File size: 10,523 Bytes
dacbe6c
 
7561365
dacbe6c
 
8653b6e
3aedaee
d5a0042
dacbe6c
7561365
8653b6e
89bc003
ddf3277
 
 
89bc003
8653b6e
89bc003
 
 
8653b6e
89bc003
8653b6e
 
89bc003
02f987c
7561365
ddf3277
 
 
0f94b53
 
 
 
 
ddf3277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffcdb51
 
ddf3277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffcdb51
 
 
 
 
ddf3277
 
ffcdb51
ddf3277
 
 
 
 
 
 
 
 
 
 
 
 
89bc003
ddf3277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a0042
7561365
ddf3277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dacbe6c
d5a0042
02f987c
ddf3277
dacbe6c
ddf3277
 
 
 
 
 
 
 
d5a0042
ddf3277
d5a0042
 
ddf3277
 
 
 
 
 
 
 
 
 
dacbe6c
 
 
ddf3277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5516fdb
dacbe6c
d5a0042
 
ddf3277
 
 
0f94b53
ddf3277
 
 
 
 
 
 
02f987c
d5a0042
 
 
 
 
02f987c
ddf3277
 
 
 
 
 
 
 
ffcdb51
ddf3277
 
ffcdb51
ddf3277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821d85a
f64a14d
0f94b53
 
 
 
 
 
 
f64a14d
 
0f94b53
 
 
 
 
 
 
 
f64a14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f94b53
f64a14d
 
 
 
 
 
 
0f94b53
f64a14d
 
 
 
 
 
 
 
 
 
 
 
 
0f94b53
f64a14d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import cv2
import numpy as np
import torch
import tempfile
import gradio as gr
import time
import io
from contextlib import redirect_stdout

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[INFO] Using device: {device}")

if device.type == "cuda":
    torch.backends.cudnn.benchmark = True

try:
    print("[INFO] Attempting to load RAFT model from torch.hub...")
    raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
    raft_model = raft_model.to(device)
    raft_model.eval()
    print("[INFO] RAFT model loaded successfully.")
except Exception as e:
    print("[ERROR] Error loading RAFT model:", e)
    print("[INFO] Falling back to OpenCV Farneback optical flow.")
    raft_model = None
    gr.Warning("Falling back to OpenCV Farneback optical flow.")

def _resize(frame, w, h):
    if frame.shape[1] == w and frame.shape[0] == h:
        return frame
    return cv2.resize(
        frame,
        (w, h),
        interpolation=cv2.INTER_AREA if (w < frame.shape[1] or h < frame.shape[0]) else cv2.INTER_LINEAR,
    )

def _frame_to_raft_tensor_bgr(frame_bgr):
    frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
    t = torch.from_numpy(frame_rgb).permute(2, 0, 1).contiguous().float().unsqueeze(0).div_(255.0)
    return t.to(device, non_blocking=(device.type == "cuda"))

def compute_offsets(
    video_file,
    out_w,
    out_h,
    motion_scale=0.5,
    raft_iters=12,
    progress=gr.Progress(),
    progress_offset=0.0,
    progress_scale=0.55,
):
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise gr.Error("Could not open video file for motion estimation.")

    total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 0

    mw = max(64, int(out_w * float(motion_scale)))
    mh = max(64, int(out_h * float(motion_scale)))
    sx = float(out_w) / float(mw)
    sy = float(out_h) / float(mh)

    ret, prev = cap.read()
    if not ret:
        cap.release()
        raise gr.Error("Cannot read first frame from video.")

