Commit
·
b6181ba
1
Parent(s):
22f58a9
Integrate CCO colorization models (eccv16 and siggraph17) - Add CCO colorizers module from kinsung/cco - Update /colorize endpoint to support model selection parameter - Add scikit-image dependency - Maintain backward compatibility with existing GAN model - Update MongoDB logging to track model type used
Browse files- app/colorizers/__init__.py +6 -0
- app/colorizers/base_color.py +24 -0
- app/colorizers/eccv16.py +105 -0
- app/colorizers/siggraph17.py +168 -0
- app/colorizers/util.py +47 -0
- app/config.py +2 -1
- app/main.py +131 -10
- requirements.txt +2 -1
app/colorizers/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from .base_color import *
|
| 3 |
+
from .eccv16 import *
|
| 4 |
+
from .siggraph17 import *
|
| 5 |
+
from .util import *
|
| 6 |
+
|
app/colorizers/base_color.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
|
| 5 |
+
class BaseColor(nn.Module):
|
| 6 |
+
def __init__(self):
|
| 7 |
+
super(BaseColor, self).__init__()
|
| 8 |
+
|
| 9 |
+
self.l_cent = 50.
|
| 10 |
+
self.l_norm = 100.
|
| 11 |
+
self.ab_norm = 110.
|
| 12 |
+
|
| 13 |
+
def normalize_l(self, in_l):
|
| 14 |
+
return (in_l-self.l_cent)/self.l_norm
|
| 15 |
+
|
| 16 |
+
def unnormalize_l(self, in_l):
|
| 17 |
+
return in_l*self.l_norm + self.l_cent
|
| 18 |
+
|
| 19 |
+
def normalize_ab(self, in_ab):
|
| 20 |
+
return in_ab/self.ab_norm
|
| 21 |
+
|
| 22 |
+
def unnormalize_ab(self, in_ab):
|
| 23 |
+
return in_ab*self.ab_norm
|
| 24 |
+
|
app/colorizers/eccv16.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import numpy as np
|
| 5 |
+
from IPython import embed
|
| 6 |
+
|
| 7 |
+
from .base_color import *
|
| 8 |
+
|
| 9 |
+
class ECCVGenerator(BaseColor):
|
| 10 |
+
def __init__(self, norm_layer=nn.BatchNorm2d):
|
| 11 |
+
super(ECCVGenerator, self).__init__()
|
| 12 |
+
|
| 13 |
+
model1=[nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 14 |
+
model1+=[nn.ReLU(True),]
|
| 15 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),]
|
| 16 |
+
model1+=[nn.ReLU(True),]
|
| 17 |
+
model1+=[norm_layer(64),]
|
| 18 |
+
|
| 19 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 20 |
+
model2+=[nn.ReLU(True),]
|
| 21 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),]
|
| 22 |
+
model2+=[nn.ReLU(True),]
|
| 23 |
+
model2+=[norm_layer(128),]
|
| 24 |
+
|
| 25 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 26 |
+
model3+=[nn.ReLU(True),]
|
| 27 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 28 |
+
model3+=[nn.ReLU(True),]
|
| 29 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),]
|
| 30 |
+
model3+=[nn.ReLU(True),]
|
| 31 |
+
model3+=[norm_layer(256),]
|
| 32 |
+
|
| 33 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 34 |
+
model4+=[nn.ReLU(True),]
|
| 35 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 36 |
+
model4+=[nn.ReLU(True),]
|
| 37 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 38 |
+
model4+=[nn.ReLU(True),]
|
| 39 |
+
model4+=[norm_layer(512),]
|
| 40 |
+
|
| 41 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 42 |
+
model5+=[nn.ReLU(True),]
|
| 43 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 44 |
+
model5+=[nn.ReLU(True),]
|
| 45 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 46 |
+
model5+=[nn.ReLU(True),]
|
| 47 |
+
model5+=[norm_layer(512),]
|
| 48 |
+
|
| 49 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 50 |
+
model6+=[nn.ReLU(True),]
|
| 51 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 52 |
+
model6+=[nn.ReLU(True),]
|
| 53 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 54 |
+
model6+=[nn.ReLU(True),]
