Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import openai
|
| 2 |
+
import sqlite3
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 5 |
+
import os
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from docx import Document
|
| 8 |
+
from PyPDF2 import PdfFileReader
|
| 9 |
+
import re
|
| 10 |
+
|
| 11 |
+
# Set OpenAI API key from environment variable
|
| 12 |
+
openai.api_key = os.environ["Secret"]
|
| 13 |
+
|
| 14 |
+
def find_closest_neighbors(vector1, dictionary_of_vectors):
|
| 15 |
+
vector = openai.Embedding.create(
|
| 16 |
+
input=vector1,
|
| 17 |
+
engine="text-embedding-ada-002"
|
| 18 |
+
)['data'][0]['embedding']
|
| 19 |
+
vector = np.array(vector)
|
| 20 |
+
|
| 21 |
+
cosine_similarities = {}
|
| 22 |
+
for key, value in dictionary_of_vectors.items():
|
| 23 |
+
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0]
|
| 24 |
+
|
| 25 |
+
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True)
|
| 26 |
+
return sorted_cosine_similarities[0:4]
|
| 27 |
+
|
| 28 |
+
def extract_words_from_docx(filename):
|
| 29 |
+
doc = Document(filename)
|
| 30 |
+
full_text = []
|
| 31 |
+
for paragraph in doc.paragraphs:
|
| 32 |
+
full_text.append(paragraph.text)
|
| 33 |
+
text = '\n'.join(full_text)
|
| 34 |
+
return re.findall(r'\b\w+\b', text)
|
| 35 |
+
|
| 36 |
+
def extract_words_from_pdf(filename):
|
| 37 |
+
with open(filename, "rb") as file:
|
| 38 |
+
pdf = PdfFileReader(file)
|
| 39 |
+
text = ""
|
| 40 |
+
for page_num in range(pdf.getNumPages()):
|
| 41 |
+
text += pdf.getPage(page_num).extractText()
|
| 42 |
+
return re.findall(r'\b\w+\b', text)
|
| 43 |
+
|
| 44 |
+
def process_file(file_obj):
|
| 45 |
+
if file_obj is not None:
|
| 46 |
+
# Determine file type
|
| 47 |
+
if file_obj.name.endswith('.docx'):
|
| 48 |
+
words = extract_words_from_docx(file_obj.name)
|
| 49 |
+
elif file_obj.name.endswith('.pdf'):
|
| 50 |
+
words = extract_words_from_pdf(file_obj.name)
|
| 51 |
+
else:
|
| 52 |
+
return "Unsupported file type."
|
| 53 |
+
|
| 54 |
+
# Chunk the words into 200-word chunks and add to database
|
| 55 |
+
conn = sqlite3.connect('text_chunks_with_embeddings (1).db')
|
| 56 |
+
cursor = conn.cursor()
|
| 57 |
+
|
| 58 |
+
chunks = [" ".join(words[i:i+200]) for i in range(0, len(words), 200)]
|
| 59 |
+
for chunk in chunks:
|
| 60 |
+
embedding = openai.Embedding.create(input=chunk, engine="text-embedding-ada-002")['data'][0]['embedding']
|
| 61 |
+
embedding_str = " ".join(map(str, embedding))
|
| 62 |
+
cursor.execute("INSERT INTO chunks (text, embedding) VALUES (?, ?)", (chunk, embedding_str))
|
| 63 |
+
|
| 64 |
+
conn.commit()
|
| 65 |
+
conn.close()
|
| 66 |
+
return "File processed and added to database."
|
| 67 |
+
|
| 68 |
+
return "No file uploaded."
|
| 69 |
+
|
| 70 |
+
def predict(message, history, file_obj=None):
|
| 71 |
+
# If there's a file, process it first
|
| 72 |
+
if file_obj:
|
| 73 |
+
process_file(file_obj)
|
| 74 |
+
|
| 75 |
+
# Connect to the database
|
| 76 |
+
conn = sqlite3.connect('text_chunks_with_embeddings (1).db')
|
| 77 |
+
cursor = conn.cursor()
|
| 78 |
+
cursor.execute("SELECT text, embedding FROM chunks")
|
| 79 |
+
rows = cursor.fetchall()
|
| 80 |
+
|
| 81 |
+
dictionary_of_vectors = {}
|
| 82 |
+
for row in rows:
|
| 83 |
+
text = row[0]
|
| 84 |
+
embedding_str = row[1]
|
| 85 |
+
embedding = np.fromstring(embedding_str, sep=' ')
|
| 86 |
+
dictionary_of_vectors[text] = embedding
|
| 87 |
+
conn.close()
|
| 88 |
+
|
| 89 |
+
match_list = find_closest_neighbors(message, dictionary_of_vectors)
|
| 90 |
+
context = ''
|
| 91 |
+
for match in match_list:
|
| 92 |
+
context += str(match[0])
|
| 93 |
+
context = context[:1500] # Limit context to 1500 characters
|
| 94 |
+
|
| 95 |
+
prep = f"This is an OpenAI model designed to answer questions specific to grant-making applications for an aquarium. Here is some question-specific context: {context}. Q: {message} A: "
|
| 96 |
+
|
| 97 |
+
history_openai_format = []
|
| 98 |
+
for human, assistant in history:
|
| 99 |
+
history_openai_format.append({"role": "user", "content": human})
|
| 100 |
+
history_openai_format.append({"role": "assistant", "content": assistant})
|
| 101 |
+
history_openai_format.append({"role": "user", "content": prep})
|
| 102 |
+
|
| 103 |
+
response = openai.ChatCompletion.create(
|
| 104 |
+
model='gpt-4',
|
| 105 |
+
messages=history_openai_format,
|
| 106 |
+
temperature=1.0,
|
| 107 |
+
stream=True
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
partial_message = ""
|
| 111 |
+
for chunk in response:
|
| 112 |
+
if len(chunk['choices'][0]['delta']) != 0:
|
| 113 |
+
partial_message += chunk['choices'][0]['delta']['content']
|
| 114 |
+
yield partial_message
|
| 115 |
+
|
| 116 |
+
# Modify the Gradio interface to include the file upload component
|
| 117 |
+
gr.Interface(fn=predict,
|
| 118 |
+
inputs=["text", "list", gr.inputs.File(label="Upload PDF or DOCX file (optional)")],
|
| 119 |
+
outputs="chat",
|
| 120 |
+
live=True).launch()
|
| 121 |
+
|
| 122 |
+
|