|
|
import os |
|
|
import traceback |
|
|
from flask import Flask, request, jsonify, send_file |
|
|
from flask_cors import CORS |
|
|
from dotenv import load_dotenv |
|
|
from langdetect import detect |
|
|
from deep_translator import GoogleTranslator |
|
|
from sentence_transformers import SentenceTransformer |
|
|
from pinecone import Pinecone |
|
|
from openai import OpenAI |
|
|
import tempfile |
|
|
|
|
|
|
|
|
DATASET_PATH = "data/coaching_millionaer_dataset.json" |
|
|
load_dotenv(override=True) |
|
|
|
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") |
|
|
PINECONE_INDEX_NAME = "ebook" |
|
|
|
|
|
|
|
|
app = Flask(__name__) |
|
|
CORS(app, resources={r"/ask": {"origins": "*"}}) |
|
|
|
|
|
|
|
|
client = None |
|
|
try: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not OPENAI_API_KEY: |
|
|
raise ValueError("⚠️ Missing OPENAI_API_KEY in environment variables") |
|
|
client = OpenAI(api_key=OPENAI_API_KEY) |
|
|
print("✅ Using OpenAI API for all tasks (Whisper, GPT, TTS)") |
|
|
|
|
|
except Exception as e: |
|
|
print(f"❌ Failed to initialize LLM client: {e}") |
|
|
client = None |
|
|
|
|
|
|
|
|
retriever = None |
|
|
try: |
|
|
if not PINECONE_API_KEY: |
|
|
raise ValueError("PINECONE_API_KEY missing in environment variables") |
|
|
|
|
|
pc = Pinecone(api_key=PINECONE_API_KEY) |
|
|
index = pc.Index(PINECONE_INDEX_NAME) |
|
|
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") |
|
|
|
|
|
class PineconeRetriever: |
|
|
def __init__(self, index, embedder): |
|
|
self.index = index |
|
|
self.embedder = embedder |
|
|
|
|
|
def retrieve(self, query, top_k=20): |
|
|
emb = self.embedder.encode(query).tolist() |
|
|
res = self.index.query(vector=emb, top_k=top_k, include_metadata=True) |
|
|
matches = res.get("matches", []) |
|
|
results = [] |
|
|
for match in matches: |
|
|
meta = match.get("metadata", {}) |
|
|
results.append( |
|
|
{ |
|
|
"context": meta.get("context", ""), |
|
|
"page": meta.get("page"), |
|
|
"score": match.get("score", 0), |
|
|
} |
|
|
) |
|
|
return results |
|
|
|
|
|
retriever = PineconeRetriever(index, embedder) |
|
|
print("✅ Pinecone retriever initialized successfully.") |
|
|
except Exception as e: |
|
|
print("❌ Retriever initialization failed:", e) |
|
|
traceback.print_exc() |
|
|
|
|
|
|
|
|
def translate_text(text: str, target_lang: str) -> str: |
|
|
try: |
|
|
return GoogleTranslator(source="auto", target=target_lang).translate(text) |
|
|
except Exception: |
|
|
return text |
|
|
|
|
|
|
|
|
def detect_language(question: str) -> str: |
|
|
try: |
|
|
return detect(question) |
|
|
except Exception: |
|
|
return "unknown" |
|
|
|
|
|
|
|
|
def normalize_language(lang: str, text: str) -> str: |
|
|
if lang == "nl" and any( |
|
|
word in text.lower() for word in ["wer", "was", "wie", "javid", "coaching"] |
|
|
): |
|
|
return "de" |
|
|
return lang |
|
|
|
|
|
|
|
|
def system_prompt_book_only() -> str: |
|
|
return ( |
|
|
"Du bist **Javid Niazi-Hoffmann**, Gründer von J&P Mentoring. " |
|
|
"Sprich immer auf **Deutsch**, egal in welcher Sprache der Nutzer schreibt. " |
|
|
"Antworte natürlich, empathisch und selbstbewusst – so, als würdest du den Nutzer persönlich coachen. " |
|
|
"Nutze den bereitgestellten Kontext nur als Hintergrundwissen, " |
|
|
"aber erwähne niemals, woher die Informationen stammen. " |
|
|