|
| 55 |
+
model6+=[norm_layer(512),]
|
| 56 |
+
|
| 57 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 58 |
+
model7+=[nn.ReLU(True),]
|
| 59 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 60 |
+
model7+=[nn.ReLU(True),]
|
| 61 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 62 |
+
model7+=[nn.ReLU(True),]
|
| 63 |
+
model7+=[norm_layer(512),]
|
| 64 |
+
|
| 65 |
+
model8=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),]
|
| 66 |
+
model8+=[nn.ReLU(True),]
|
| 67 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 68 |
+
model8+=[nn.ReLU(True),]
|
| 69 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 70 |
+
model8+=[nn.ReLU(True),]
|
| 71 |
+
|
| 72 |
+
model8+=[nn.Conv2d(256, 313, kernel_size=1, stride=1, padding=0, bias=True),]
|
| 73 |
+
|
| 74 |
+
self.model1 = nn.Sequential(*model1)
|
| 75 |
+
self.model2 = nn.Sequential(*model2)
|
| 76 |
+
self.model3 = nn.Sequential(*model3)
|
| 77 |
+
self.model4 = nn.Sequential(*model4)
|
| 78 |
+
self.model5 = nn.Sequential(*model5)
|
| 79 |
+
self.model6 = nn.Sequential(*model6)
|
| 80 |
+
self.model7 = nn.Sequential(*model7)
|
| 81 |
+
self.model8 = nn.Sequential(*model8)
|
| 82 |
+
|
| 83 |
+
self.softmax = nn.Softmax(dim=1)
|
| 84 |
+
self.model_out = nn.Conv2d(313, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False)
|
| 85 |
+
self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear')
|
| 86 |
+
|
| 87 |
+
def forward(self, input_l):
|
| 88 |
+
conv1_2 = self.model1(self.normalize_l(input_l))
|
| 89 |
+
conv2_2 = self.model2(conv1_2)
|
| 90 |
+
conv3_3 = self.model3(conv2_2)
|
| 91 |
+
conv4_3 = self.model4(conv3_3)
|
| 92 |
+
conv5_3 = self.model5(conv4_3)
|
| 93 |
+
conv6_3 = self.model6(conv5_3)
|
| 94 |
+
conv7_3 = self.model7(conv6_3)
|
| 95 |
+
conv8_3 = self.model8(conv7_3)
|
| 96 |
+
out_reg = self.model_out(self.softmax(conv8_3))
|
| 97 |
+
|
| 98 |
+
return self.unnormalize_ab(self.upsample4(out_reg))
|
| 99 |
+
|
| 100 |
+
def eccv16(pretrained=True):
|
| 101 |
+
model = ECCVGenerator()
|
| 102 |
+
if(pretrained):
|
| 103 |
+
import torch.utils.model_zoo as model_zoo
|
| 104 |
+
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/colorization_release_v2-9b330a0b.pth',map_location='cpu',check_hash=True))
|
| 105 |
+
return model
|
app/colorizers/siggraph17.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from .base_color import *
|
| 5 |
+
|
| 6 |
+
class SIGGRAPHGenerator(BaseColor):
|
| 7 |
+
def __init__(self, norm_layer=nn.BatchNorm2d, classes=529):
|
| 8 |
+
super(SIGGRAPHGenerator, self).__init__()
|
| 9 |
+
|
| 10 |
+
# Conv1
|
| 11 |
+
model1=[nn.Conv2d(4, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 12 |
+
model1+=[nn.ReLU(True),]
|
| 13 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 14 |
+
model1+=[nn.ReLU(True),]
|
| 15 |
+
model1+=[norm_layer(64),]
|
| 16 |
+
# add a subsampling operation
|
| 17 |
+
|
| 18 |
+
# Conv2
|
| 19 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 20 |
+
model2+=[nn.ReLU(True),]
|
| 21 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 22 |
+
model2+=[nn.ReLU(True),]
|
| 23 |
+
model2+=[norm_layer(128),]
|
| 24 |
+
# add a subsampling layer operation
|
| 25 |
+
|
| 26 |
+
# Conv3
|
| 27 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 28 |
+
model3+=[nn.ReLU(True),]
|
| 29 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 30 |
+
model3+=[nn.ReLU(True),]
|
| 31 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 32 |
+
model3+=[nn.ReLU(True),]
|
| 33 |
+
model3+=[norm_layer(256),]
|
| 34 |
+
# add a subsampling layer operation
|
| 35 |
+
|
| 36 |
