Spaces:
Runtime error
Runtime error
Commit
Β·
3722795
1
Parent(s):
8cf1f84
change ui, added readable topics names
Browse files- __pycache__/model.cpython-39.pyc +0 -0
- app.py +10 -22
- model.py +12 -38
- models/maintopic_clf/main_topic_dict.pkl +0 -0
- models/scibert/topic_dict.pkl +0 -0
__pycache__/model.cpython-39.pyc
CHANGED
|
Binary files a/__pycache__/model.cpython-39.pyc and b/__pycache__/model.cpython-39.pyc differ
|
|
|
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from pandas import DataFrame
|
| 3 |
import seaborn as sns
|
| 4 |
-
from model import
|
| 5 |
|
| 6 |
st.markdown("# Hello, friend!")
|
| 7 |
st.markdown(" This magic application going to help you with understanding of science paper topic! Cool? Yeah! ")
|
|
@@ -15,12 +15,12 @@ with st.form(key="my_form"):
|
|
| 15 |
|
| 16 |
with c2:
|
| 17 |
doc_title = st.text_area(
|
| 18 |
-
"Paste your
|
| 19 |
height=210,
|
| 20 |
)
|
| 21 |
|
| 22 |
doc_abstract = st.text_area(
|
| 23 |
-
"Paste your abstract text below (max 100500 words)",
|
| 24 |
height=410,
|
| 25 |
)
|
| 26 |
|
|
@@ -44,7 +44,7 @@ with st.form(key="my_form"):
|
|
| 44 |
"β οΈ Your abstract contains "
|
| 45 |
+ str(len_abstract)
|
| 46 |
+ " words."
|
| 47 |
-
+ " Only the first
|
| 48 |
)
|
| 49 |
|
| 50 |
doc_abstract = doc_abstract[:MAX_WORDS_ABSTRACT]
|
|
@@ -68,18 +68,12 @@ st.markdown("## π Yor article probably about: ")
|
|
| 68 |
st.header("")
|
| 69 |
|
| 70 |
df = (
|
| 71 |
-
DataFrame(preds_topic.items(), columns=["Topic", "
|
| 72 |
-
.sort_values(by="
|
| 73 |
.reset_index(drop=True)
|
| 74 |
)
|
| 75 |
df.index += 1
|
| 76 |
|
| 77 |
-
df2 = (
|
| 78 |
-
DataFrame(preds_maintopic.items(), columns=["Topic", "Prob"])
|
| 79 |
-
.sort_values(by="Prob", ascending=False)
|
| 80 |
-
.reset_index(drop=True)
|
| 81 |
-
)
|
| 82 |
-
df2.index += 1
|
| 83 |
|
| 84 |
# Add styling
|
| 85 |
cmGreen = sns.light_palette("green", as_cmap=True)
|
|
@@ -87,27 +81,21 @@ cmRed = sns.light_palette("red", as_cmap=True)
|
|
| 87 |
df = df.style.background_gradient(
|
| 88 |
cmap=cmGreen,
|
| 89 |
subset=[
|
| 90 |
-
"
|
| 91 |
-
],
|
| 92 |
-
)
|
| 93 |
-
df2 = df2.style.background_gradient(
|
| 94 |
-
cmap=cmGreen,
|
| 95 |
-
subset=[
|
| 96 |
-
"Prob",
|
| 97 |
],
|
| 98 |
)
|
| 99 |
|
| 100 |
c1, c2, c3 = st.columns([1, 3, 1])
|
| 101 |
|
| 102 |
format_dictionary = {
|
| 103 |
-
"
|
| 104 |
}
|
| 105 |
|
| 106 |
df = df.format(format_dictionary)
|
| 107 |
-
df2 = df2.format(format_dictionary)
|
| 108 |
|
| 109 |
with c2:
|
| 110 |
st.markdown("#### We suppose your research about: ")
|
| 111 |
-
st.
|
|
|
|
| 112 |
st.markdown("##### More detailed, it's about topic: ")
|
| 113 |
st.table(df)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from pandas import DataFrame
|
| 3 |
import seaborn as sns
|
| 4 |
+
from model import ArxivClassifierModelsPipeline
|
| 5 |
|
| 6 |
st.markdown("# Hello, friend!")