"Beziehe dich nicht auf Bücher, Kapitel oder Seiten. " |
|
|
"Gib deine Ratschläge direkt in deiner eigenen Stimme – klar, inspirierend und menschlich. " |
|
|
"Sei authentisch und unterstützend, als würdest du dich wirklich um das Wachstum des Nutzers kümmern. " |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
def system_prompt_fallback() -> str: |
|
|
return ( |
|
|
"Du bist **Javid Niazi-Hoffmann**, erfolgreicher Unternehmer und Mentor bei J&P Mentoring. " |
|
|
"Antworte immer auf **Deutsch**, unabhängig von der Sprache der Nutzeranfrage. " |
|
|
"Sprich direkt und natürlich, als würdest du in einem echten Mentoring-Gespräch mit dem Nutzer sprechen. " |
|
|
"Vermeide es, wie ein Assistent zu klingen oder externe Quellen zu erwähnen. " |
|
|
"Dein Ton ist praktisch, empathisch und selbstbewusst – motivierend, aber bodenständig. " |
|
|
"Bleibe menschlich und authentisch in deiner Ausdrucksweise." |
|
|
) |
|
|
|
|
|
def system_prompt_youtube_script() -> str: |
|
|
return ( |
|
|
"Du bist **Javid Niazi-Hoffmann**, erfolgreicher Unternehmer und Mentor bei J&P Mentoring. " |
|
|
"Du erstellst **starke YouTube-Video-Skripte auf Deutsch**. " |
|
|
"Sprich immer auf **Deutsch**, sei klar, inspirierend und bodenständig. " |
|
|
"Schreibe so, dass der Text direkt vom Teleprompter abgelesen werden kann – " |
|
|
"mit natürlicher Sprache, kurzen Sätzen und klaren Übergängen. " |
|
|
"Nutze Du-Ansprache, sei motivierend und ergebnisorientiert." |
|
|
"Do not return Headlines like [Hook],[CTA] ...etc" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def format_answers(question: str, answer: str, results): |
|
|
pages = [f"Seite {r.get('page', '')}" for r in results if r.get("page")] |
|
|
source = ", ".join(pages) if pages else "No source" |
|
|
top_score = max([r.get("score", 0.0) for r in results], default=0.0) |
|
|
return { |
|
|
"answers": [ |
|
|
{ |
|
|
"question": question, |
|
|
"answer": answer, |
|
|
"source": source, |
|
|
"bm25_score": top_score, |
|
|
} |
|
|
] |
|
|
} |
|
|
|
|
|
|
|
|
@app.route("/", methods=["GET"]) |
|
|
def health(): |
|
|
return jsonify( |
|
|
{ |
|
|
"status": "running", |
|
|
"retriever_ready": bool(retriever), |
|
|
"hf_key_loaded": bool(HF_TOKEN), |
|
|
"pinecone_key_loaded": bool(PINECONE_API_KEY), |
|
|
"index_name": PINECONE_INDEX_NAME, |
|
|
} |
|
|
) |
|
|
|
|
|
@app.route("/youtube-script", methods=["POST", "OPTIONS"]) |
|
|
def youtube_script(): |
|
|
|
|
|
if request.method == "OPTIONS": |
|
|
return ("", 204) |
|
|
|
|
|
if client is None: |
|
|
return jsonify({"error": "⚠️ No language model initialized."}), 500 |
|
|
|
|
|
try: |
|
|
data = request.get_json(force=True) or {} |
|
|
except Exception: |
|
|
return jsonify({"error": "Invalid JSON body."}), 400 |
|
|
|
|
|
|
|
|
topic = (data.get("topic") or "").strip() |
|
|
duration_minutes = (data.get("duration_minutes") or "").strip() |
|
|
tone = (data.get("tone") or "").strip() |
|
|
target_audience = (data.get("target_audience") or "").strip() |
|
|
userName = (data.get("userName") or "").strip() |
|
|
|
|
|
if not topic: |
|
|
return jsonify({"error": "Video topic is required."}), 400 |
|
|
|
|
|
|
|
|
if not userName: |
|
|
userName = "" |
|
|
if not duration_minutes: |
|
|
duration_minutes = "10" |
|
|
if not tone: |
|
|
tone = "inspirierend, klar, authentisch" |
|
|
if not target_audience: |
