Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePDEBENCH: An Extensive Benchmark for Scientific Machine Learning
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and representative of a wide range of problems. We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems contribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more realistic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of initial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBench allows researchers to extend the benchmark freely for their own purposes using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
TANKER: Distributed Architecture for Named Entity Recognition and Disambiguation
Named Entity Recognition and Disambiguation (NERD) systems have recently been widely researched to deal with the significant growth of the Web. NERD systems are crucial for several Natural Language Processing (NLP) tasks such as summarization, understanding, and machine translation. However, there is no standard interface specification, i.e. these systems may vary significantly either for exporting their outputs or for processing the inputs. Thus, when a given company desires to implement more than one NERD system, the process is quite exhaustive and prone to failure. In addition, industrial solutions demand critical requirements, e.g., large-scale processing, completeness, versatility, and licenses. Commonly, these requirements impose a limitation, making good NERD models to be ignored by companies. This paper presents TANKER, a distributed architecture which aims to overcome scalability, reliability and failure tolerance limitations related to industrial needs by combining NERD systems. To this end, TANKER relies on a micro-services oriented architecture, which enables agile development and delivery of complex enterprise applications. In addition, TANKER provides a standardized API which makes possible to combine several NERD systems at once.
VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2times speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.
World-in-World: World Models in a Closed-Loop World
Generative world models (WMs) can now simulate worlds with striking visual realism, which naturally raises the question of whether they can endow embodied agents with predictive perception for decision making. Progress on this question has been limited by fragmented evaluation: most existing benchmarks adopt open-loop protocols that emphasize visual quality in isolation, leaving the core issue of embodied utility unresolved, i.e., do WMs actually help agents succeed at embodied tasks? To address this gap, we introduce World-in-World, the first open platform that benchmarks WMs in a closed-loop world that mirrors real agent-environment interactions. World-in-World provides a unified online planning strategy and a standardized action API, enabling heterogeneous WMs for decision making. We curate four closed-loop environments that rigorously evaluate diverse WMs, prioritize task success as the primary metric, and move beyond the common focus on visual quality; we also present the first data scaling law for world models in embodied settings. Our study uncovers three surprises: (1) visual quality alone does not guarantee task success, controllability matters more; (2) scaling post-training with action-observation data is more effective than upgrading the pretrained video generators; and (3) allocating more inference-time compute allows WMs to substantially improve closed-loop performance.
Learning to Coordinate with Experts
When deployed in the real world, AI agents will inevitably face challenges that exceed their individual capabilities. Leveraging assistance from experts, whether humans or highly capable AI systems, can significantly improve both safety and performance in such situations. Since expert assistance is costly, a central challenge is determining when to consult an expert. In this paper, we explore a novel variant of this problem, termed YRC-0, in which an agent must learn to collaborate with an expert in new environments in an unsupervised manner--that is, without interacting with the expert during training. This setting motivates the development of low-cost, robust approaches for training expert-leveraging agents. To support research in this area, we introduce YRC-Bench, an open-source benchmark that instantiates YRC-0 across diverse environments. YRC-Bench provides a standardized Gym-like API, simulated experts, an evaluation pipeline, and implementations of popular baselines. Toward tackling YRC-0, we propose a validation strategy and evaluate a range of learning methods, offering insights that can inform future research. Codebase: github.com/modanesh/YRC-Bench
Predictive Auditing of Hidden Tokens in LLM APIs via Reasoning Length Estimation
Commercial LLM services often conceal internal reasoning traces while still charging users for every generated token, including those from hidden intermediate steps, raising concerns of token inflation and potential overbilling. This gap underscores the urgent need for reliable token auditing, yet achieving it is far from straightforward: cryptographic verification (e.g., hash-based signature) offers little assurance when providers control the entire execution pipeline, while user-side prediction struggles with the inherent variance of reasoning LLMs, where token usage fluctuates across domains and prompt styles. To bridge this gap, we present PALACE (Predictive Auditing of LLM APIs via Reasoning Token Count Estimation), a user-side framework that estimates hidden reasoning token counts from prompt-answer pairs without access to internal traces. PALACE introduces a GRPO-augmented adaptation module with a lightweight domain router, enabling dynamic calibration across diverse reasoning tasks and mitigating variance in token usage patterns. Experiments on math, coding, medical, and general reasoning benchmarks show that PALACE achieves low relative error and strong prediction accuracy, supporting both fine-grained cost auditing and inflation detection. Taken together, PALACE represents an important first step toward standardized predictive auditing, offering a practical path to greater transparency, accountability, and user trust.
How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks
Multimodal foundation models, such as GPT-4o, have recently made remarkable progress, but it is not clear where exactly these models stand in terms of understanding vision. In this paper, we benchmark the performance of popular multimodal foundation models (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmentation, object detection, image classification, depth and surface normal prediction) using established datasets (e.g., COCO, ImageNet and its variants, etc). The main challenges to performing this are: 1) most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and 2) many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these challenges by translating standard vision tasks into equivalent text-promptable and API-compatible tasks via prompt chaining to create a standardized benchmarking framework. We observe that 1) the models are not close to the state-of-the-art specialist models at any task. However, 2) they are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. 3) They perform semantic tasks notably better than geometric ones. 4) While the prompt-chaining techniques affect performance, better models exhibit less sensitivity to prompt variations. 5) GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks, 6) reasoning models, e.g. o3, show improvements in geometric tasks, and 7) a preliminary analysis of models with native image generation, like the latest GPT-4o, shows they exhibit quirks like hallucinations and spatial misalignments.
TabTune: A Unified Library for Inference and Fine-Tuning Tabular Foundation Models
Tabular foundation models represent a growing paradigm in structured data learning, extending the benefits of large-scale pretraining to tabular domains. However, their adoption remains limited due to heterogeneous preprocessing pipelines, fragmented APIs, inconsistent fine-tuning procedures, and the absence of standardized evaluation for deployment-oriented metrics such as calibration and fairness. We present TabTune, a unified library that standardizes the complete workflow for tabular foundation models through a single interface. TabTune provides consistent access to seven state-of-the-art models supporting multiple adaptation strategies, including zero-shot inference, meta-learning, supervised fine-tuning (SFT), and parameter-efficient fine-tuning (PEFT). The framework automates model-aware preprocessing, manages architectural heterogeneity internally, and integrates evaluation modules for performance, calibration, and fairness. Designed for extensibility and reproducibility, TabTune enables consistent benchmarking of adaptation strategies of tabular foundation models. The library is open source and available at https://github.com/Lexsi-Labs/TabTune .
CleanAgent: Automating Data Standardization with LLM-based Agents
Data standardization is a crucial part of the data science life cycle. While tools like Pandas offer robust functionalities, their complexity and the manual effort required for customizing code to diverse column types pose significant challenges. Although large language models (LLMs) like ChatGPT have shown promise in automating this process through natural language understanding and code generation, it still demands expert-level programming knowledge and continuous interaction for prompt refinement. To solve these challenges, our key idea is to propose a Python library with declarative, unified APIs for standardizing different column types, simplifying the LLM's code generation with concise API calls. We first propose Dataprep.Clean, a component of the Dataprep Python Library, significantly reduces the coding complexity by enabling the standardization of specific column types with a single line of code. Then, we introduce the CleanAgent framework integrating Dataprep.Clean and LLM-based agents to automate the data standardization process. With CleanAgent, data scientists only need to provide their requirements once, allowing for a hands-free process. To demonstrate the practical utility of CleanAgent, we developed a user-friendly web application, allowing attendees to interact with it using real-world datasets.
MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits
To reduce development overhead and enable seamless integration between potential components comprising any given generative AI application, the Model Context Protocol (MCP) (Anthropic, 2024) has recently been released and subsequently widely adopted. The MCP is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools. By connecting multiple MCP servers, each defined with a set of tools, resources, and prompts, users are able to define automated workflows fully driven by LLMs. However, we show that the current MCP design carries a wide range of security risks for end users. In particular, we demonstrate that industry-leading LLMs may be coerced into using MCP tools to compromise an AI developer's system through various attacks, such as malicious code execution, remote access control, and credential theft. To proactively mitigate these and related attacks, we introduce a safety auditing tool, MCPSafetyScanner, the first agentic tool to assess the security of an arbitrary MCP server. MCPScanner uses several agents to (a) automatically determine adversarial samples given an MCP server's tools and resources; (b) search for related vulnerabilities and remediations based on those samples; and (c) generate a security report detailing all findings. Our work highlights serious security issues with general-purpose agentic workflows while also providing a proactive tool to audit MCP server safety and address detected vulnerabilities before deployment. The described MCP server auditing tool, MCPSafetyScanner, is freely available at: https://github.com/johnhalloran321/mcpSafetyScanner
SEAL: Suite for Evaluating API-use of LLMs
Large language models (LLMs) have limitations in handling tasks that require real-time access to external APIs. While several benchmarks like ToolBench and APIGen have been developed to assess LLMs' API-use capabilities, they often suffer from issues such as lack of generalizability, limited multi-step reasoning coverage, and instability due to real-time API fluctuations. In this paper, we introduce SEAL, an end-to-end testbed designed to evaluate LLMs in real-world API usage. SEAL standardizes existing benchmarks, integrates an agent system for testing API retrieval and planning, and addresses the instability of real-time APIs by introducing a GPT-4-powered API simulator with caching for deterministic evaluations. Our testbed provides a comprehensive evaluation pipeline that covers API retrieval, API calls, and final responses, offering a reliable framework for structured performance comparison in diverse real-world scenarios. SEAL is publicly available, with ongoing updates for new benchmarks.
ToolCoder: Teach Code Generation Models to use API search tools
Automatically generating source code from natural language descriptions has been a growing field of research in recent years. However, current large-scale code generation models often encounter difficulties when selecting appropriate APIs for specific contexts. These models may generate APIs that do not meet requirements or refer to non-existent APIs in third-party libraries, especially for lesser-known or private libraries. Inspired by the process of human developers using tools to search APIs, we propose ToolCoder, a novel approach that integrates API search tools with existing models to assist in code generation and API selection. To teach our model to use tools, we introduce an automated data annotation method using ChatGPT to add tool usage information into the source code data and fine-tune code generation models. During inference, we integrate API search tools into the generation process so that our model can automatically use the search tool to get suggestions when selecting an API. Our experimental results demonstrate that ToolCoder exhibits excellent performance and generalization across five public and private library code generation benchmarks, with at least 6.21\% improvement on average pass@1 metrics and 9.64\% improvement on average pass@10 metrics compared to state-of-the-art methods. Furthermore, we show that our relatively small ToolCoder model is comparable to one of the current best models, GPT-3.5, highlighting the potential of incorporating programming tools into the code generation process.
API Pack: A Massive Multilingual Dataset for API Call Generation
We introduce API Pack, a multilingual dataset featuring over one million instruction-API call pairs aimed at advancing large language models' API call generation capabilities. Through experiments, we demonstrate API Pack's efficacy in enhancing models for this specialized task while maintaining their overall proficiency at general coding. Fine-tuning CodeLlama-13B on just 20,000 Python instances yields over 10% and 5% higher accuracy than GPT-3.5 and GPT-4 respectively in generating unseen API calls. Scaling to 100k examples improves generalization to new APIs not seen during training. In addition, cross-lingual API call generation is achieved without needing extensive data per language. The dataset, fine-tuned models, and overall code base are publicly available at https://github.com/zguo0525/API-Pack.
Automatically Extracting Web API Specifications from HTML Documentation
Web API specifications are machine-readable descriptions of APIs. These specifications, in combination with related tooling, simplify and support the consumption of APIs. However, despite the increased distribution of web APIs, specifications are rare and their creation and maintenance heavily relies on manual efforts by third parties. In this paper, we propose an automatic approach and an associated tool called D2Spec for extracting specifications from web API documentation pages. Given a seed online documentation page on an API, D2Spec first crawls all documentation pages on the API, and then uses a set of machine learning techniques to extract the base URL, path templates, and HTTP methods, which collectively describe the endpoints of an API. We evaluated whether D2Spec can accurately extract endpoints from documentation on 120 web APIs. The results showed that D2Spec achieved a precision of 87.5% in identifying base URLs, a precision of 81.3% and a recall of 80.6% in generating path templates, and a precision of 84.4% and a recall of 76.2% in extracting HTTP methods. In addition, we found that D2Spec was useful when applied to APIs with pre-existing API specifications: D2Spec revealed many inconsistencies between web API documentation and their corresponding publicly available specifications. Thus, D2Spec can be used by web API providers to keep documentation and specifications in synchronization.
ShortcutsBench: A Large-Scale Real-world Benchmark for API-based Agents
Recent advancements in integrating large language models (LLMs) with application programming interfaces (APIs) have gained significant interest in both academia and industry. These API-based agents, leveraging the strong autonomy and planning capabilities of LLMs, can efficiently solve problems requiring multi-step actions. However, their ability to handle multi-dimensional difficulty levels, diverse task types, and real-world demands through APIs remains unknown. In this paper, we introduce ShortcutsBench, a large-scale benchmark for the comprehensive evaluation of API-based agents in solving tasks with varying levels of difficulty, diverse task types, and real-world demands. ShortcutsBench includes a wealth of real APIs from Apple Inc.'s operating systems, refined user queries from shortcuts, human-annotated high-quality action sequences from shortcut developers, and accurate parameter filling values about primitive parameter types, enum parameter types, outputs from previous actions, and parameters that need to request necessary information from the system or user. Our extensive evaluation of agents built with 5 leading open-source (size >= 57B) and 4 closed-source LLMs (e.g. Gemini-1.5-Pro and GPT-3.5) reveals significant limitations in handling complex queries related to API selection, parameter filling, and requesting necessary information from systems and users. These findings highlight the challenges that API-based agents face in effectively fulfilling real and complex user queries. All datasets, code, and experimental results will be available at https://github.com/eachsheep/shortcutsbench.
MCPToolBench++: A Large Scale AI Agent Model Context Protocol MCP Tool Use Benchmark
LLMs' capabilities are enhanced by using function calls to integrate various data sources or API results into the context window. Typical tools include search, web crawlers, maps, financial data, file systems, and browser usage, etc. Integrating these data sources or functions requires a standardized method. The Model Context Protocol (MCP) provides a standardized way to supply context to LLMs. However, the evaluation of LLMs and AI Agents' MCP tool use abilities suffer from several issues. First, there's a lack of comprehensive datasets or benchmarks to evaluate various MCP tools. Second, the diverse formats of response from MCP tool call execution further increase the difficulty of evaluation. Additionally, unlike existing tool-use benchmarks with high success rates in functions like programming and math functions, the success rate of real-world MCP tool is not guaranteed and varies across different MCP servers. Furthermore, the LLMs' context window also limits the number of available tools that can be called in a single run, because the textual descriptions of tool and the parameters have long token length for an LLM to process all at once. To help address the challenges of evaluating LLMs' performance on calling MCP tools, we propose MCPToolBench++, a large-scale, multi-domain AI Agent tool use benchmark. As of July 2025, this benchmark is build upon marketplace of over 4k MCP servers from more than 40 categories, collected from the MCP marketplaces and GitHub communities. The datasets consist of both single-step and multi-step tool calls across different categories. We evaluated SOTA LLMs with agentic abilities on this benchmark and reported the results.
Private-Library-Oriented Code Generation with Large Language Models
Large language models (LLMs), such as Codex and GPT-4, have recently showcased their remarkable code generation abilities, facilitating a significant boost in coding efficiency. This paper will delve into utilizing LLMs for code generation in private libraries, as they are widely employed in everyday programming. Despite their remarkable capabilities, generating such private APIs poses a formidable conundrum for LLMs, as they inherently lack exposure to these private libraries during pre-training. To address this challenge, we propose a novel framework that emulates the process of programmers writing private code. This framework comprises two modules: APIFinder first retrieves potentially useful APIs from API documentation; and APICoder then leverages these retrieved APIs to generate private code. Specifically, APIFinder employs vector retrieval techniques and allows user involvement in the retrieval process. For APICoder, it can directly utilize off-the-shelf code generation models. To further cultivate explicit proficiency in invoking APIs from prompts, we continuously pre-train a reinforced version of APICoder, named CodeGenAPI. Our goal is to train the above two modules on vast public libraries, enabling generalization to private ones. Meanwhile, we create four private library benchmarks, including TorchDataEval, TorchDataComplexEval, MonkeyEval, and BeatNumEval, and meticulously handcraft test cases for each benchmark to support comprehensive evaluations. Numerous experiments on the four benchmarks consistently affirm the effectiveness of our approach. Furthermore, deeper analysis is also conducted to glean additional insights.
