- Visualization: the missing factor in Simultaneous Speech Translation Simultaneous speech translation (SimulST) is the task in which output generation has to be performed on partial, incremental speech input. In recent years, SimulST has become popular due to the spread of cross-lingual application scenarios, like international live conferences and streaming lectures, in which on-the-fly speech translation can facilitate users' access to audio-visual content. In this paper, we analyze the characteristics of the SimulST systems developed so far, discussing their strengths and weaknesses. We then concentrate on the evaluation framework required to properly assess systems' effectiveness. To this end, we raise the need for a broader performance analysis, also including the user experience standpoint. SimulST systems, indeed, should be evaluated not only in terms of quality/latency measures, but also via task-oriented metrics accounting, for instance, for the visualization strategy adopted. In light of this, we highlight which are the goals achieved by the community and what is still missing. 3 authors · Oct 31, 2021
1 Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization. 1 authors · Jul 17, 2013
- Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT Transformer based architectures have become de-facto models used for a range of Natural Language Processing tasks. In particular, the BERT based models achieved significant accuracy gain for GLUE tasks, CoNLL-03 and SQuAD. However, BERT based models have a prohibitive memory footprint and latency. As a result, deploying BERT based models in resource constrained environments has become a challenging task. In this work, we perform an extensive analysis of fine-tuned BERT models using second order Hessian information, and we use our results to propose a novel method for quantizing BERT models to ultra low precision. In particular, we propose a new group-wise quantization scheme, and we use a Hessian based mix-precision method to compress the model further. We extensively test our proposed method on BERT downstream tasks of SST-2, MNLI, CoNLL-03, and SQuAD. We can achieve comparable performance to baseline with at most 2.3% performance degradation, even with ultra-low precision quantization down to 2 bits, corresponding up to 13times compression of the model parameters, and up to 4times compression of the embedding table as well as activations. Among all tasks, we observed the highest performance loss for BERT fine-tuned on SQuAD. By probing into the Hessian based analysis as well as visualization, we show that this is related to the fact that current training/fine-tuning strategy of BERT does not converge for SQuAD. 8 authors · Sep 12, 2019