|
| 7 |
st.markdown(" This magic application going to help you with understanding of science paper topic! Cool? Yeah! ")
|
|
|
|
| 15 |
|
| 16 |
with c2:
|
| 17 |
doc_title = st.text_area(
|
| 18 |
+
"Paste your paper's title below (max 100 words)",
|
| 19 |
height=210,
|
| 20 |
)
|
| 21 |
|
| 22 |
doc_abstract = st.text_area(
|
| 23 |
+
"Paste your paper's abstract text below (max 100500 words)",
|
| 24 |
height=410,
|
| 25 |
)
|
| 26 |
|
|
|
|
| 44 |
"β οΈ Your abstract contains "
|
| 45 |
+ str(len_abstract)
|
| 46 |
+ " words."
|
| 47 |
+
+ " Only the first 500 words will be reviewed. Stay tuned as increased allowance is coming! π"
|
| 48 |
)
|
| 49 |
|
| 50 |
doc_abstract = doc_abstract[:MAX_WORDS_ABSTRACT]
|
|
|
|
| 68 |
st.header("")
|
| 69 |
|
| 70 |
df = (
|
| 71 |
+
DataFrame(preds_topic.items(), columns=["Topic", "Probability"])
|
| 72 |
+
.sort_values(by="Probability", ascending=False)
|
| 73 |
.reset_index(drop=True)
|
| 74 |
)
|
| 75 |
df.index += 1
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
# Add styling
|
| 79 |
cmGreen = sns.light_palette("green", as_cmap=True)
|
|
|
|
| 81 |
df = df.style.background_gradient(
|
| 82 |
cmap=cmGreen,
|
| 83 |
subset=[
|
| 84 |
+
"Probability",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
],
|
| 86 |
)
|
| 87 |
|
| 88 |
c1, c2, c3 = st.columns([1, 3, 1])
|
| 89 |
|
| 90 |
format_dictionary = {
|
| 91 |
+
"Probability": "{:.1%}",
|
| 92 |
}
|
| 93 |
|
| 94 |
df = df.format(format_dictionary)
|
|
|
|
| 95 |
|
| 96 |
with c2:
|
| 97 |
st.markdown("#### We suppose your research about: ")
|
| 98 |
+
st.markdown(f"### {preds_maintopic}! ")
|
| 99 |
+
st.markdown(f"Wow, we're impressed, are you addicted to {preds_maintopic.lower()}?! Coool! ")
|
| 100 |
st.markdown("##### More detailed, it's about topic: ")
|
| 101 |
st.table(df)
|
model.py
CHANGED
|
@@ -2,36 +2,6 @@ import streamlit as st
|
|
| 2 |
import pickle
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
|
| 5 |
-
class ArxivClassifierModel():
|
| 6 |
-
|
| 7 |
-
def __init__(self):
|
| 8 |
-
self.model = self.__load_model()
|
| 9 |
-
|
| 10 |
-
model_name_global = "allenai/scibert_scivocab_uncased"
|
| 11 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name_global)
|
| 12 |
-
with open('./models/scibert/decode_dict.pkl', 'rb') as f:
|
| 13 |
-
self.decode_dict = pickle.load(f)
|
| 14 |
-
|
| 15 |
-
def make_predict(self, text):
|
| 16 |
-
# tokenizer_ = AutoTokenizer.from_pretrained(model_name_global)
|
| 17 |
-
tokens = self.tokenizer(text, return_tensors="pt")
|
| 18 |
-
|
| 19 |
-
outs = self.model(tokens.input_ids)
|
| 20 |
-
|
| 21 |
-
probs = outs["logits"].softmax(dim=-1).tolist()[0]
|
| 22 |
-
topic_probs = {}
|
| 23 |
-
for i, p in enumerate(probs):
|
| 24 |
-
if p > 0.1:
|
| 25 |
-
topic_probs[self.decode_dict[i]] = p
|
| 26 |
-
return topic_probs
|
| 27 |
-
|
| 28 |
-
# allow_output_mutation=True
|
| 29 |
-
@st.cache(suppress_st_warning=True)
|
| 30 |
-
def __load_model(self):
|
| 31 |
-
st.write("Loading big model")
|
| 32 |
-