ToolDial: Multi-turn Dialogue Generation Method for Tool-Augmented Language Models
Tool-Augmented Language Models (TALMs) leverage external APIs to answer user queries across various domains. However, existing benchmark datasets for TALM research often feature simplistic dialogues that do not reflect real-world scenarios, such as the need for models to ask clarifying questions or proactively call additional APIs when essential information is missing. To address these limitations, we construct and release ToolDial, a dataset comprising 11,111 multi-turn dialogues, with an average of 8.95 turns per dialogue, based on APIs from RapidAPI. ToolDial has two key characteristics. First, the dialogues incorporate 16 user and system actions (e.g., "Request", "Clarify", "Fail inform") to capture the rich dynamics of real-world interactions. Second, we simulate dialogues where the system requests necessary information from the user based on API documentation and seeks additional APIs if the user fails to provide the required information. To facilitate this process, we introduce a method for generating an API graph that represents input and output compatibility between APIs. Using ToolDial, we evaluate a suite of language models on their ability to predict correct actions and extract input parameter values for API calls from the dialogue history. Modern language models achieve accuracy scores below 70%, indicating substantial room for improvement. We release our dataset and code at https://github.com/holi-lab/ToolDial.
Standardizing Intelligence: Aligning Generative AI for Regulatory and Operational Compliance
Technical standards, or simply standards, are established documented guidelines and rules that facilitate the interoperability, quality, and accuracy of systems and processes. In recent years, we have witnessed an emerging paradigm shift where the adoption of generative AI (GenAI) models has increased tremendously, spreading implementation interests across standard-driven industries, including engineering, legal, healthcare, and education. In this paper, we assess the criticality levels of different standards across domains and sectors and complement them by grading the current compliance capabilities of state-of-the-art GenAI models. To support the discussion, we outline possible challenges and opportunities with integrating GenAI for standard compliance tasks while also providing actionable recommendations for entities involved with developing and using standards. Overall, we argue that aligning GenAI with standards through computational methods can help strengthen regulatory and operational compliance. We anticipate this area of research will play a central role in the management, oversight, and trustworthiness of larger, more powerful GenAI-based systems in the near future.
Beyond Browsing: API-Based Web Agents
Web browsers are a portal to the internet, where much of human activity is undertaken. Thus, there has been significant research work in AI agents that interact with the internet through web browsing. However, there is also another interface designed specifically for machine interaction with online content: application programming interfaces (APIs). In this paper we ask -- what if we were to take tasks traditionally tackled by browsing agents, and give AI agents access to APIs? To do so, we propose two varieties of agents: (1) an API-calling agent that attempts to perform online tasks through APIs only, similar to traditional coding agents, and (2) a Hybrid Agent that can interact with online data through both web browsing and APIs. In experiments on WebArena, a widely-used and realistic benchmark for web navigation tasks, we find that API-based agents outperform web browsing agents. Hybrid Agents out-perform both others nearly uniformly across tasks, resulting in a more than 20.0% absolute improvement over web browsing alone, achieving a success rate of 35.8%, achiving the SOTA performance among task-agnostic agents. These results strongly suggest that when APIs are available, they present an attractive alternative to relying on web browsing alone.
Closing the Performance Gap with Modern C++
On the way to Exascale, programmers face the increasing challenge of having to support multiple hardware architectures from the same code base. At the same time, portability of code and performance are increasingly difficult to achieve as hardware architectures are becoming more and more diverse. Today's heterogeneous systems often include two or more completely distinct and incompatible hardware execution models, such as GPGPU's, SIMD vector units, and general purpose cores which conventionally have to be programmed using separate tool chains representing non-overlapping programming models. The recent revival of interest in the industry and the wider community for the C++ language has spurred a remarkable amount of standardization proposals and technical specifications in the arena of concurrency and parallelism. This recently includes an increasing amount of discussion around the need for a uniform, higher-level abstraction and programming model for parallelism in the C++ standard targeting heterogeneous and distributed computing. Such an abstraction should perfectly blend with existing, already standardized language and library features, but should also be generic enough to support future hardware developments. In this paper, we present the results from developing such a higher-level programming abstraction for parallelism in C++ which aims at enabling code and performance portability over a wide range of architectures and for various types of parallelism. We present and compare performance data obtained from running the well-known STREAM benchmark ported to our higher level C++ abstraction with the corresponding results from running it natively. We show that our abstractions enable performance at least as good as the comparable base-line benchmarks while providing a uniform programming API on all compared target architectures.
A Solution-based LLM API-using Methodology for Academic Information Seeking
Applying large language models (LLMs) for academic API usage shows promise in reducing researchers' academic information seeking efforts. However, current LLM API-using methods struggle with complex API coupling commonly encountered in academic queries. To address this, we introduce SoAy, a solution-based LLM API-using methodology for academic information seeking. It uses code with a solution as the reasoning method, where a solution is a pre-constructed API calling sequence. The addition of the solution reduces the difficulty for the model to understand the complex relationships between APIs. Code improves the efficiency of reasoning. To evaluate SoAy, we introduce SoAyBench, an evaluation benchmark accompanied by SoAyEval, built upon a cloned environment of APIs from AMiner. Experimental results demonstrate a 34.58-75.99\% performance improvement compared to state-of-the-art LLM API-based baselines. All datasets, codes, tuned models, and deployed online services are publicly accessible at https://github.com/RUCKBReasoning/SoAy.
APIGen: Generative API Method Recommendation
Automatic API method recommendation is an essential task of code intelligence, which aims to suggest suitable APIs for programming queries. Existing approaches can be categorized into two primary groups: retrieval-based and learning-based approaches. Although these approaches have achieved remarkable success, they still come with notable limitations. The retrieval-based approaches rely on the text representation capabilities of embedding models, while the learning-based approaches require extensive task-specific labeled data for training. To mitigate the limitations, we propose APIGen, a generative API recommendation approach through enhanced in-context learning (ICL). APIGen involves two main components: (1) Diverse Examples Selection. APIGen searches for similar posts to the programming queries from the lexical, syntactical, and semantic perspectives, providing more informative examples for ICL. (2) Guided API Recommendation. APIGen enables large language models (LLMs) to perform reasoning before generating API recommendations, where the reasoning involves fine-grained matching between the task intent behind the queries and the factual knowledge of the APIs. With the reasoning process, APIGen makes recommended APIs better meet the programming requirement of queries and also enhances the interpretability of results. We compare APIGen with four existing approaches on two publicly available benchmarks. Experiments show that APIGen outperforms the best baseline CLEAR by 105.8% in method-level API recommendation and 54.3% in class-level API recommendation in terms of SuccessRate@1. Besides, APIGen achieves an average 49.87% increase compared to the zero-shot performance of popular LLMs such as GPT-4 in method-level API recommendation regarding the SuccessRate@3 metric.
Type-Directed Program Synthesis for RESTful APIs
With the rise of software-as-a-service and microservice architectures, RESTful APIs are now ubiquitous in mobile and web applications. A service can have tens or hundreds of API methods, making it a challenge for programmers to find the right combination of methods to solve their task. We present APIphany, a component-based synthesizer for programs that compose calls to RESTful APIs. The main innovation behind APIphany is the use of precise semantic types, both to specify user intent and to direct the search. APIphany contributes three novel mechanisms to overcome challenges in adapting component-based synthesis to the REST domain: (1) a type inference algorithm for augmenting REST specifications with semantic types; (2) an efficient synthesis technique for "wrangling" semi-structured data, which is commonly required in working with RESTful APIs; and (3) a new form of simulated execution to avoid executing APIs calls during synthesis. We evaluate APIphany on three real-world APIs and 32 tasks extracted from GitHub repositories and StackOverflow. In our experiments, APIphany found correct solutions to 29 tasks, with 23 of them reported among top ten synthesis results.
Small-Text: Active Learning for Text Classification in Python
We introduce small-text, an easy-to-use active learning library, which offers pool-based active learning for single- and multi-label text classification in Python. It features numerous pre-implemented state-of-the-art query strategies, including some that leverage the GPU. Standardized interfaces allow the combination of a variety of classifiers, query strategies, and stopping criteria, facilitating a quick mix and match, and enabling a rapid and convenient development of both active learning experiments and applications. With the objective of making various classifiers and query strategies accessible for active learning, small-text integrates several well-known machine learning libraries, namely scikit-learn, PyTorch, and Hugging Face transformers. The latter integrations are optionally installable extensions, so GPUs can be used but are not required. Using this new library, we investigate the performance of the recently published SetFit training paradigm, which we compare to vanilla transformer fine-tuning, finding that it matches the latter in classification accuracy while outperforming it in area under the curve. The library is available under the MIT License at https://github.com/webis-de/small-text, in version 1.3.0 at the time of writing.