+
# Conv4
|
| 37 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 38 |
+
model4+=[nn.ReLU(True),]
|
| 39 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 40 |
+
model4+=[nn.ReLU(True),]
|
| 41 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 42 |
+
model4+=[nn.ReLU(True),]
|
| 43 |
+
model4+=[norm_layer(512),]
|
| 44 |
+
|
| 45 |
+
# Conv5
|
| 46 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 47 |
+
model5+=[nn.ReLU(True),]
|
| 48 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 49 |
+
model5+=[nn.ReLU(True),]
|
| 50 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 51 |
+
model5+=[nn.ReLU(True),]
|
| 52 |
+
model5+=[norm_layer(512),]
|
| 53 |
+
|
| 54 |
+
# Conv6
|
| 55 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 56 |
+
model6+=[nn.ReLU(True),]
|
| 57 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 58 |
+
model6+=[nn.ReLU(True),]
|
| 59 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 60 |
+
model6+=[nn.ReLU(True),]
|
| 61 |
+
model6+=[norm_layer(512),]
|
| 62 |
+
|
| 63 |
+
# Conv7
|
| 64 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 65 |
+
model7+=[nn.ReLU(True),]
|
| 66 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 67 |
+
model7+=[nn.ReLU(True),]
|
| 68 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 69 |
+
model7+=[nn.ReLU(True),]
|
| 70 |
+
model7+=[norm_layer(512),]
|
| 71 |
+
|
| 72 |
+
# Conv7
|
| 73 |
+
model8up=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True)]
|
| 74 |
+
model3short8=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 75 |
+
|
| 76 |
+
model8=[nn.ReLU(True),]
|
| 77 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 78 |
+
model8+=[nn.ReLU(True),]
|
| 79 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 80 |
+
model8+=[nn.ReLU(True),]
|
| 81 |
+
model8+=[norm_layer(256),]
|
| 82 |
+
|
| 83 |
+
# Conv9
|
| 84 |
+
model9up=[nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True),]
|
| 85 |
+
model2short9=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 86 |
+
# add the two feature maps above
|
| 87 |
+
|
| 88 |
+
model9=[nn.ReLU(True),]
|
| 89 |
+
model9+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 90 |
+
model9+=[nn.ReLU(True),]
|
| 91 |
+
model9+=[norm_layer(128),]
|
| 92 |
+
|
| 93 |
+
# Conv10
|
| 94 |
+
model10up=[nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True),]
|
| 95 |
+
model1short10=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 96 |
+
# add the two feature maps above
|
| 97 |
+
|
| 98 |
+
model10=[nn.ReLU(True),]
|
| 99 |
+
model10+=[nn.Conv2d(128, 128, kernel_size=3, dilation=1, stride=1, padding=1, bias=True),]
|
| 100 |
+
model10+=[nn.LeakyReLU(negative_slope=.2),]
|
| 101 |
+
|
| 102 |
+
# classification output
|
| 103 |
+
model_class=[nn.Conv2d(256, classes, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
|
| 104 |
+
|
| 105 |
+
# regression output
|
| 106 |
+
model_out=[nn.Conv2d(128, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
|
| 107 |
+
model_out+=[nn.Tanh()]
|
| 108 |
+
|
| 109 |
+
self.model1 = nn.Sequential(*model1)
|
| 110 |
+
self.model2 = nn.Sequential(*model2)
|
| 111 |
+
self.model3 = nn.Sequential(*model3)
|
| 112 |
+
self.model4 = nn.Sequential(*model4)
|
| 113 |
+
self.model5 = nn.Sequential(*model5)
|
| 114 |
+
self.model6 = nn.Sequential(*model6)
|
| 115 |
+
self.model7 = nn.Sequential(*model7)
|
| 116 |
+
self.model8up = nn.Sequential(*model8up)
|
| 117 |
+
self.model8 = nn.Sequential(*model8)
|
| 118 |
+
self.model9up = nn.Sequential(*model9up)
|
| 119 |
+
self.model9 = nn.Sequential(*model9)
|
| 120 |
+
self.model10up = nn.Sequential(*model10up)