|
|
target_audience = "Menschen, die finanziell und persönlich wachsen wollen" |
|
|
|
|
|
|
|
|
user_prompt = f""" |
|
|
Erstelle ein ausführliches YouTube-Video-Skript auf Deutsch. |
|
|
|
|
|
Thema: {topic} |
|
|
Ziel-Videolänge: ca. {duration_minutes} Minuten |
|
|
Tonfall: {tone} |
|
|
Zielgruppe: {target_audience} |
|
|
Speaker: {userName} |
|
|
|
|
|
Struktur des Skripts: |
|
|
1. Starker Hook in den ersten 5–10 Sekunden (sofortige Aufmerksamkeit, großes Versprechen). |
|
|
3. Klar strukturierter Hauptteil mit mehreren Abschnitten: |
|
|
- Erkläre das Thema verständlich. |
|
|
- Nutze Beispiele, Metaphern oder kurze Stories. |
|
|
- Gib konkrete Tipps oder Schritte. |
|
|
4. Übergänge zwischen den Abschnitten, damit das Skript natürlich fließt. |
|
|
5. Starker Call-to-Action am Ende |
|
|
(z.B. Kanal abonnieren, Kommentar schreiben, kostenloses Erstgespräch, Link in der Beschreibung). |
|
|
|
|
|
Format: |
|
|
- Schreibe den Text als gesprochenes Skript in der Du-Form. |
|
|
- Kein Fließtext-Roman, sondern gut lesbare Absätze. |
|
|
- Do not return Headlines like [Hook],[CTA] ...etc |
|
|
""" |
|
|
|
|
|
try: |
|
|
response = client.chat.completions.create( |
|
|
model="gpt-4o", |
|
|
messages=[ |
|
|
{"role": "system", "content": system_prompt_youtube_script()}, |
|
|
{"role": "user", "content": user_prompt}, |
|
|
], |
|
|
max_tokens=10000, |
|
|
) |
|
|
script_text = response.choices[0].message.content.strip() |
|
|
except Exception as e: |
|
|
traceback.print_exc() |
|
|
return jsonify({"error": f"⚠️ LLM call failed: {e}"}), 500 |
|
|
|
|
|
|
|
|
return jsonify( |
|
|
{ |
|
|
"topic": topic, |
|
|
"duration_minutes": duration_minutes, |
|
|
"tone": tone, |
|
|
"target_audience": target_audience, |
|
|
"script": script_text, |
|
|
} |
|
|
), 200 |
|
|
|
|
|
|
|
|
@app.route("/ask", methods=["POST", "OPTIONS"]) |
|
|
def ask(): |
|
|
if request.method == "OPTIONS": |
|
|
return ("", 204) |
|
|
|
|
|
try: |
|
|
data = request.get_json(force=True) or {} |
|
|
question = (data.get("question") or "").strip() |
|
|
except Exception: |
|
|
return jsonify(format_answers("", "Invalid JSON request", [])), 200 |
|
|
|
|
|
if not question: |
|
|
return jsonify(format_answers("", "Please enter a question.", [])), 200 |
|
|
|
|
|
print(f"\n--- User Question ---\n{question}") |
|
|
|
|
|
user_lang = normalize_language(detect_language(question), question) |
|
|
print(f"Detected language: {user_lang}") |
|
|
|
|
|
|
|
|
context, results = "", [] |
|
|
try: |
|
|
raw_results = retriever.retrieve(question) |
|
|
MIN_SCORE = 0.10 |
|
|
results = [r for r in raw_results if r.get("score", 0) >= MIN_SCORE] |
|
|
if results: |
|
|
context = "\n\n---\n\n".join( |
|
|
[f"(Seite {r['page']}) {r['context']}" for r in results] |
|
|
) |
|
|
except Exception as e: |
|
|
traceback.print_exc() |
|
|
return jsonify(format_answers(question, f"Retriever error: {e}", [])), 200 |
|
|
|
|
|
|
|
|
if context: |
|
|
sys_prompt = system_prompt_book_only() |
|
|
user_content = f"Question: {question}\n\nBook context:\n{context}" |
|
|
else: |
|
|
sys_prompt = system_prompt_fallback() |
|
|
user_content = question |
|
|
|
|
|
if client is None: |
|
|
return jsonify(format_answers(question, "⚠️ No language model initialized.", results)), 200 |
|
|
|
|
|
|
|
|
try: |
|
|
response = client.chat.completions.create( |