    prev_out = _resize(prev, out_w, out_h)
    prev_small = _resize(prev_out, mw, mh)

    use_raft = raft_model is not None
    use_amp = device.type == "cuda"

    if use_raft:
        prev_t = _frame_to_raft_tensor_bgr(prev_small)
    else:
        prev_g = cv2.cvtColor(prev_small, cv2.COLOR_BGR2GRAY)

    offsets = [(0.0, 0.0)]
    cum_dx = 0.0
    cum_dy = 0.0

    idx = 1
    while True:
        ret, frame = cap.read()
        if not ret:
            break

        frame_out = _resize(frame, out_w, out_h)
        curr_small = _resize(frame_out, mw, mh)

        if use_raft:
            curr_t = _frame_to_raft_tensor_bgr(curr_small)
            with torch.no_grad():
                if use_amp:
                    with torch.cuda.amp.autocast(True):
                        _, flow_up = raft_model(prev_t, curr_t, iters=int(raft_iters), test_mode=True)
                else:
                    _, flow_up = raft_model(prev_t, curr_t, iters=int(raft_iters), test_mode=True)

            flow = flow_up[0]
            dx = float(flow[0].median().item())
            dy = float(flow[1].median().item())
            prev_t = curr_t
        else:
            curr_g = cv2.cvtColor(curr_small, cv2.COLOR_BGR2GRAY)
            flow = cv2.calcOpticalFlowFarneback(
                prev_g,
                curr_g,
                None,
                pyr_scale=0.5,
                levels=3,
                winsize=15,
                iterations=3,
                poly_n=5,
                poly_sigma=1.2,
                flags=0,
            )
            dx = float(np.median(flow[..., 0]))
            dy = float(np.median(flow[..., 1]))
            prev_g = curr_g

        dx *= sx
        dy *= sy

        cum_dx += dx
        cum_dy += dy
        offsets.append((-cum_dx, -cum_dy))

        if total > 0 and (idx % 5 == 0 or idx == total - 1):
            progress(progress_offset + (idx / max(1, total - 1)) * progress_scale, desc="Estimating Motion")

        idx += 1

    cap.release()
    return offsets

def compute_auto_zoom(offsets, width, height):
    dxs = [o[0] for o in offsets] or [0.0]
    dys = [o[1] for o in offsets] or [0.0]

    left = max(0.0, -min(dxs))
    right = max(0.0, max(dxs))
    top = max(0.0, -min(dys))
    bottom = max(0.0, max(dys))

    safe_w = float(width) - (left + right)
    safe_h = float(height) - (top + bottom)

    zx = (float(width) / safe_w) if safe_w > 1.0 else 1.0
    zy = (float(height) / safe_h) if safe_h > 1.0 else 1.0
    return max(1.0, zx, zy)

def stabilize_stream(
    video_file,
    offsets,
    zoom=1.0,
    vertical_only=False,
    out_w=None,
    out_h=None,
    progress=gr.Progress(),
    progress_offset=0.55,
    progress_scale=0.45,
    output_file=None,
):
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise gr.Error("Could not open video file for stabilization.")

    fps = cap.get(cv2.CAP_PROP_FPS)
    in_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    in_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    if out_w is None:
        out_w = in_w
    if out_h is None:
        out_h = in_h

    if output_file is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
        output_file = temp_file.name
        temp_file.close()

    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    out = cv2.VideoWriter(output_file, fourcc, fps, (int(out_w), int(out_h)))

    center = (float(out_w) / 2.0, float(out_h) / 2.0)
    base = cv2.getRotationMatrix2D(center, 0.0, float(zoom))

    total = len(offsets)
    i = 0
    while i < total:
        ret, frame = cap.read()
        if not ret:
            break

        frame_out = _resize(frame, int(out_w), int(out_h))

        dx, dy = offsets[i]
        if vertical_only:
            dx = 0.0

        M = base.copy()
        M[0, 2] += float(dx)
        M[1, 2] += float(dy)

        stabilized = cv2.warpAffine(frame_out, M, (int(out_w), int(out_h)), borderMode=cv2.BORDER_REPLICATE)
        out.write(stabilized)

        if total > 0 and (i % 5 == 0 or i == total - 1):
            progress(progress_offset + (i / max(1, total - 1)) * progress_scale, desc="Stabilizing Video")