|
| 121 |
+
self.model10 = nn.Sequential(*model10)
|
| 122 |
+
self.model3short8 = nn.Sequential(*model3short8)
|
| 123 |
+
self.model2short9 = nn.Sequential(*model2short9)
|
| 124 |
+
self.model1short10 = nn.Sequential(*model1short10)
|
| 125 |
+
|
| 126 |
+
self.model_class = nn.Sequential(*model_class)
|
| 127 |
+
self.model_out = nn.Sequential(*model_out)
|
| 128 |
+
|
| 129 |
+
self.upsample4 = nn.Sequential(*[nn.Upsample(scale_factor=4, mode='bilinear'),])
|
| 130 |
+
self.softmax = nn.Sequential(*[nn.Softmax(dim=1),])
|
| 131 |
+
|
| 132 |
+
def forward(self, input_A, input_B=None, mask_B=None):
|
| 133 |
+
if(input_B is None):
|
| 134 |
+
input_B = torch.cat((input_A*0, input_A*0), dim=1)
|
| 135 |
+
if(mask_B is None):
|
| 136 |
+
mask_B = input_A*0
|
| 137 |
+
|
| 138 |
+
conv1_2 = self.model1(torch.cat((self.normalize_l(input_A),self.normalize_ab(input_B),mask_B),dim=1))
|
| 139 |
+
conv2_2 = self.model2(conv1_2[:,:,::2,::2])
|
| 140 |
+
conv3_3 = self.model3(conv2_2[:,:,::2,::2])
|
| 141 |
+
conv4_3 = self.model4(conv3_3[:,:,::2,::2])
|
| 142 |
+
conv5_3 = self.model5(conv4_3)
|
| 143 |
+
conv6_3 = self.model6(conv5_3)
|
| 144 |
+
conv7_3 = self.model7(conv6_3)
|
| 145 |
+
|
| 146 |
+
conv8_up = self.model8up(conv7_3) + self.model3short8(conv3_3)
|
| 147 |
+
conv8_3 = self.model8(conv8_up)
|
| 148 |
+
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
|
| 149 |
+
conv9_3 = self.model9(conv9_up)
|
| 150 |
+
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
|
| 151 |
+
conv10_2 = self.model10(conv10_up)
|
| 152 |
+
out_reg = self.model_out(conv10_2)
|
| 153 |
+
|
| 154 |
+
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
|
| 155 |
+
conv9_3 = self.model9(conv9_up)
|
| 156 |
+
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
|
| 157 |
+
conv10_2 = self.model10(conv10_up)
|
| 158 |
+
out_reg = self.model_out(conv10_2)
|
| 159 |
+
|
| 160 |
+
return self.unnormalize_ab(out_reg)
|
| 161 |
+
|
| 162 |
+
def siggraph17(pretrained=True):
|
| 163 |
+
model = SIGGRAPHGenerator()
|
| 164 |
+
if(pretrained):
|
| 165 |
+
import torch.utils.model_zoo as model_zoo
|
| 166 |
+
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/siggraph17-df00044c.pth',map_location='cpu',check_hash=True))
|
| 167 |
+
return model
|
| 168 |
+
|
app/colorizers/util.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
from skimage import color
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from IPython import embed
|
| 8 |
+
|
| 9 |
+
def load_img(img_path):
|
| 10 |
+
out_np = np.asarray(Image.open(img_path))
|
| 11 |
+
if(out_np.ndim==2):
|
| 12 |
+
out_np = np.tile(out_np[:,:,None],3)
|
| 13 |
+
return out_np
|
| 14 |
+
|
| 15 |
+
def resize_img(img, HW=(256,256), resample=3):
|
| 16 |
+
return np.asarray(Image.fromarray(img).resize((HW[1],HW[0]), resample=resample))
|
| 17 |
+
|
| 18 |
+
def preprocess_img(img_rgb_orig, HW=(256,256), resample=3):
|
| 19 |
+
# return original size L and resized L as torch Tensors
|
| 20 |
+
img_rgb_rs = resize_img(img_rgb_orig, HW=HW, resample=resample)
|
| 21 |
+
|
| 22 |
+
img_lab_orig = color.rgb2lab(img_rgb_orig)
|
| 23 |
+
img_lab_rs = color.rgb2lab(img_rgb_rs)
|
| 24 |
+
|
| 25 |
+
img_l_orig = img_lab_orig[:,:,0]
|
| 26 |
+
img_l_rs = img_lab_rs[:,:,0]
|
| 27 |
+
|
| 28 |
+
tens_orig_l = torch.Tensor(img_l_orig)[None,None,:,:]
|
| 29 |
+
tens_rs_l = torch.Tensor(img_l_rs)[None,None,:,:]
|
| 30 |
+
|
| 31 |
+
return (tens_orig_l, tens_rs_l)
|
| 32 |
+
|
| 33 |
+
def postprocess_tens(tens_orig_l, out_ab, mode='bilinear'):
|
| 34 |
+
# tens_orig_l 1 x 1 x H_orig x W_orig
|