return AutoModelForSequenceClassification.from_pretrained("models/scibert/")
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
class ArxivClassifierModelsPipeline():
|
| 37 |
|
|
@@ -51,6 +21,12 @@ class ArxivClassifierModelsPipeline():
|
|
| 51 |
with open('models/maintopic_clf/decode_dict_maintopic.pkl', 'rb') as f:
|
| 52 |
self.decode_dict_maintopic = pickle.load(f)
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def make_predict(self, text):
|
| 55 |
tokens_topic = self.topic_tokenizer(text, return_tensors="pt")
|
| 56 |
topic_outs = self.model_topic_clf(tokens_topic.input_ids)
|
|
@@ -58,19 +34,17 @@ class ArxivClassifierModelsPipeline():
|
|
| 58 |
topic_probs = {}
|
| 59 |
for i, p in enumerate(probs_topic):
|
| 60 |
if p > 0.1:
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
tokens_maintopic = self.maintopic_tokenizer(text, return_tensors="pt")
|
| 64 |
maintopic_outs = self.model_maintopic_clf(tokens_maintopic.input_ids)
|
| 65 |
probs_maintopic = maintopic_outs["logits"].softmax(dim=-1).tolist()[0]
|
| 66 |
-
maintopic_probs =
|
| 67 |
-
for i, p in enumerate(probs_maintopic):
|
| 68 |
-
if p > 0.1:
|
| 69 |
-
maintopic_probs[self.decode_dict_maintopic[i]] = p
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
return topic_probs, maintopic_probs
|
| 74 |
|
| 75 |
@st.cache(suppress_st_warning=True)
|
| 76 |
def __load_topic_clf(self):
|
|
|
|
| 2 |
import pickle
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
class ArxivClassifierModelsPipeline():
|
| 7 |
|
|
|
|
| 21 |
with open('models/maintopic_clf/decode_dict_maintopic.pkl', 'rb') as f:
|
| 22 |
self.decode_dict_maintopic = pickle.load(f)
|
| 23 |
|
| 24 |
+
with open('models/maintopic_clf/main_topic_dict.pkl', 'rb') as f:
|
| 25 |
+
self.main_topic_dict = pickle.load(f)
|
| 26 |
+
|
| 27 |
+
with open('models/scibert/topic_dict.pkl', 'rb') as f:
|
| 28 |
+
self.topic_dict = pickle.load(f)
|
| 29 |
+
|
| 30 |
def make_predict(self, text):
|
| 31 |
tokens_topic = self.topic_tokenizer(text, return_tensors="pt")
|
| 32 |
topic_outs = self.model_topic_clf(tokens_topic.input_ids)
|
|
|
|
| 34 |
topic_probs = {}
|
| 35 |
for i, p in enumerate(probs_topic):
|
| 36 |
if p > 0.1:
|
| 37 |
+
if self.decode_dict_topic[i] in self.topic_dict:
|
| 38 |
+
topic_probs[self.topic_dict[self.decode_dict_topic[i]]] = p
|
| 39 |
+
else:
|
| 40 |
+
topic_probs[self.decode_dict_topic[i]] = p
|
| 41 |
|
| 42 |
tokens_maintopic = self.maintopic_tokenizer(text, return_tensors="pt")
|
| 43 |
maintopic_outs = self.model_maintopic_clf(tokens_maintopic.input_ids)
|
| 44 |
probs_maintopic = maintopic_outs["logits"].softmax(dim=-1).tolist()[0]
|
| 45 |
+
maintopic_probs = self.decode_dict_maintopic[0]
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
return topic_probs, self.main_topic_dict[maintopic_probs]
|
|
|
|
|
|
|
| 48 |
|
| 49 |
@st.cache(suppress_st_warning=True)
|
| 50 |
def __load_topic_clf(self):
|
models/maintopic_clf/main_topic_dict.pkl
ADDED
|
Binary file (663 Bytes). View file
|
|
|
models/scibert/topic_dict.pkl
ADDED
|
Binary file (1.8 kB). View file
|
|
|