        i += 1

    cap.release()
    out.release()
    return output_file

def process_video_ai(
    video_file,
    zoom,
    max_zoom,
    vertical_only,
    compress_mode,
    target_width,
    target_height,
    auto_zoom,
    progress=gr.Progress(track_tqdm=True),
):
    gr.Info("Starting AI-powered video processing...")
    log_buffer = io.StringIO()
    with redirect_stdout(log_buffer):
        if isinstance(video_file, dict):
            video_file = video_file.get("name", None)
        if video_file is None:
            raise gr.Error("Please upload a video file.")

        cap = cv2.VideoCapture(video_file)
        if not cap.isOpened():
            raise gr.Error("Could not open uploaded video.")
        in_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        in_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        cap.release()

        if compress_mode:
            out_w = int(target_width)
            out_h = int(target_height)
        else:
            out_w = in_w
            out_h = in_h

        offsets = compute_offsets(
            video_file,
            out_w,
            out_h,
            motion_scale=0.5,
            raft_iters=12,
            progress=progress,
            progress_offset=0.0,
            progress_scale=0.55,
        )
        gr.Info("Motion estimated successfully.")

        if auto_zoom:
            z = compute_auto_zoom(offsets, out_w, out_h)
            if max_zoom is not None:
                try:
                    mz = float(max_zoom)
                    if mz > 0:
                        z = min(z, mz)
                except Exception:
                    pass
            gr.Info(f"Auto zoom factor computed: {z:.2f}")
            zoom = z
        else:
            if max_zoom is not None:
                try:
                    mz = float(max_zoom)
                    if mz > 0:
                        zoom = min(float(zoom), mz)
                except Exception:
                    zoom = float(zoom)

        stabilized_path = stabilize_stream(
            video_file,
            offsets,
            zoom=float(zoom),
            vertical_only=bool(vertical_only),
            out_w=out_w,
            out_h=out_h,
            progress=progress,
            progress_offset=0.55,
            progress_scale=0.45,
        )
        gr.Info("Video stabilization complete.")
        print("[INFO] Video processing complete.")

    logs = log_buffer.getvalue()
    return video_file, stabilized_path, logs

with gr.Blocks() as demo:
    gr.Markdown("# AI-Powered Video Stabilization")
    gr.Markdown(
        "Upload a video, select a zoom factor (or use Auto Zoom Mode), optionally cap the maximum zoom, choose whether to apply only vertical stabilization, and optionally compress the output resolution. "
        "The system estimates motion using RAFT if available (otherwise Farneback) and stabilizes the video with progress updates."
    )

    with gr.Row():
        with gr.Column():
            video_input = gr.Video(label="Input Video")
            zoom_slider = gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Zoom Factor (ignored if Auto Zoom enabled)")
            max_zoom_slider = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, value=3.0, label="Max Zoom (caps manual + auto zoom)")
            auto_zoom_checkbox = gr.Checkbox(label="Auto Zoom Mode", value=False)
            vertical_checkbox = gr.Checkbox(label="Vertical Stabilization Only", value=False)
            compress_checkbox = gr.Checkbox(label="Compress Output Resolution", value=False)
            target_width = gr.Number(label="Target Width (px)", value=640)
            target_height = gr.Number(label="Target Height (px)", value=360)
            process_button = gr.Button("Process Video")
        with gr.Column():
            original_video = gr.Video(label="Original Video")
            stabilized_video = gr.Video(label="Stabilized Video")
            logs_output = gr.Textbox(label="Logs", lines=10)

    process_button.click(
        fn=process_video_ai,
        inputs=[video_input, zoom_slider, max_zoom_slider, vertical_checkbox, compress_checkbox, target_width, target_height, auto_zoom_checkbox],
        outputs=[original_video, stabilized_video, logs_output],
    )

if __name__ == "__main__":
    demo.launch()