Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,626 Bytes
ead1d74 fdd9313 ead1d74 72c4879 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 bab4acd ead1d74 bab4acd ead1d74 fdd9313 c9768e8 bab4acd ead1d74 c9768e8 ead1d74 c9768e8 ead1d74 91d33af ead1d74 48342bd ead1d74 bab4acd ead1d74 5b603ac ead1d74 fdd9313 9426a65 c9768e8 5b603ac c9768e8 ead1d74 c9768e8 ead1d74 bab4acd 9426a65 bab4acd ead1d74 ee4b2e1 fdd9313 ee4b2e1 fdd9313 ee4b2e1 fdd9313 ead1d74 bbc3deb bab4acd 9426a65 ead1d74 ee4b2e1 fdd9313 bab4acd 9426a65 72c4879 4180f8a bab4acd 5b603ac ead1d74 bab4acd ead1d74 8b3a614 ead1d74 60a5733 ead1d74 8b3a614 e603549 ead1d74 8b3a614 bab4acd 3254c73 9426a65 bab4acd ead1d74 5b603ac ead1d74 9426a65 ead1d74 0eab3b1 bab4acd 9426a65 ead1d74 bab4acd 2d1e312 bab4acd 0eab3b1 c9768e8 9426a65 0eab3b1 ead1d74 d0a536f 53057e8 10b55e9 7cd5afe 7642031 293b219 9952ae8 c341e4e 4c1d8f2 4552f8d ead1d74 bab4acd ead1d74 78d77e6 72c4879 ead1d74 bab4acd ead1d74 0183439 d0a536f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import os
import gc
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.orange_red = colors.Color(
name="orange_red",
c50="#FFF0E5",
c100="#FFE0CC",
c200="#FFC299",
c300="#FFA366",
c400="#FF8533",
c500="#FF4500",
c600="#E63E00",
c700="#CC3700",
c800="#B33000",
c900="#992900",
c950="#802200",
)
class OrangeRedTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.orange_red,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
orange_red_theme = OrangeRedTheme()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16
from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
print("Loading Qwen Image Edit Pipeline...")
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=QwenImageTransformer2DModel.from_pretrained(
"linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'
),
torch_dtype=dtype
).to(device)
try:
pipe.enable_vae_tiling()
print("VAE Tiling enabled.")
except Exception as e:
print(f"Warning: Could not enable VAE tiling: {e}")
print("Loading and Fusing Lightning LoRA (Base Optimization)...")
pipe.load_lora_weights("lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors",
adapter_name="lightning")
pipe.fuse_lora(adapter_names=["lightning"], lora_scale=1.0)
try:
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
print("Flash Attention 3 Processor set successfully.")
except Exception as e:
print(f"Could not set FA3 processor: {e}. using default attention.")
ADAPTER_SPECS = {
"Texture Edit": {
"repo": "tarn59/apply_texture_qwen_image_edit_2509",
"weights": "apply_texture_v2_qwen_image_edit_2509.safetensors",
"adapter_name": "texture",
"default_prompt": "Apply texture to object."
},
"Fuse-Objects": {
"repo": "ostris/qwen_image_edit_inpainting",
"weights": "qwen_image_edit_inpainting.safetensors",
"adapter_name": "fusion",
"default_prompt": "Fuse object into background."
},
"Cloth-Design-Fuse": {
"repo": "ostris/qwen_image_edit_2509_shirt_design",
"weights": "qwen_image_edit_2509_shirt_design.safetensors",
"adapter_name": "shirt_design",
"default_prompt": "Put this design on their shirt."
},
"Super-Fusion": {
"repo": "dx8152/Qwen-Image-Edit-2509-Fusion",
"weights": "溶图.safetensors",
"adapter_name": "fusion-x",
"default_prompt": "Blend the product into the background, correct its perspective and lighting."
},
"Material-Transfer": {
"repo": "oumoumad/Qwen-Edit-2509-Material-transfer",
"weights": "material-transfer_000004769.safetensors",
"adapter_name": "material-transfer",
"default_prompt": "Change materials of image1 to match the reference in image2."
},
"Light-Migration": {
"repo": "dx8152/Qwen-Edit-2509-Light-Migration",
"weights": "参考色调.safetensors",
"adapter_name": "light-migration",
"default_prompt": "Relight Image 1 based on the lighting and color tone of Image 2."
}
}
LOADED_ADAPTERS = set()
MAX_SEED = np.iinfo(np.int32).max
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
@spaces.GPU
def infer(
image_1,
image_2,
prompt,
lora_adapter,
seed,
randomize_seed,
guidance_scale,
steps,
progress=gr.Progress(track_tqdm=True)
):
gc.collect()
torch.cuda.empty_cache()
if image_1 is None or image_2 is None:
raise gr.Error("Please upload both images for Fusion/Texture/FaceSwap tasks.")
