e3-sft

This model is a fine-tuned version of CMU-AIRe/e3-1.7B on the hardmath_sft_2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6364

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_min_lr
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss
0.7025 4.0 16 0.7606
0.9105 8.0 32 0.7590
0.8193 12.0 48 0.7550
0.6939 16.0 64 0.7460
0.6623 20.0 80 0.7418
0.8112 24.0 96 0.7389
0.708 28.0 112 0.7154
0.6471 32.0 128 0.7097
0.9019 36.0 144 0.7050
0.7328 40.0 160 0.7007
0.8191 44.0 176 0.6938
0.6327 48.0 192 0.6752
0.6903 52.0 208 0.6604
0.7467 56.0 224 0.6533
0.7364 60.0 240 0.6489
0.7706 64.0 256 0.6460
0.7777 68.0 272 0.6441
0.6391 72.0 288 0.6419
0.648 76.0 304 0.6408
0.704 80.0 320 0.6398
0.6316 84.0 336 0.6387
0.6232 88.0 352 0.6380
0.6545 92.0 368 0.6372
0.7126 96.0 384 0.6364
0.6465 100.0 400 0.6364

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.5.1
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
6
Safetensors
Model size
2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for 3N3G/e3-sft

Base model

CMU-AIRe/e3-1.7B
Finetuned
(1)
this model

Evaluation results