| 35 |
+
# out_ab 1 x 2 x H x W
|
| 36 |
+
|
| 37 |
+
HW_orig = tens_orig_l.shape[2:]
|
| 38 |
+
HW = out_ab.shape[2:]
|
| 39 |
+
|
| 40 |
+
# call resize function if needed
|
| 41 |
+
if(HW_orig[0]!=HW[0] or HW_orig[1]!=HW[1]):
|
| 42 |
+
out_ab_orig = F.interpolate(out_ab, size=HW_orig, mode='bilinear')
|
| 43 |
+
else:
|
| 44 |
+
out_ab_orig = out_ab
|
| 45 |
+
|
| 46 |
+
out_lab_orig = torch.cat((tens_orig_l, out_ab_orig), dim=1)
|
| 47 |
+
return color.lab2rgb(out_lab_orig.data.cpu().numpy()[0,...].transpose((1,2,0)))
|
app/config.py
CHANGED
|
@@ -46,7 +46,8 @@ class Settings(BaseSettings):
|
|
| 46 |
"Colorized using GAN-Colorization-Model"
|
| 47 |
)
|
| 48 |
INFERENCE_PROVIDER: str = os.getenv("INFERENCE_PROVIDER", "fal-ai")
|
| 49 |
-
|
|
|
|
| 50 |
INFERENCE_TIMEOUT: int = int(os.getenv("INFERENCE_TIMEOUT", "180"))
|
| 51 |
HF_TOKEN: str = os.getenv("HF_TOKEN", "")
|
| 52 |
|
|
|
|
| 46 |
"Colorized using GAN-Colorization-Model"
|
| 47 |
)
|
| 48 |
INFERENCE_PROVIDER: str = os.getenv("INFERENCE_PROVIDER", "fal-ai")
|
| 49 |
+
# Note: black-forest-labs interface not used in main.py - only used in main_sdxl.py
|
| 50 |
+
INFERENCE_MODEL: str = os.getenv("INFERENCE_MODEL", "")
|
| 51 |
INFERENCE_TIMEOUT: int = int(os.getenv("INFERENCE_TIMEOUT", "180"))
|
| 52 |
HF_TOKEN: str = os.getenv("HF_TOKEN", "")
|
| 53 |
|
app/main.py
CHANGED
|
@@ -6,9 +6,11 @@ import uuid
|
|
| 6 |
import os
|
| 7 |
import io
|
| 8 |
import json
|
|
|
|
| 9 |
from PIL import Image
|
| 10 |
import torch
|
| 11 |
from torchvision import transforms
|
|
|
|
| 12 |
from app.database import (
|
| 13 |
get_database,
|
| 14 |
log_api_call,
|
|
@@ -22,6 +24,17 @@ try:
|
|
| 22 |
except ImportError:
|
| 23 |
firebase_auth = None
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# -------------------------------------------------
|
| 26 |
# 🚀 FastAPI App
|
| 27 |
# -------------------------------------------------
|
|
@@ -63,10 +76,10 @@ MEDIA_CLICK_DEFAULT_CATEGORY = os.getenv("DEFAULT_CATEGORY_FALLBACK", "69368fcd2
|
|
| 63 |
MODEL_REPO = "Hammad712/GAN-Colorization-Model"
|
| 64 |
MODEL_FILENAME = "generator.pt"
|
| 65 |
|
| 66 |
-
print("⬇️ Downloading model...")
|
| 67 |
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
|
| 68 |
|
| 69 |
-
print("📦 Loading model weights...")
|
| 70 |
state_dict = torch.load(model_path, map_location="cpu")
|
| 71 |
|
| 72 |
# NOTE: Replace with real model architecture
|
|
@@ -75,14 +88,76 @@ state_dict = torch.load(model_path, map_location="cpu")
|
|
| 75 |
# model.load_state_dict(state_dict)
|
| 76 |
# model.eval()
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
transform = transforms.ToTensor()
|
| 81 |
tensor = transform(img.convert("L")).unsqueeze(0)
|
| 82 |
tensor = tensor.repeat(1, 3, 1, 1)
|
| 83 |
output_img = transforms.ToPILImage()(tensor.squeeze())
|
| 84 |
return output_img
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
# -------------------------------------------------
|
| 87 |
# 🗄️ MongoDB Initialization
|
| 88 |
# -------------------------------------------------
|
|
@@ -223,6 +298,7 @@ async def colorize(
|
|
| 223 |
user_id: Optional[str] = Form(None),
|
| 224 |
category_id: Optional[str] = Form(None),
|
| 225 |
categoryId: Optional[str] = Form(None),
|
|
|
|
| 226 |
):
|
| 227 |
import time
|
| 228 |
start_time = time.time()
|
|
@@ -237,6 +313,50 @@ async def colorize(
|
|
| 237 |
if not effective_category_id:
|
| 238 |
effective_category_id = None
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
if not file.content_type.startswith("image/"):
|
| 241 |
error_msg = "Invalid file type"