AppBench: Planning of Multiple APIs from Various APPs for Complex User Instruction
Large Language Models (LLMs) can interact with the real world by connecting with versatile external APIs, resulting in better problem-solving and task automation capabilities. Previous research primarily focuses on APIs with limited arguments from a single source or overlooks the complex dependency relationship between different APIs. However, it is essential to utilize multiple APIs collaboratively from various sources (e.g., different Apps in the iPhone), especially for complex user instructions. In this paper, we introduce AppBench, the first benchmark to evaluate LLMs' ability to plan and execute multiple APIs from various sources in order to complete the user's task. Specifically, we consider two significant challenges in multiple APIs: 1) graph structures: some APIs can be executed independently while others need to be executed one by one, resulting in graph-like execution order; and 2) permission constraints: which source is authorized to execute the API call. We have experimental results on 9 distinct LLMs; e.g., GPT-4o achieves only a 2.0\% success rate at the most complex instruction, revealing that the existing state-of-the-art LLMs still cannot perform well in this situation even with the help of in-context learning and finetuning. Our code and data are publicly available at https://github.com/ruleGreen/AppBench.
TPTU-v2: Boosting Task Planning and Tool Usage of Large Language Model-based Agents in Real-world Systems
Large Language Models (LLMs) have demonstrated proficiency in addressing tasks that necessitate a combination of task planning and the usage of external tools that require a blend of task planning and the utilization of external tools, such as APIs. However, real-world complex systems present three prevalent challenges concerning task planning and tool usage: (1) The real system usually has a vast array of APIs, so it is impossible to feed the descriptions of all APIs to the prompt of LLMs as the token length is limited; (2) the real system is designed for handling complex tasks, and the base LLMs can hardly plan a correct sub-task order and API-calling order for such tasks; (3) Similar semantics and functionalities among APIs in real systems create challenges for both LLMs and even humans in distinguishing between them. In response, this paper introduces a comprehensive framework aimed at enhancing the Task Planning and Tool Usage (TPTU) abilities of LLM-based agents operating within real-world systems. Our framework comprises three key components designed to address these challenges: (1) the API Retriever selects the most pertinent APIs for the user task among the extensive array available; (2) LLM Finetuner tunes a base LLM so that the finetuned LLM can be more capable for task planning and API calling; (3) the Demo Selector adaptively retrieves different demonstrations related to hard-to-distinguish APIs, which is further used for in-context learning to boost the final performance. We validate our methods using a real-world commercial system as well as an open-sourced academic dataset, and the outcomes clearly showcase the efficacy of each individual component as well as the integrated framework.
API-BLEND: A Comprehensive Corpora for Training and Benchmarking API LLMs
There is a growing need for Large Language Models (LLMs) to effectively use tools and external Application Programming Interfaces (APIs) to plan and complete tasks. As such, there is tremendous interest in methods that can acquire sufficient quantities of train and test data that involve calls to tools / APIs. Two lines of research have emerged as the predominant strategies for addressing this challenge. The first has focused on synthetic data generation techniques, while the second has involved curating task-adjacent datasets which can be transformed into API / Tool-based tasks. In this paper, we focus on the task of identifying, curating, and transforming existing datasets and, in turn, introduce API-BLEND, a large corpora for training and systematic testing of tool-augmented LLMs. The datasets mimic real-world scenarios involving API-tasks such as API / tool detection, slot filling, and sequencing of the detected APIs. We demonstrate the utility of the API-BLEND dataset for both training and benchmarking purposes.
API2Com: On the Improvement of Automatically Generated Code Comments Using API Documentations
Code comments can help in program comprehension and are considered as important artifacts to help developers in software maintenance. However, the comments are mostly missing or are outdated, specially in complex software projects. As a result, several automatic comment generation models are developed as a solution. The recent models explore the integration of external knowledge resources such as Unified Modeling Language class diagrams to improve the generated comments. In this paper, we propose API2Com, a model that leverages the Application Programming Interface Documentations (API Docs) as a knowledge resource for comment generation. The API Docs include the description of the methods in more details and therefore, can provide better context in the generated comments. The API Docs are used along with the code snippets and Abstract Syntax Trees in our model. We apply the model on a large Java dataset of over 130,000 methods and evaluate it using both Transformer and RNN-base architectures. Interestingly, when API Docs are used, the performance increase is negligible. We therefore run different experiments to reason about the results. For methods that only contain one API, adding API Docs improves the results by 4% BLEU score on average (BLEU score is an automatic evaluation metric used in machine translation). However, as the number of APIs that are used in a method increases, the performance of the model in generating comments decreases due to long documentations used in the input. Our results confirm that the API Docs can be useful in generating better comments, but, new techniques are required to identify the most informative ones in a method rather than using all documentations simultaneously.
Standardize: Aligning Language Models with Expert-Defined Standards for Content Generation
Domain experts across engineering, healthcare, and education follow strict standards for producing quality content such as technical manuals, medication instructions, and children's reading materials. However, current works in controllable text generation have yet to explore using these standards as references for control. Towards this end, we introduce Standardize, a retrieval-style in-context learning-based framework to guide large language models to align with expert-defined standards. Focusing on English language standards in the education domain as a use case, we consider the Common European Framework of Reference for Languages (CEFR) and Common Core Standards (CCS) for the task of open-ended content generation. Our findings show that models can gain 40% to 100% increase in precise accuracy for Llama2 and GPT-4, respectively, demonstrating that the use of knowledge artifacts extracted from standards and integrating them in the generation process can effectively guide models to produce better standard-aligned content.
Doc2Agent: Scalable Generation of Tool-Using Agents from API Documentation
REST APIs play important roles in enriching the action space of web agents, yet most API-based agents rely on curated and uniform toolsets that do not reflect the complexity of real-world APIs. Building tool-using agents for arbitrary domains remains a major challenge, as it requires reading unstructured API documentation, testing APIs and inferring correct parameters. We propose Doc2Agent, a scalable pipeline to build agents that can call Python-based tools generated from API documentation. Doc2Agent generates executable tools from API documentations and iteratively refines them using a code agent. We evaluate our approach on real-world APIs, WebArena APIs, and research APIs, producing validated tools. We achieved a 55\% relative performance improvement with 90\% lower cost compared to direct API calling on WebArena benchmark. A domain-specific agent built for glycomaterial science further demonstrates the pipeline's adaptability to complex, knowledge-rich tasks. Doc2Agent offers a generalizable solution for building tool agents from unstructured API documentation at scale.
Towards an Approach for Evaluating the Impact of AI Standards
There have been multiple calls for investments in the development of AI standards that both preserve the transformative potential and minimize the risks of AI. The goals of AI standards, particularly with respect to AI data, performance, and governance, are to promote innovation and public trust in systems that use AI. However, there is a lack of a formal or shared method to measure the impact of these standardization activities on the goals of innovation and trust. This concept paper proposes an analytical approach that could inform the evaluation of the impact of AI standards. The proposed approach could be used to measure, assess, and eventually evaluate the extent to which AI standards achieve their stated goals, since most Standards Development Organizationss do not track the impact of their standards once completed. It is intended to stimulate discussions with a wide variety of stakeholders, including academia and the standards community, about the potential for the approach to evaluate the effectiveness, utility, and relative value of AI standards. The document draws on successful and well-tested evaluation frameworks, tools, and metrics that are used for monitoring and assessing the effect of programmatic interventions in other domains to describe a possible approach. It begins by describing the context within which an evaluation would be designed, and then introduces a standard evaluation framework. These sections are followed by a description of what outputs and outcomes might result from the adoption and implementation of AI standards and the process whereby those AI standards are developed . Subsequent sections provide an overview of how the effectiveness of AI standards might be assessed and a conclusion.
Contextual API Completion for Unseen Repositories Using LLMs
Large language models have made substantial progress in addressing diverse code-related tasks. However, their adoption is hindered by inconsistencies in generating output due to the lack of real-world, domain-specific information, such as for intra-repository API calls for unseen software projects. We introduce a novel technique to mitigate hallucinations by leveraging global and local contextual information within a code repository for API completion tasks. Our approach is tailored to refine code completion tasks, with a focus on optimizing local API completions. We examine relevant import statements during API completion to derive insights into local APIs, drawing from their method signatures. For API token completion, we analyze the inline variables and correlate them with the appropriate imported modules, thereby allowing our approach to rank the most contextually relevant suggestions from the available local APIs. Further, for conversational API completion, we gather APIs that are most relevant to the developer query with a retrieval-based search across the project. We employ our tool, LANCE, within the framework of our proposed benchmark, APIEval, encompassing two different programming languages. Our evaluation yields an average accuracy of 82.6% for API token completion and 76.9% for conversational API completion tasks. On average, LANCE surpasses Copilot by 143% and 142% for API token completion and conversational API completion, respectively. The implications of our findings are substantial for developers, suggesting that our lightweight context analysis can be applied to multilingual environments without language-specific training or fine-tuning, allowing for efficient implementation with minimal examples and effort.
