e-8)
# --- Crop back to original size ---
# x_padded was padded by pad_size on all sides.
# Original is at pad_size : -pad_size
if pad_size > 0:
model_output_full = model_output_full[
:, :, pad_size:-pad_size, pad_size:-pad_size
]
# Compute v
if self.flow_mode == "reflow":
# In Reflow, model output is velocity
v = model_output_full
else:
# VP-ODE
epsilon = model_output_full
coeff1 = -0.5 * beta_cont
coeff2 = 0.5 * beta_cont / torch.sqrt(1 - ab)
v = coeff1 * x + coeff2 * epsilon
return v
def _get_velocity_single(self, x, t, x_cond):
# Single image / patch velocity
# x: [B, C, H, W]
# t: continuous time in [0, 1].
# x_cond: condition (clean image part or conditional input)
N = self.num_timesteps
t_idx = min(int(t * N), N - 1)
t_input = torch.tensor([t_idx] * x.size(0), device=self.device)
with torch.no_grad():
model_output = self.model(torch.cat([x_cond, x], dim=1), t_input)
if self.flow_mode == "reflow":
return model_output
else:
epsilon = model_output
beta_discrete = self.get_beta_t(t)
beta_cont = beta_discrete * N
ab = self.alphas_cumprod[t_idx]
coeff1 = -0.5 * beta_cont
coeff2 = 0.5 * beta_cont / torch.sqrt(1 - ab)
v = coeff1 * x + coeff2 * epsilon
return v
def ode_solve(
flow_model,
x_init,
x_cond,
steps=100,
method="dopri5",
patch_size=64,
atol=1e-4,
rtol=1e-4,
):
# Define the drift function wrapper for torchdiffeq
step = 0
print(f"ODE Solve: Method={method}, Steps={steps}, atol={atol}, rtol={rtol}")
def drift_func(t, x):
nonlocal step
step += 1
print(f"Step {step}, t={t.item():.6f}")
# Assuming batch size 1 for full image inference usually
return flow_model.get_velocity(x, t, x_cond, patch_size=patch_size)
t_eval = torch.linspace(1.0, 0.0, steps + 1, device=x_init.device)
out = torchdiffeq.odeint(
drift_func, x_init, t_eval, method=method, atol=atol, rtol=rtol
)
return out[-1]
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--resume", type=str, required=True)
parser.add_argument(
"--data_dir", type=str, default=None, help="Override data_dir in config"
)
parser.add_argument(
"--dataset", type=str, default=None, help="Override dataset name"
)
parser.add_argument("--steps", type=int, default=100)
parser.add_argument("--output", type=str, default="results/diff2flow")
parser.add_argument("--seed", type=int, default=61)
parser.add_argument(
"--patch_size", type=int, default=64, help="Patch size for model"
)
parser.add_argument(
"--method", type=str, default="dopri5", help="ODE solver method"
)
parser.add_argument(
"--atol", type=float, default=1e-4, help="Absolute tolerance for ODE solver"
)
parser.add_argument(
"--rtol", type=float, default=1e-4, help="Relative tolerance for ODE solver"
)
parser.add_argument(
"--flow_mode",
type=str,
default="vp",
choices=["vp", "reflow"],
help="Flow mode: vp (default) or reflow",
)
args = parser.parse_args()
# ... (Config loading)
with open(os.path.join("configs", args.config), "r") as f:
config_dict = yaml.safe_load(f)
config = dict2namespace(config_dict)
if args.data_dir:
config.data.data_dir = args.data_dir
if args.dataset:
config.data.dataset = args.dataset
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
config.device = device
torch.manual_seed(args.seed)
np.random.seed(args.seed)
print("Initializing VPDiffusionFlow...")
flow = VPDiffusionFlow(args, config)
flow.load_ckpt(args.resume)
os.makedirs(args.output, exist_ok=True)
import datasets
print(f"Loading dataset {config.data.dataset}...")
DATASET = datasets.__dict__[config.data.dataset](config)
# Use parse_patches=False to get full images
_, val_loader = DATASET.get_loaders(
parse_patches=False,
validation=config.data.dataset if args.dataset else "raindrop",
)
for i, (x_batch, img_id) in enumerate(val_loader):
print(f"Processing image {img_id}...")
x_batch = x_batch.to(device)
# x_batch shape [1, 6, H, W] usually for full image due to concat in dataset?
x_cond = x_batch[:, :3, :, :] # Input
# x_target = x_batch[:, 3:, :, :] # GT
x_cond = utils.sampling.data_transform(x_cond)
B, C, H, W = x_cond.shape
x_init = torch.randn(B, 3, H, W, device=device)
print(f"Starting flow matching inference for image {img_id}, shape {H}x{W}...")
x_pred = ode_solve(
flow,
x_init,
x_cond,
steps=args.steps,
patch_size=args.patch_size,
method=args.method,
atol=args.atol,
rtol=args.rtol,
)
x_pred = utils.sampling.inverse_data_transform(x_pred)
x_cond_img = utils.sampling.inverse_data_transform(x_cond)
# Save
if isinstance(img_id, tuple) or isinstance(img_id, list):
idx = img_id[0]
else:
idx = img_id
utils.logging.save_image(
x_cond_img[0], os.path.join(args.output, f"{idx}_input.png")
)
utils.logging.save_image(
x_pred[0], os.path.join(args.output, f"{idx}_flow.png")
)
print("Done.")
if __name__ == "__main__":
main()
|