|
|
model="gpt-4o", |
|
|
messages=[ |
|
|
{"role": "system", "content": sys_prompt}, |
|
|
{"role": "user", "content": user_content}, |
|
|
], |
|
|
max_tokens=700, |
|
|
) |
|
|
answer = response.choices[0].message.content.strip() |
|
|
except Exception as e: |
|
|
traceback.print_exc() |
|
|
return jsonify(format_answers(question, f"⚠️ LLM call failed: {e}", results)), 200 |
|
|
|
|
|
return jsonify(format_answers(question, answer, results)) |
|
|
|
|
|
|
|
|
@app.route("/voice", methods=["POST"]) |
|
|
def voice_chat(): |
|
|
try: |
|
|
audio = request.files.get("audio") |
|
|
if not audio: |
|
|
return jsonify({"error": "No audio file uploaded"}), 400 |
|
|
|
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".webm") as tmp: |
|
|
audio.save(tmp.name) |
|
|
audio_path = tmp.name |
|
|
|
|
|
|
|
|
transcription = client.audio.transcriptions.create( |
|
|
model="whisper-1", |
|
|
file=open(audio_path, "rb"), |
|
|
) |
|
|
text = transcription.text.strip() |
|
|
print(f"🎤 Transcribed: {text}") |
|
|
|
|
|
if not text: |
|
|
return jsonify({"error": "Transcription failed or empty"}), 400 |
|
|
|
|
|
|
|
|
context, results = "", [] |
|
|
try: |
|
|
raw_results = retriever.retrieve(text) |
|
|
MIN_SCORE = 0.02 |
|
|
results = [r for r in raw_results if r.get("score", 0) >= MIN_SCORE] |
|
|
if results: |
|
|
context = "\n\n---\n\n".join( |
|
|
[f"(Seite {r['page']}) {r['context']}" for r in results] |
|
|
) |
|
|
except Exception as e: |
|
|
print("⚠️ Retriever error:", e) |
|
|
|
|
|
|
|
|
if context: |
|
|
sys_prompt = system_prompt_book_only() |
|
|
user_prompt = f"Question: {text}\n\nBook context:\n{context}" |
|
|
else: |
|
|
sys_prompt = system_prompt_fallback() |
|
|
user_prompt = text |
|
|
|
|
|
|
|
|
try: |
|
|
response = client.chat.completions.create( |
|
|
model="gpt-4o", |
|
|
messages=[ |
|
|
{"role": "system", "content": sys_prompt}, |
|
|
{"role": "user", "content": user_prompt}, |
|
|
], |
|
|
max_tokens=700, |
|
|
) |
|
|
answer_text = response.choices[0].message.content.strip() |
|
|
except Exception as e: |
|
|
traceback.print_exc() |
|
|
return jsonify({"error": f"GPT generation failed: {e}"}), 500 |
|
|
|
|
|
|
|
|
try: |
|
|
speech_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") |
|
|
with client.audio.speech.with_streaming_response.create( |
|
|
model="gpt-4o-mini-tts", |
|
|
voice="alloy", |
|
|
input=answer_text, |
|
|
) as speech: |
|
|
speech.stream_to_file(speech_file.name) |
|
|
except Exception as e: |
|
|
traceback.print_exc() |
|
|
return jsonify({"error": f"TTS failed: {e}"}), 500 |
|
|
|
|
|
|
|
|
return jsonify( |
|
|
{ |
|
|
"transcript": text, |
|
|
"answer": answer_text, |
|
|
"audio_url": f"https://mahmous-chatbot3.hf.space/audio/{os.path.basename(speech_file.name)}", |
|
|
"source": [r.get("page") for r in results if r.get("page")], |
|
|
} |
|
|
) |
|
|
|
|
|
except Exception as e: |
|
|
traceback.print_exc() |
|
|
return jsonify({"error": str(e)}), 500 |
|
|
|
|
|
|
|
|
|
|
|
@app.route("/audio/<filename>") |
|
|
def serve_audio(filename): |
|
|
return send_file( |
|
|
os.path.join(tempfile.gettempdir(), filename), mimetype="audio/mpeg" |
|
|
) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
port = int(os.environ.get("PORT", 7860)) |
|
|
print(f"🚀 Server started on port {port}") |
|
|
app.run(host="0.0.0.0", port=port) |
|
|
|