Evaluating Embedding APIs for Information Retrieval
The ever-increasing size of language models curtails their widespread access to the community, thereby galvanizing many companies and startups into offering access to large language models through APIs. One particular API, suitable for dense retrieval, is the semantic embedding API that builds vector representations of a given text. With a growing number of APIs at our disposal, in this paper, our goal is to analyze semantic embedding APIs in realistic retrieval scenarios in order to assist practitioners and researchers in finding suitable services according to their needs. Specifically, we wish to investigate the capabilities of existing APIs on domain generalization and multilingual retrieval. For this purpose, we evaluate the embedding APIs on two standard benchmarks, BEIR, and MIRACL. We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective on English, in contrast to the standard practice, i.e., employing them as first-stage retrievers. For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best albeit at a higher cost. We hope our work lays the groundwork for thoroughly evaluating APIs that are critical in search and more broadly, in information retrieval.
Pop Quiz! Do Pre-trained Code Models Possess Knowledge of Correct API Names?
Recent breakthroughs in pre-trained code models, such as CodeBERT and Codex, have shown their superior performance in various downstream tasks. The correctness and unambiguity of API usage among these code models are crucial for achieving desirable program functionalities, requiring them to learn various API fully qualified names structurally and semantically. Recent studies reveal that even state-of-the-art pre-trained code models struggle with suggesting the correct APIs during code generation. However, the reasons for such poor API usage performance are barely investigated. To address this challenge, we propose using knowledge probing as a means of interpreting code models, which uses cloze-style tests to measure the knowledge stored in models. Our comprehensive study examines a code model's capability of understanding API fully qualified names from two different perspectives: API call and API import. Specifically, we reveal that current code models struggle with understanding API names, with pre-training strategies significantly affecting the quality of API name learning. We demonstrate that natural language context can assist code models in locating Python API names and generalize Python API name knowledge to unseen data. Our findings provide insights into the limitations and capabilities of current pre-trained code models, and suggest that incorporating API structure into the pre-training process can improve automated API usage and code representations. This work provides significance for advancing code intelligence practices and direction for future studies. All experiment results, data and source code used in this work are available at https://doi.org/10.5281/zenodo.7902072.
Compositional Generalization for Natural Language Interfaces to Web APIs
This paper presents Okapi, a new dataset for Natural Language to executable web Application Programming Interfaces (NL2API). This dataset is in English and contains 22,508 questions and 9,019 unique API calls, covering three domains. We define new compositional generalization tasks for NL2API which explore the models' ability to extrapolate from simple API calls in the training set to new and more complex API calls in the inference phase. Also, the models are required to generate API calls that execute correctly as opposed to the existing approaches which evaluate queries with placeholder values. Our dataset is different than most of the existing compositional semantic parsing datasets because it is a non-synthetic dataset studying the compositional generalization in a low-resource setting. Okapi is a step towards creating realistic datasets and benchmarks for studying compositional generalization alongside the existing datasets and tasks. We report the generalization capabilities of sequence-to-sequence baseline models trained on a variety of the SCAN and Okapi datasets tasks. The best model achieves 15\% exact match accuracy when generalizing from simple API calls to more complex API calls. This highlights some challenges for future research. Okapi dataset and tasks are publicly available at https://aka.ms/nl2api/data.
Octopus: On-device language model for function calling of software APIs
In the rapidly evolving domain of artificial intelligence, Large Language Models (LLMs) play a crucial role due to their advanced text processing and generation abilities. This study introduces a new strategy aimed at harnessing on-device LLMs in invoking software APIs. We meticulously compile a dataset derived from software API documentation and apply fine-tuning to LLMs with capacities of 2B, 3B and 7B parameters, specifically to enhance their proficiency in software API interactions. Our approach concentrates on refining the models' grasp of API structures and syntax, significantly enhancing the accuracy of API function calls. Additionally, we propose conditional masking techniques to ensure outputs in the desired formats and reduce error rates while maintaining inference speeds. We also propose a novel benchmark designed to evaluate the effectiveness of LLMs in API interactions, establishing a foundation for subsequent research. Octopus, the fine-tuned model, is proved to have better performance than GPT-4 for the software APIs calling. This research aims to advance automated software development and API integration, representing substantial progress in aligning LLM capabilities with the demands of practical software engineering applications.
StableToolBench: Towards Stable Large-Scale Benchmarking on Tool Learning of Large Language Models
Large Language Models (LLMs) have witnessed remarkable advancements in recent years, prompting the exploration of tool learning, which integrates LLMs with external tools to address diverse real-world challenges. Assessing the capability of LLMs to utilise tools necessitates large-scale and stable benchmarks. However, previous works relied on either hand-crafted online tools with limited scale, or large-scale real online APIs suffering from instability of API status. To address this problem, we introduce StableToolBench, a benchmark evolving from ToolBench, proposing a virtual API server and stable evaluation system. The virtual API server contains a caching system and API simulators which are complementary to alleviate the change in API status. Meanwhile, the stable evaluation system designs solvable pass and win rates using GPT-4 as the automatic evaluator to eliminate the randomness during evaluation. Experimental results demonstrate the stability of StableToolBench, and further discuss the effectiveness of API simulators, the caching system, and the evaluator system.
Democratizing AI scientists using ToolUniverse
AI scientists are emerging computational systems that serve as collaborative partners in discovery. These systems remain difficult to build because they are bespoke, tied to rigid workflows, and lack shared environments that unify tools, data, and analyses into a common ecosystem. In omics, unified ecosystems have transformed research by enabling interoperability, reuse, and community-driven development; AI scientists require comparable infrastructure. We present ToolUniverse, an ecosystem for building AI scientists from any language or reasoning model, whether open or closed. TOOLUNIVERSE standardizes how AI scientists identify and call tools, integrating more than 600 machine learning models, datasets, APIs, and scientific packages for data analysis, knowledge retrieval, and experimental design. It automatically refines tool interfaces for correct use by AI scientists, creates new tools from natural language descriptions, iteratively optimizes tool specifications, and composes tools into agentic workflows. In a case study of hypercholesterolemia, ToolUniverse was used to create an AI scientist to identify a potent analog of a drug with favorable predicted properties. The open-source ToolUniverse is available at https://aiscientist.tools.
When LLMs Meet API Documentation: Can Retrieval Augmentation Aid Code Generation Just as It Helps Developers?
Retrieval-augmented generation (RAG) has increasingly shown its power in extending large language models' (LLMs') capability beyond their pre-trained knowledge. Existing works have shown that RAG can help with software development tasks such as code generation, code update, and test generation. Yet, the effectiveness of adapting LLMs to fast-evolving or less common API libraries using RAG remains unknown. To bridge this gap, we take an initial step to study this unexplored yet practical setting - when developers code with a less common library, they often refer to its API documentation; likewise, when LLMs are allowed to look up API documentation via RAG, to what extent can LLMs be advanced? To mimic such a setting, we select four less common open-source Python libraries with a total of 1017 eligible APIs. We study the factors that affect the effectiveness of using the documentation of less common API libraries as additional knowledge for retrieval and generation. Our intensive study yields interesting findings: (1) RAG helps improve LLMs' performance by 83%-220%. (2) Example code contributes the most to advance LLMs, instead of the descriptive texts and parameter lists in the API documentation. (3) LLMs could sometimes tolerate mild noises (typos in description or incorrect parameters) by referencing their pre-trained knowledge or document context. Finally, we suggest that developers pay more attention to the quality and diversity of the code examples in the API documentation. The study sheds light on future low-code software development workflows.
MERA Code: A Unified Framework for Evaluating Code Generation Across Tasks
Advancements in LLMs have enhanced task automation in software engineering; however, current evaluations primarily focus on natural language tasks, overlooking code quality. Most benchmarks prioritize high-level reasoning over executable code and real-world performance, leaving gaps in understanding true capabilities and risks associated with these models in production. To address this issue, we propose MERA Code, a new addition to the MERA benchmark family, specifically focused on evaluating code for the latest code generation LLMs in Russian. This benchmark includes 11 evaluation tasks that span 8 programming languages. Our proposed evaluation methodology features a taxonomy that outlines the practical coding skills necessary for models to complete these tasks. The benchmark comprises an open-source codebase for users to conduct MERA assessments, a scoring system compatible with various programming environments, and a platform featuring a leaderboard and submission system. We evaluate open LLMs and frontier API models, analyzing their limitations in terms of practical coding tasks in non-English languages. We are publicly releasing MERA to guide future research, anticipate groundbreaking features in model development, and standardize evaluation procedures.
