VITRA / data /preprocessing /undistort_video_egoexo4d.py
arnoldland's picture
Initial commit
aae3ba1
import os
import cv2
import json
import argparse
from projectaria_tools.core import calibration
from utils import create_ffmpeg_writer, concatenate_ts_files
class Config:
"""
Configuration settings for EgoExo4D video undistortion and processing.
Paths and parameters are initialized with defaults but can be overridden
by command-line arguments.
"""
def __init__(self, args=None):
# --- Paths (Overridden by CLI arguments) ---
self.VIDEO_ROOT = getattr(args, 'video_root', '/data2/v-leizhou/egoexo_data')
self.INTRINSICS_ROOT = getattr(args, 'intrinsics_root', '/data2/v-leizhou/processed_data/aria_calib_json')
self.SAVE_ROOT = getattr(args, 'save_root', 'debug_final_egoexo')
# --- Processing Parameters (Overridden by CLI arguments) ---
self.VIDEO_START_IDX = getattr(args, 'video_start', 0)
self.VIDEO_END_IDX = getattr(args, 'video_end', None)
self.BATCH_SIZE = getattr(args, 'batch_size', 1000)
self.CRF = getattr(args, 'crf', 22)
def process_single_video(
video_name: str,
aria_name: str,
video_root: str,
intrinsics_root: str,
save_root: str,
batch_size: int = 1000,
crf: int = 22
):
"""
Processes a single EgoExo4D video, performs undistortion using
ProjectAriaTools, and saves the result in batches using FFmpeg.
Args:
video_name: Name of the video take folder.
aria_name: Aria camera name used in the frame-aligned video path.
video_root: Root directory of the input videos.
intrinsics_root: Root directory of the intrinsics files (.json).
save_root: Root directory for saving the output videos.
batch_size: Number of frames to process and save per temporary TS file batch.
crf: Constant Rate Factor (CRF) for FFmpeg encoding quality.
"""
print(f'Processing {video_name}')
# Construct the full video path based on EgoExo4D folder structure
video_path = os.path.join(
video_root,
'takes',
video_name,
'frame_aligned_videos',
f'{aria_name}_214-1.mp4'
)
cap = cv2.VideoCapture(video_path)
# Get video properties
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = cap.get(cv2.CAP_PROP_FPS)
video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Load ground truth intrinsics info from JSON using ProjectAriaTools
intrinsics_file_path = os.path.join(intrinsics_root, f'{video_name}.json')
intrinsics_info = calibration.device_calibration_from_json(intrinsics_file_path).get_camera_calib("camera-rgb")
# Use a fixed pinhole intrinsics for the output video resolution (1408x1408)
pinhole = calibration.get_linear_camera_calibration(1408, 1408, 412.5)
# Initialize the first batch ffmpeg writer
batch_number = 0
writer = create_ffmpeg_writer(
os.path.join(save_root, f'{video_name}_b{batch_number:04d}.ts'),
width, height, fps, crf
)
idx = 0
# Read and process frames
while True:
# Print progress in-place
print(f'Processing {video_name} frame {idx} / {video_length}', end='\r')
ret, frame = cap.read()
if not ret:
# End of video stream: close the last writer
writer.stdin.close()
writer.wait()
break
# Undistort the frame using ProjectAriaTools' distortion function (original logic)
undistorted_frame = calibration.distort_by_calibration(frame, pinhole, intrinsics_info)
# Convert BGR to RGB before writing to ffmpeg (FFmpeg expects RGB)
undistorted_frame = cv2.cvtColor(undistorted_frame, cv2.COLOR_BGR2RGB)
# Write to ffmpeg stdin
writer.stdin.write(undistorted_frame.tobytes())
# Check if the current batch is complete
if (idx + 1) % batch_size == 0:
# Finalize the current batch writer
writer.stdin.close()
writer.wait()
# Start the next batch writer
batch_number += 1
writer = create_ffmpeg_writer(
os.path.join(save_root, f'{video_name}_b{batch_number:04d}.ts'),
width, height, fps, crf
)
idx += 1
cap.release()
# Merge all temporary TS chunks into the final MP4 file
concatenate_ts_files(save_root, video_name, batch_number + 1)
def main():
"""
Main function to parse arguments, load the Aria camera name mapping,
load the video list, and run the undistortion process.
"""
parser = argparse.ArgumentParser(description='Undistort EgoExo4D videos using ProjectAriaTools calibration.')
# Arguments corresponding to Config parameters
parser.add_argument('--video_root', type=str, default='/data2/v-leizhou/egoexo_data', help='Root folder containing EgoExo4D video takes')
parser.add_argument('--intrinsics_root', type=str, default='/data2/v-leizhou/processed_data/aria_calib_json', help='Root folder containing Aria calibration JSON files')
parser.add_argument('--save_root', type=str, default='debug_final_egoexo', help='Root folder for saving output videos')
parser.add_argument('--video_start', type=int, default=0, help='Start video index (inclusive)')
parser.add_argument('--video_end', type=int, default=None, help='End video index (exclusive)')
parser.add_argument('--batch_size', type=int, default=1000, help='Number of frames to be processed per batch (TS chunk)')
parser.add_argument('--crf', type=int, default=22, help='CRF for ffmpeg encoding quality')
args = parser.parse_args()
# Initialize configuration from arguments
config = Config(args)
# Create the output directory if it doesn't exist
os.makedirs(config.SAVE_ROOT, exist_ok=True)
# Get all video names automatically (assuming subfolders are video names)
try:
video_names = sorted(os.listdir(os.path.join(config.VIDEO_ROOT, 'takes')))
video_names = [name.split('.')[0] for name in video_names]
except FileNotFoundError:
print(f"Error: Video root directory not found at {config.VIDEO_ROOT}. Cannot proceed.")
return
if config.VIDEO_END_IDX is None:
end_idx = len(video_names)
else:
end_idx = config.VIDEO_END_IDX
video_names_to_process = video_names[config.VIDEO_START_IDX:end_idx]
if not video_names_to_process:
print("No videos found to process in the specified range.")
return
# Load aria camera names from the JSON file (Preserves original hardcoded path)
try:
with open("./egoexo4d_aria_name.json", "r", encoding="utf-8") as f:
aria_names = json.load(f)
except FileNotFoundError:
print("Error: The Aria name mapping file './egoexo4d_aria_name.json' was not found. Cannot proceed.")
return
except json.JSONDecodeError:
print("Error: Could not decode the Aria name mapping file './egoexo4d_aria_name.json'. Cannot proceed.")
return
# Process videos
for video_name in video_names_to_process:
try:
# Get aria name for the current video
aria_name = aria_names[video_name]
process_single_video(
video_name,
aria_name,
config.VIDEO_ROOT,
config.INTRINSICS_ROOT,
config.SAVE_ROOT,
config.BATCH_SIZE,
config.CRF
)
except KeyError:
# Handle missing Aria name for a video
print(f'Error processing {video_name}: Aria name not found in the map file.')
continue
except Exception as e:
# Catch and report other processing errors, then continue
print(f'Error processing {video_name}: {e}')
continue
if __name__ == '__main__':
main()