# 1. Get Adapter Spec
spec = ADAPTER_SPECS.get(lora_adapter)
if not spec:
raise gr.Error(f"Invalid Adapter Selection: {lora_adapter}")
adapter_name = spec["adapter_name"]
# 2. Dynamic Loading Logic
if adapter_name not in LOADED_ADAPTERS:
print(f"--- Downloading and Loading Adapter: {lora_adapter} ---")
try:
pipe.load_lora_weights(
spec["repo"],
weight_name=spec["weights"],
adapter_name=adapter_name
)
LOADED_ADAPTERS.add(adapter_name)
except Exception as e:
raise gr.Error(f"Failed to load adapter {lora_adapter}: {e}")
else:
print(f"--- Adapter {lora_adapter} already loaded. Activating. ---")
# 3. Handle Default Prompts
if not prompt:
prompt = spec["default_prompt"]
# 4. Activate specific adapter
# Note: We do not fuse these task adapters, we just activate them.
# Lightning is already fused.
pipe.set_adapters([adapter_name], adapter_weights=[1.0])
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"
img1_pil = image_1.convert("RGB")
img2_pil = image_2.convert("RGB")
width, height = update_dimensions_on_upload(img1_pil)
try:
with torch.inference_mode():
result = pipe(
image=[img1_pil, img2_pil],
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=steps,
generator=generator,
true_cfg_scale=guidance_scale,
).images[0]
return result, seed
except Exception as e:
raise e
finally:
gc.collect()
torch.cuda.empty_cache()
@spaces.GPU
def infer_example(image_1, image_2, prompt, lora_adapter):
if image_1 is None or image_2 is None:
return None, 0
# Simple wrapper call
result, seed = infer(
image_1.convert("RGB"),
image_2.convert("RGB"),
prompt,
lora_adapter,
0,
True,
1.0,
4
)
return result, seed
css="""
#col-container {
margin: 0 auto;
max-width: 1100px;
}
#main-title h1 {font-size: 2.1em !important;}
"""
with gr.Blocks(delete_cache=(300, 300)) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **Qwen-Image-Edit-2509-LoRAs-Fast-Fusion**", elem_id="main-title")
gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2509) adapters for the [Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) model.")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Row():
image_1 = gr.Image(label="Base Image", type="pil", height=290)
image_2 = gr.Image(label="Reference Image", type="pil", height=290)
prompt = gr.Text(
label="Edit Prompt",
show_label=True,
placeholder="e.g., Apply wood texture to the mug...",
)
run_button = gr.Button("Edit Image", variant="primary")
with gr.Accordion("Advanced Settings", open=False, visible=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
with gr.Column(scale=1):
output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350)
with gr.Row():
lora_adapter = gr.Dropdown(
label="Choose Editing Style",
choices=list(ADAPTER_SPECS.keys()),
value="Texture Edit",
)
gr.Examples(
examples=[
["examples/M1.jpg", "examples/M2.jpg", "Refer to the color tone, remove the original lighting from Image 1, and relight Image 1 based on the lighting and color tone of Image 2.", "Light-Migration"],
["examples/Cloth2.jpg", "examples/Design2.png", "Put this design on their shirt.", "Cloth-Design-Fuse"],
["examples/Cup1.png", "examples/Wood1.png", "Apply wood texture to mug.", "Texture Edit"],
["examples/Cloth1.jpg", "examples/Design1.png", "Put this design on their shirt.", "Cloth-Design-Fuse"],
["examples/F3.jpg", "examples/F4.jpg", "Replace her glasses with the new glasses from image 1.", "Super-Fusion"],
["examples/Chair.jpg", "examples/Material.jpg", "Change materials of image1 to match the reference in image2.", "Material-Transfer"],
["examples/F1.jpg", "examples/F2.jpg", "Put the small bottle on the table.", "Super-Fusion"],
["examples/Mug1.jpg", "examples/Texture1.jpg", "Apply the design from image 2 to the mug.", "Texture Edit"],
["examples/Cat1.jpg", "examples/Glass1.webp", "A cat wearing glasses in image 2.", "Fuse-Objects"],
],
inputs=[image_1, image_2, prompt, lora_adapter],
outputs=[output_image, seed],
fn=infer_example,
cache_examples=False,
label="Examples"
)
run_button.click(
fn=infer,
inputs=[image_1, image_2, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps],
outputs=[output_image, seed]
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(css=css, theme=orange_red_theme, mcp_server=True, ssr_mode=False, show_error=True) |