|
| 242 |
log_api_call(
|
|
@@ -249,7 +369,7 @@ async def colorize(
|
|
| 249 |
# Log failed colorization
|
| 250 |
log_colorization(
|
| 251 |
result_id=None,
|
| 252 |
-
model_type=
|
| 253 |
processing_time=None,
|
| 254 |
user_id=effective_user_id,
|
| 255 |
ip_address=ip_address,
|
|
@@ -260,7 +380,7 @@ async def colorize(
|
|
| 260 |
|
| 261 |
try:
|
| 262 |
img = Image.open(io.BytesIO(await file.read()))
|
| 263 |
-
output_img = colorize_image(img)
|
| 264 |
|
| 265 |
processing_time = time.time() - start_time
|
| 266 |
|
|
@@ -276,13 +396,14 @@ async def colorize(
|
|
| 276 |
"success": True,
|
| 277 |
"result_id": result_id_clean,
|
| 278 |
"download_url": f"{base_url}/results/{result_id}",
|
| 279 |
-
"api_download": f"{base_url}/download/{result_id_clean}"
|
|
|
|
| 280 |
}
|
| 281 |
|
| 282 |
# Log to MongoDB (colorization_db -> colorizations)
|
| 283 |
log_colorization(
|
| 284 |
result_id=result_id_clean,
|
| 285 |
-
model_type=
|
| 286 |
processing_time=processing_time,
|
| 287 |
user_id=effective_user_id,
|
| 288 |
ip_address=ip_address,
|
|
@@ -293,7 +414,7 @@ async def colorize(
|
|
| 293 |
endpoint="/colorize",
|
| 294 |
method="POST",
|
| 295 |
status_code=200,
|
| 296 |
-
request_data={"filename": file.filename, "content_type": file.content_type},
|
| 297 |
response_data=response_data,
|
| 298 |
user_id=effective_user_id,
|
| 299 |
ip_address=ip_address
|
|
@@ -314,7 +435,7 @@ async def colorize(
|
|
| 314 |
# Log failed colorization to colorizations collection
|
| 315 |
log_colorization(
|
| 316 |
result_id=None,
|
| 317 |
-
model_type=
|
| 318 |
processing_time=None,
|
| 319 |
user_id=effective_user_id,
|
| 320 |
ip_address=ip_address,
|
|
|
|
| 6 |
import os
|
| 7 |
import io
|
| 8 |
import json
|
| 9 |
+
import logging
|
| 10 |
from PIL import Image
|
| 11 |
import torch
|
| 12 |
from torchvision import transforms
|
| 13 |
+
import numpy as np
|
| 14 |
from app.database import (
|
| 15 |
get_database,
|
| 16 |
log_api_call,
|
|
|
|
| 24 |
except ImportError:
|
| 25 |
firebase_auth = None
|
| 26 |
|
| 27 |
+
# Import CCO colorizers
|
| 28 |
+
try:
|
| 29 |
+
from app.colorizers import eccv16, siggraph17
|
| 30 |
+
from app.colorizers.util import preprocess_img, postprocess_tens
|
| 31 |
+
CCO_AVAILABLE = True
|
| 32 |
+
except ImportError as e:
|
| 33 |
+
print(f"⚠️ CCO colorizers not available: {e}")
|
| 34 |
+
CCO_AVAILABLE = False
|
| 35 |
+
|
| 36 |
+
logger = logging.getLogger(__name__)
|
| 37 |
+
|
| 38 |
# -------------------------------------------------
|
| 39 |
# 🚀 FastAPI App
|
| 40 |
# -------------------------------------------------
|
|
|
|
| 76 |
MODEL_REPO = "Hammad712/GAN-Colorization-Model"
|
| 77 |
MODEL_FILENAME = "generator.pt"
|
| 78 |
|
| 79 |
+
print("⬇️ Downloading GAN model...")
|
| 80 |
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
|
| 81 |
|
| 82 |
+
print("📦 Loading GAN model weights...")
|
| 83 |
state_dict = torch.load(model_path, map_location="cpu")
|
| 84 |
|
| 85 |
# NOTE: Replace with real model architecture
|
|
|
|
| 88 |
# model.load_state_dict(state_dict)
|
| 89 |
# model.eval()
|
| 90 |
|
| 91 |
+
# -------------------------------------------------
|
| 92 |
+
# 🧠 Load CCO Colorization Models
|
| 93 |
+
# -------------------------------------------------
|
| 94 |
+
cco_models = {}
|
| 95 |
+
if CCO_AVAILABLE:
|
| 96 |
+
print("📦 Loading CCO models...")
|
| 97 |
+
try:
|
| 98 |
+
cco_models["eccv16"] = eccv16(pretrained=True).eval()
|
| 99 |
+
cco_models["siggraph17"] = siggraph17(pretrained=True).eval()
|
| 100 |
+
print("✅ CCO models loaded successfully!")