Experimenting with Multi-Agent Software Development: Towards a Unified Platform
Large language models are redefining software engineering by implementing AI-powered techniques throughout the whole software development process, including requirement gathering, software architecture, code generation, testing, and deployment. However, it is still difficult to develop a cohesive platform that consistently produces the best outcomes across all stages. The objective of this study is to develop a unified platform that utilizes multiple artificial intelligence agents to automate the process of transforming user requirements into well-organized deliverables. These deliverables include user stories, prioritization, and UML sequence diagrams, along with the modular approach to APIs, unit tests, and end-to-end tests. Additionally, the platform will organize tasks, perform security and compliance, and suggest design patterns and improvements for non-functional requirements. We allow users to control and manage each phase according to their preferences. In addition, the platform provides security and compliance checks following European standards and proposes design optimizations. We use multiple models, such as GPT-3.5, GPT-4, and Llama3 to enable to generation of modular code as per user choice. The research also highlights the limitations and future research discussions to overall improve the software development life cycle. The source code for our uniform platform is hosted on GitHub, enabling additional experimentation and supporting both research and practical uses. \end
Binding Language Models in Symbolic Languages
Though end-to-end neural approaches have recently been dominating NLP tasks in both performance and ease-of-use, they lack interpretability and robustness. We propose Binder, a training-free neural-symbolic framework that maps the task input to a program, which (1) allows binding a unified API of language model (LM) functionalities to a programming language (e.g., SQL, Python) to extend its grammar coverage and thus tackle more diverse questions, (2) adopts an LM as both the program parser and the underlying model called by the API during execution, and (3) requires only a few in-context exemplar annotations. Specifically, we employ GPT-3 Codex as the LM. In the parsing stage, with only a few in-context exemplars, Codex is able to identify the part of the task input that cannot be answerable by the original programming language, correctly generate API calls to prompt Codex to solve the unanswerable part, and identify where to place the API calls while being compatible with the original grammar. In the execution stage, Codex can perform versatile functionalities (e.g., commonsense QA, information extraction) given proper prompts in the API calls. Binder achieves state-of-the-art results on WikiTableQuestions and TabFact datasets, with explicit output programs that benefit human debugging. Note that previous best systems are all finetuned on tens of thousands of task-specific samples, while Binder only uses dozens of annotations as in-context exemplars without any training. Our code is available at https://github.com/HKUNLP/Binder .
Author Once, Publish Everywhere: Portable Metadata Authoring with the CEDAR Embeddable Editor
High-quality, "rich" metadata are essential for making research data findable, interoperable, and reusable. The Center for Expanded Data Annotation and Retrieval (CEDAR) has long addressed this need by providing tools to design machine-actionable metadata templates that encode community standards in a computable form. To make these capabilities more accessible within real-world research workflows, we have developed the CEDAR Embeddable Editor (CEE)-a lightweight, interoperable Web Component that brings structured, standards-based metadata authoring directly into third-party platforms. The CEE dynamically renders metadata forms from machine-actionable templates and produces semantically rich metadata in JSON-LD format. It supports ontology-based value selection via the BioPortal ontology repository, and it includes external authority resolution for persistent identifiers such as ORCIDs for individuals and RORs for research organizations. Crucially, the CEE requires no custom user-interface development, allowing deployment across diverse platforms. The CEE has been successfully integrated into generalist scientific data repositories such as Dryad and the Open Science Framework, demonstrating its ability to support discipline-specific metadata creation. By supporting the embedding of metadata authoring within existing research environments, the CEE can facilitate the adoption of community standards and help improve metadata quality across scientific disciplines.
SwissNYF: Tool Grounded LLM Agents for Black Box Setting
While Large Language Models (LLMs) have demonstrated enhanced capabilities in function-calling, these advancements primarily rely on accessing the functions' responses. This methodology is practical for simpler APIs but faces scalability issues with irreversible APIs that significantly impact the system, such as a database deletion API. Similarly, processes requiring extensive time for each API call and those necessitating forward planning, like automated action pipelines, present complex challenges. Furthermore, scenarios often arise where a generalized approach is needed because algorithms lack direct access to the specific implementations of these functions or secrets to use them. Traditional tool planning methods are inadequate in these cases, compelling the need to operate within black-box environments. Unlike their performance in tool manipulation, LLMs excel in black-box tasks, such as program synthesis. Therefore, we harness the program synthesis capabilities of LLMs to strategize tool usage in black-box settings, ensuring solutions are verified prior to implementation. We introduce TOPGUN, an ingeniously crafted approach leveraging program synthesis for black box tool planning. Accompanied by SwissNYF, a comprehensive suite that integrates black-box algorithms for planning and verification tasks, addressing the aforementioned challenges and enhancing the versatility and effectiveness of LLMs in complex API interactions. The public code for SwissNYF is available at https://github.com/iclr-dummy-user/SwissNYF.
Function Assistant: A Tool for NL Querying of APIs
In this paper, we describe Function Assistant, a lightweight Python-based toolkit for querying and exploring source code repositories using natural language. The toolkit is designed to help end-users of a target API quickly find information about functions through high-level natural language queries and descriptions. For a given text query and background API, the tool finds candidate functions by performing a translation from the text to known representations in the API using the semantic parsing approach of Richardson and Kuhn (2017). Translations are automatically learned from example text-code pairs in example APIs. The toolkit includes features for building translation pipelines and query engines for arbitrary source code projects. To explore this last feature, we perform new experiments on 27 well-known Python projects hosted on Github.
AnyTool: Self-Reflective, Hierarchical Agents for Large-Scale API Calls
We introduce AnyTool, a large language model agent designed to revolutionize the utilization of a vast array of tools in addressing user queries. We utilize over 16,000 APIs from Rapid API, operating under the assumption that a subset of these APIs could potentially resolve the queries. AnyTool primarily incorporates three elements: an API retriever with a hierarchical structure, a solver aimed at resolving user queries using a selected set of API candidates, and a self-reflection mechanism, which re-activates AnyTool if the initial solution proves impracticable. AnyTool is powered by the function calling feature of GPT-4, eliminating the need for training external modules. We also revisit the evaluation protocol introduced by previous works and identify a limitation in this protocol that leads to an artificially high pass rate. By revising the evaluation protocol to better reflect practical application scenarios, we introduce an additional benchmark, termed AnyToolBench. Experiments across various datasets demonstrate the superiority of our AnyTool over strong baselines such as ToolLLM and a GPT-4 variant tailored for tool utilization. For instance, AnyTool outperforms ToolLLM by +35.4% in terms of average pass rate on ToolBench. Code will be available at https://github.com/dyabel/AnyTool.
Path-based Algebraic Foundations of Graph Query Languages
Graph databases are gaining momentum thanks to the flexibility and expressiveness of their data models and query languages. A standardization activity driven by the ISO/IEC standardization body is also ongoing and has already conducted to the specification of the first versions of two standard graph query languages, namely SQL/PGQ and GQL, respectively in 2023 and 2024. Apart from the standards, there exists a panoply of concrete graph query languages provided by current graph database systems, each offering different query features. A common limitation of current graph query engines is the absence of an algebraic approach for evaluating path queries. To address this, we introduce an abstract algebra for evaluating path queries, allowing paths to be treated as first-class entities within the query processing pipeline. We demonstrate that our algebra can express a core fragment of path queries defined in GQL and SQL/PGQ, thereby serving as a formal framework for studying both standards and supporting their implementation in current graph database systems. We also show that evaluation trees for path algebra expressions can function as logical plans for evaluating path queries and enable the application of query optimization techniques. Our algebraic framework has the potential to act as a lingua franca for path query evaluation, enabling different implementations to be expressed and compared.