|
| 101 |
+
except Exception as e:
|
| 102 |
+
print(f"⚠️ Failed to load CCO models: {e}")
|
| 103 |
+
CCO_AVAILABLE = False
|
| 104 |
+
|
| 105 |
+
def colorize_image_gan(img: Image.Image):
|
| 106 |
+
""" GAN colorizer (dummy implementation - replace with real model.predict) """
|
| 107 |
transform = transforms.ToTensor()
|
| 108 |
tensor = transform(img.convert("L")).unsqueeze(0)
|
| 109 |
tensor = tensor.repeat(1, 3, 1, 1)
|
| 110 |
output_img = transforms.ToPILImage()(tensor.squeeze())
|
| 111 |
return output_img
|
| 112 |
|
| 113 |
+
def colorize_image_cco(img: Image.Image, model_name: str = "eccv16"):
|
| 114 |
+
""" CCO colorizer using eccv16 or siggraph17 model """
|
| 115 |
+
if not CCO_AVAILABLE:
|
| 116 |
+
raise ValueError("CCO models are not available")
|
| 117 |
+
|
| 118 |
+
if model_name not in ["eccv16", "siggraph17"]:
|
| 119 |
+
model_name = "eccv16" # Default to eccv16
|
| 120 |
+
|
| 121 |
+
model = cco_models.get(model_name)
|
| 122 |
+
if model is None:
|
| 123 |
+
raise ValueError(f"CCO model '{model_name}' not loaded")
|
| 124 |
+
|
| 125 |
+
# Convert PIL Image to numpy array
|
| 126 |
+
oimg = np.asarray(img)
|
| 127 |
+
if oimg.ndim == 2:
|
| 128 |
+
oimg = np.tile(oimg[:,:,None], 3)
|
| 129 |
+
|
| 130 |
+
# Preprocess image
|
| 131 |
+
(tens_l_orig, tens_l_rs) = preprocess_img(oimg)
|
| 132 |
+
|
| 133 |
+
# Run model inference
|
| 134 |
+
with torch.no_grad():
|
| 135 |
+
out_ab = model(tens_l_rs)
|
| 136 |
+
|
| 137 |
+
# Postprocess output
|
| 138 |
+
output_rgb = postprocess_tens(tens_l_orig, out_ab)
|
| 139 |
+
|
| 140 |
+
# Convert numpy array back to PIL Image
|
| 141 |
+
output_img = Image.fromarray((output_rgb * 255).astype(np.uint8))
|
| 142 |
+
return output_img
|
| 143 |
+
|
| 144 |
+
def colorize_image(img: Image.Image, model_type: str = "gan", cco_model: str = "eccv16"):
|
| 145 |
+
"""
|
| 146 |
+
Colorize image using specified model
|
| 147 |
+
|
| 148 |
+
Args:
|
| 149 |
+
img: PIL Image to colorize
|
| 150 |
+
model_type: "gan" or "cco"
|
| 151 |
+
cco_model: "eccv16" or "siggraph17" (only used if model_type is "cco")
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
Colorized PIL Image
|
| 155 |
+
"""
|
| 156 |
+
if model_type == "cco":
|
| 157 |
+
return colorize_image_cco(img, cco_model)
|
| 158 |
+
else:
|
| 159 |
+
return colorize_image_gan(img)
|
| 160 |
+
|
| 161 |
# -------------------------------------------------
|
| 162 |
# 🗄️ MongoDB Initialization
|
| 163 |
# -------------------------------------------------
|
|
|
|
| 298 |
user_id: Optional[str] = Form(None),
|
| 299 |
category_id: Optional[str] = Form(None),
|
| 300 |
categoryId: Optional[str] = Form(None),
|
| 301 |
+
model: Optional[str] = Form("gan"), # New parameter: "gan", "cco", "cco-eccv16", "cco-siggraph17"
|
| 302 |
):
|
| 303 |
import time
|
| 304 |
start_time = time.time()
|
|
|
|
| 313 |
if not effective_category_id:
|
| 314 |
effective_category_id = None
|
| 315 |
|
| 316 |
+
# Parse model parameter
|
| 317 |
+
model_type = "gan" # Default
|
| 318 |
+
cco_model = "eccv16" # Default for CCO
|
| 319 |
+
model_type_for_log = "gan" # For MongoDB logging
|
| 320 |
+
|
| 321 |
+
if model:
|
| 322 |
+
model = model.strip().lower()
|
| 323 |
+
if model == "cco" or model.startswith("cco-"):
|
| 324 |
+
if not CCO_AVAILABLE:
|
| 325 |
+
error_msg = "CCO models are not available"
|
| 326 |
+
log_api_call(
|
| 327 |
+
endpoint="/colorize",
|
| 328 |
+
method="POST",
|
| 329 |
+
status_code=400,
|
| 330 |
+
error=error_msg,
|
| 331 |
+
ip_address=ip_address
|
| 332 |
+
)
|
| 333 |
+
log_colorization(
|
| 334 |
+
result_id=None,
|
| 335 |
+
model_type="cco",
|
| 336 |
+
processing_time=None,
|
| 337 |
+
user_id=effective_user_id,
|
| 338 |
+
ip_address=ip_address,
|
| 339 |
+
status="failed",
|
| 340 |
+
error=error_msg
|
| 341 |
+
)
|
| 342 |
+
raise HTTPException(status_code=400, detail=error_msg)
|
| 343 |
+
|
| 344 |
+
model_type = "cco"
|
| 345 |
+
if model == "cco-eccv16":
|
| 346 |
+
cco_model = "eccv16"
|
| 347 |
+
model_type_for_log = "cco-eccv16"
|
| 348 |
+
elif model == "cco-siggraph17":
|
| 349 |
+
cco_model = "siggraph17"
|
| 350 |
+
model_type_for_log = "cco-siggraph17"
|
| 351 |
+
else:
|
| 352 |
+
# Default to eccv16 if just "cco" is specified
|
| 353 |
+
cco_model = "eccv16"
|
| 354 |
+
model_type_for_log = "cco-eccv16"
|
| 355 |
+
else:
|
| 356 |
+
# Default to "gan" for any other value
|
| 357 |
+
model_type = "gan"
|
| 358 |
+
model_type_for_log = "gan"
|
| 359 |
+
|
| 360 |
if not file.content_type.startswith("image/"):
|
| 361 |
error_msg = "Invalid file type"
|
| 362 |
log_api_call(
|
|
|
|
| 369 |
# Log failed colorization
|
| 370 |
log_colorization(
|
| 371 |
result_id=None,
|
| 372 |
+
model_type=model_type_for_log,
|
| 373 |
processing_time=None,
|
| 374 |
user_id=effective_user_id,
|
| 375 |
ip_address=ip_address,
|
|
|
|
| 380 |
|
| 381 |
try:
|
| 382 |
img = Image.open(io.BytesIO(await file.read()))
|
| 383 |
+
output_img = colorize_image(img, model_type=model_type, cco_model=cco_model)
|
| 384 |
|
| 385 |
processing_time = time.time() - start_time
|
| 386 |
|
|
|
|
| 396 |
"success": True,
|
| 397 |
"result_id": result_id_clean,
|
| 398 |
"download_url": f"{base_url}/results/{result_id}",
|
| 399 |
+
"api_download": f"{base_url}/download/{result_id_clean}",
|
| 400 |
+
"model_used": model_type_for_log
|
| 401 |
}
|
| 402 |
|
| 403 |
# Log to MongoDB (colorization_db -> colorizations)
|
| 404 |
log_colorization(
|
| 405 |
result_id=result_id_clean,
|
| 406 |
+
model_type=model_type_for_log,
|
| 407 |
processing_time=processing_time,
|
| 408 |
user_id=effective_user_id,
|
| 409 |
ip_address=ip_address,
|
|
|
|
| 414 |
endpoint="/colorize",
|
| 415 |
method="POST",
|
| 416 |
status_code=200,
|
| 417 |
+
request_data={"filename": file.filename, "content_type": file.content_type, "model": model},
|
| 418 |
response_data=response_data,
|
| 419 |
user_id=effective_user_id,
|
| 420 |
ip_address=ip_address
|
|
|
|
| 435 |
# Log failed colorization to colorizations collection
|
| 436 |
log_colorization(
|
| 437 |
result_id=None,
|
| 438 |
+
model_type=model_type_for_log,
|
| 439 |
processing_time=None,
|
| 440 |
user_id=effective_user_id,
|
| 441 |
ip_address=ip_address,
|
requirements.txt
CHANGED
|
@@ -17,4 +17,5 @@ safetensors
|
|
| 17 |
ftfy
|
| 18 |
httpx
|
| 19 |
email-validator
|
| 20 |
-
pymongo
|
|
|
|
|
|
| 17 |
ftfy
|
| 18 |
httpx
|
| 19 |
email-validator
|
| 20 |
+
pymongo
|
| 21 |
+
scikit-image
|