Can ChatGPT replace StackOverflow? A Study on Robustness and Reliability of Large Language Model Code Generation
Recently, the large language models (LLMs) have shown extraordinary ability in understanding natural language and generating programming code. It has been a common practice of software engineers to consult LLMs when encountering coding questions. Although efforts have been made to avoid syntax errors and align the code with the intended semantics, the reliability and robustness of the code generationfrom LLMs have not yet been thoroughly studied. The executable code is not equivalent to the reliable and robust code, especially in the context of real-world software development. The misuse of APIs in the generated code could lead to severe problem, such as resource leaks, program crashes. To make things worse, the users of LLM code generation services are actually the developers that are most vulnerable to these code that seems right -- They are always novice developers that are not familiar with the APIs that LLMs generate code for them. Therefore, they could hardly tell the misuse in the code generated by LLMs, which further facilitates the incorrect code applied in real-world software. Existing code evaluation benchmark and datasets focus on crafting small tasks such as programming questions in coding interviews, which however deviates from the problem that developers would ask LLM for real-world coding help. To fill the missing piece, in this work, we propose a dataset RobustAPI for evaluating the reliability and robustness of code generated by LLMs. We collect 1208 coding questions from StackOverflow on 24 representative Java APIs. We summarize thecommon misuse patterns of these APIs and evaluate them oncurrent popular LLMs. The evaluation results show that evenfor GPT-4, 62% of the generated code contains API misuses,which would cause unexpected consequences if the code isintroduced into real-world software.
AI Agentic workflows and Enterprise APIs: Adapting API architectures for the age of AI agents
The rapid advancement of Generative AI has catalyzed the emergence of autonomous AI agents, presenting unprecedented challenges for enterprise computing infrastructures. Current enterprise API architectures are predominantly designed for human-driven, predefined interaction patterns, rendering them ill-equipped to support intelligent agents' dynamic, goal-oriented behaviors. This research systematically examines the architectural adaptations for enterprise APIs to support AI agentic workflows effectively. Through a comprehensive analysis of existing API design paradigms, agent interaction models, and emerging technological constraints, the paper develops a strategic framework for API transformation. The study employs a mixed-method approach, combining theoretical modeling, comparative analysis, and exploratory design principles to address critical challenges in standardization, performance, and intelligent interaction. The proposed research contributes a conceptual model for next-generation enterprise APIs that can seamlessly integrate with autonomous AI agent ecosystems, offering significant implications for future enterprise computing architectures.
CallNavi: A Study and Challenge on Function Calling Routing and Invocation in Large Language Models
Interacting with a software system via a chatbot can be challenging, especially when the chatbot needs to generate API calls, in the right order and with the right parameters, to communicate with the system. API calling in chatbot systems poses significant challenges, particularly in complex, multi-step tasks requiring accurate API selection and execution. We contribute to this domain in three ways: first, by introducing a novel dataset designed to assess models on API function selection, parameter generation, and nested API calls; second, by benchmarking state-of-the-art language models across varying levels of complexity to evaluate their performance in API function generation and parameter accuracy; and third, by proposing an enhanced API routing method that combines general-purpose large language models for API selection with fine-tuned models for parameter generation and some prompt engineering approach. These approaches lead to substantial improvements in handling complex API tasks, offering practical advancements for real-world API-driven chatbot systems.
DeepCodeSeek: Real-Time API Retrieval for Context-Aware Code Generation
Current search techniques are limited to standard RAG query-document applications. In this paper, we propose a novel technique to expand the code and index for predicting the required APIs, directly enabling high-quality, end-to-end code generation for auto-completion and agentic AI applications. We address the problem of API leaks in current code-to-code benchmark datasets by introducing a new dataset built from real-world ServiceNow Script Includes that capture the challenge of unclear API usage intent in the code. Our evaluation metrics show that this method achieves 87.86% top-40 retrieval accuracy, allowing the critical context with APIs needed for successful downstream code generation. To enable real-time predictions, we develop a comprehensive post-training pipeline that optimizes a compact 0.6B reranker through synthetic dataset generation, supervised fine-tuning, and reinforcement learning. This approach enables our compact reranker to outperform a much larger 8B model while maintaining 2.5x reduced latency, effectively addressing the nuances of enterprise-specific code without the computational overhead of larger models.
CRAFT: Customizing LLMs by Creating and Retrieving from Specialized Toolsets
Large language models (LLMs) are often augmented with tools to solve complex tasks. By generating code snippets and executing them through task-specific Application Programming Interfaces (APIs), they can offload certain functions to dedicated external modules, such as image encoding and performing calculations. However, most existing approaches to augment LLMs with tools are constrained by general-purpose APIs and lack the flexibility for tailoring them to specific tasks. In this work, we present CRAFT, a general tool creation and retrieval framework for LLMs. It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks. For each task, we collect specific code solutions by prompting GPT-4 to solve the training examples. Following a validation step ensuring the correctness, these solutions are abstracted into code snippets to enhance reusability, and deduplicated for higher quality. At inference time, the language model retrieves snippets from the toolsets and then executes them or generates the output conditioning on the retrieved snippets. Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning. Experiments on vision-language, tabular processing, and mathematical reasoning tasks show that our approach achieves substantial improvements compared to strong baselines. In addition, our in-depth analysis reveals that: (1) consistent performance improvement can be achieved by scaling up the number of tools and the capability of the backbone models; (2) each component of our approach contributes to the performance gains; (3) the created tools are well-structured and reliable with low complexity and atomicity. The code is available at https://github.com/lifan-yuan/CRAFT.
A Comparative Study of DSL Code Generation: Fine-Tuning vs. Optimized Retrieval Augmentation
Natural Language to Code Generation has made significant progress in recent years with the advent of Large Language Models(LLMs). While generation for general-purpose languages like C, C++, and Python has improved significantly, LLMs struggle with custom function names in Domain Specific Languages or DSLs. This leads to higher hallucination rates and syntax errors, specially for DSLs having a high number of custom function names. Additionally, constant updates to function names add to the challenge as LLMs need to stay up-to-date. In this paper, we present optimizations for using Retrieval Augmented Generation (or RAG) with LLMs for DSL generation along with an ablation study comparing these strategies. We generated a train as well as test dataset with a DSL to represent automation tasks across roughly 700 APIs in public domain. We used the training dataset to fine-tune a Codex model for this DSL. Our results showed that the fine-tuned model scored the best on code similarity metric. With our RAG optimizations, we achieved parity for similarity metric. The compilation rate, however, showed that both the models still got the syntax wrong many times, with RAG-based method being 2 pts better. Conversely, hallucination rate for RAG model lagged by 1 pt for API names and by 2 pts for API parameter keys. We conclude that an optimized RAG model can match the quality of fine-tuned models and offer advantages for new, unseen APIs.
ResourceSync: Leveraging Sitemaps for Resource Synchronization
Many applications need up-to-date copies of collections of changing Web resources. Such synchronization is currently achieved using ad-hoc or proprietary solutions. We propose ResourceSync, a general Web resource synchronization protocol that leverages XML Sitemaps. It provides a set of capabilities that can be combined in a modular manner to meet local or community requirements. We report on work to implement this protocol for arXiv.org and also provide an experimental prototype for the English Wikipedia as well as a client API.
Gorilla: Large Language Model Connected with Massive APIs
Large Language Models (LLMs) have seen an impressive wave of advances recently, with models now excelling in a variety of tasks, such as mathematical reasoning and program synthesis. However, their potential to effectively use tools via API calls remains unfulfilled. This is a challenging task even for today's state-of-the-art LLMs such as GPT-4, largely due to their inability to generate accurate input arguments and their tendency to hallucinate the wrong usage of an API call. We release Gorilla, a finetuned LLaMA-based model that surpasses the performance of GPT-4 on writing API calls. When combined with a document retriever, Gorilla demonstrates a strong capability to adapt to test-time document changes, enabling flexible user updates or version changes. It also substantially mitigates the issue of hallucination, commonly encountered when prompting LLMs directly. To evaluate the model's ability, we introduce APIBench, a comprehensive dataset consisting of HuggingFace, TorchHub, and TensorHub APIs. The successful integration of the retrieval system with Gorilla demonstrates the potential for LLMs to use tools more accurately, keep up with frequently updated documentation, and consequently increase the reliability and applicability of their outputs. Gorilla's code, model, data, and demo are available at https://gorilla.cs.berkeley.edu
A Large-Scale Evolvable Dataset for Model Context Protocol Ecosystem and Security Analysis
The Model Context Protocol (MCP) has recently emerged as a standardized interface for connecting language models with external tools and data. As the ecosystem rapidly expands, the lack of a structured, comprehensive view of existing MCP artifacts presents challenges for research. To bridge this gap, we introduce MCPCorpus, a large-scale dataset containing around 14K MCP servers and 300 MCP clients. Each artifact is annotated with 20+ normalized attributes capturing its identity, interface configuration, GitHub activity, and metadata. MCPCorpus provides a reproducible snapshot of the real-world MCP ecosystem, enabling studies of adoption trends, ecosystem health, and implementation diversity. To keep pace with the rapid evolution of the MCP ecosystem, we provide utility tools for automated data synchronization, normalization, and inspection. Furthermore, to support efficient exploration and exploitation, we release a lightweight web-based search interface. MCPCorpus is publicly available at: https://github.com/Snakinya/MCPCorpus.
CodeAssistBench (CAB): Dataset & Benchmarking for Multi-turn Chat-Based Code Assistance
Programming assistants powered by large language models have transformed software development, yet most benchmarks focus narrowly on code generation tasks. Recent efforts like InfiBench and StackEval attempt to address this gap using Stack Overflow data but remain limited to single-turn interactions in isolated contexts, require significant manual curation, and fail to represent complete project environments. We introduce CodeAssistBench (CAB), the first benchmark framework for evaluating multi-turn programming assistance in realistic settings that address real-world questions about actual codebases. Unlike existing programming Q&A benchmarks, CAB automatically generates scalable datasets from question-related GitHub issues using configurable parameters (e.g., repository creation date, star count, programming languages), and includes automatic containerization of codebases for evaluation. It then evaluates models through simulated users in these containerized environments with full codebase access. Using this framework, we constructed a test set of 3,286 real-world programming questions across 231 repositories, spanning seven programming languages and diverse problem domains. Our evaluation of leading LLMs reveals a substantial capability gap: while models perform well on Stack Overflow questions with success rates of 70-83%, they resolve only up to 16.49% of CAB's recent issues. This discrepancy highlights the challenges of providing assistance in complex, project-specific contexts versus answering standalone questions.
API design for machine learning software: experiences from the scikit-learn project
Scikit-learn is an increasingly popular machine learning li- brary. Written in Python, it is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts. In this paper, we present and discuss our design choices for the application programming interface (API) of the project. In particular, we describe the simple and elegant interface shared by all learning and processing units in the library and then discuss its advantages in terms of composition and reusability. The paper also comments on implementation details specific to the Python ecosystem and analyzes obstacles faced by users and developers of the library.
CoderEval: A Benchmark of Pragmatic Code Generation with Generative Pre-trained Models
Code generation models based on the pre-training and fine-tuning paradigm have been increasingly attempted by both academia and industry, resulting in well-known industrial models such as Codex, CodeGen, and PanGu-Coder. To evaluate the effectiveness of these models, multiple existing benchmarks are proposed, including only cases of generating a standalone function, i.e., a function that may invoke or access only built-in functions and standard libraries. However, non-standalone functions, which typically are not included in the existing benchmarks, constitute more than 70% of the functions in popular open-source projects, and evaluating models' effectiveness on standalone functions cannot reflect these models' effectiveness on pragmatic code generation scenarios. To help bridge the preceding gap, in this paper, we propose a benchmark named CoderEval, consisting of 230 Python and 230 Java code generation tasks carefully curated from popular real-world open-source projects and a self-contained execution platform to automatically assess the functional correctness of generated code. CoderEval supports code generation tasks from six levels of context dependency, where context refers to code elements such as types, APIs, variables, and consts defined outside the function under generation but within the dependent third-party libraries, current class, file, or project. CoderEval can be used to evaluate the effectiveness of models in generating code beyond only standalone functions. By evaluating three code generation models on CoderEval, we find that the effectiveness of these models in generating standalone functions is substantially higher than that in generating non-standalone functions. Our analysis highlights the current progress and pinpoints future directions to further improve a model's effectiveness by leveraging contextual information for pragmatic code generation.
StackEval: Benchmarking LLMs in Coding Assistance
We present two comprehensive benchmarks to evaluate the performance of language models in coding assistance tasks, covering code writing, debugging, code review, and conceptual understanding. Our main contribution includes two curated datasets: StackEval, a large-scale benchmark derived from Stack Overflow questions, and StackUnseen, a dynamic benchmark featuring the most recent Stack Overflow content. These benchmarks offer novel insights into the capabilities and limitations of LLMs, particularly in handling new and emerging content. Additionally, we assess LLMs' proficiency as judges for coding tasks using a curated, human-annotated dataset, exploring their evaluation capabilities and potential biases, including whether they favor their own generated solutions. Our findings underscore the potential of these benchmarks to advance LLM development and application in coding assistance. To ensure reproducibility, we publicly share our datasets and evaluation code at https://github.com/ProsusAI/stack-eval .
Narrow Transformer: Starcoder-Based Java-LM For Desktop
This paper presents NT-Java-1.1B, an open-source specialized code language model built on StarCoderBase-1.1B, designed for coding tasks in Java programming. NT-Java-1.1B achieves state-of-the-art performance, surpassing its base model and majority of other models of similar size on MultiPL-E Java code benchmark. While there have been studies on extending large, generic pre-trained models to improve proficiency in specific programming languages like Python, similar investigations on small code models for other programming languages are lacking. Large code models require specialized hardware like GPUs for inference, highlighting the need for research into building small code models that can be deployed on developer desktops. This paper addresses this research gap by focusing on the development of a small Java code model, NT-Java-1.1B, and its quantized versions, which performs comparably to open models around 1.1B on MultiPL-E Java code benchmarks, making them ideal for desktop deployment. This paper establishes the foundation for specialized models across languages and sizes for a family of NT Models.
CodeLSI: Leveraging Foundation Models for Automated Code Generation with Low-Rank Optimization and Domain-Specific Instruction Tuning
Context: Automated code generation using Foundation Models (FMs) offers promising solutions for enhancing software development efficiency. However, challenges remain in ensuring domain specificity, cost-effectiveness, and security - especially when relying on third-party APIs. This paper introduces CodeLSI, a framework that combines low-rank optimization and domain-specific instruction tuning to address these challenges. Objectives: The aim of this study is to develop and evaluate CodeLSI, a novel approach for generating high-quality code tailored to specific domains, using FMs fine-tuned on company infrastructure without dependence on external APIs. Methods: CodeLSI applies low-rank adaptation techniques to reduce the computational cost of model pre-training and fine-tuning. Domain-specific instruction tuning is employed to align code generation with organizational needs. We implemented and tested the framework on real-world JavaScript coding tasks using datasets drawn from internal software projects. Results: Experimental evaluations show that CodeLSI produces high-quality, context aware code. It outperforms baseline models in terms of relevance, accuracy, and domain fit. The use of low-rank optimization significantly reduced resource requirements, enabling scalable training on company-owned infrastructure. Conclusion: CodeLSI demonstrates that combining low-rank optimization with domain specific tuning can enhance the practicality and performance of FMs for automated code generation. This approach provides a secure, cost-efficient alternative to commercial API based solutions and supports faster, more targeted innovation in software development.
LLM+Reasoning+Planning for supporting incomplete user queries in presence of APIs
Recent availability of Large Language Models (LLMs) has led to the development of numerous LLM-based approaches aimed at providing natural language interfaces for various end-user tasks. These end-user tasks in turn can typically be accomplished by orchestrating a given set of APIs. In practice, natural language task requests (user queries) are often incomplete, i.e., they may not contain all the information required by the APIs. While LLMs excel at natural language processing (NLP) tasks, they frequently hallucinate on missing information or struggle with orchestrating the APIs. The key idea behind our proposed approach is to leverage logical reasoning and classical AI planning along with an LLM for accurately answering user queries including identification and gathering of any missing information in these queries. Our approach uses an LLM and ASP (Answer Set Programming) solver to translate a user query to a representation in Planning Domain Definition Language (PDDL) via an intermediate representation in ASP. We introduce a special API "get_info_api" for gathering missing information. We model all the APIs as PDDL actions in a way that supports dataflow between the APIs. Our approach then uses a classical AI planner to generate an orchestration of API calls (including calls to get_info_api) to answer the user query. Our evaluation results show that our approach significantly outperforms a pure LLM based approach by achieving over 95\% success rate in most cases on a dataset containing complete and incomplete single goal and multi-goal queries where the multi-goal queries may or may not require dataflow among the APIs.
ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs
Despite the advancements of open-source large language models (LLMs) and their variants, e.g., LLaMA and Vicuna, they remain significantly limited in performing higher-level tasks, such as following human instructions to use external tools (APIs). This is because current instruction tuning largely focuses on basic language tasks instead of the tool-use domain. This is in contrast to state-of-the-art (SOTA) LLMs, e.g., ChatGPT, which have demonstrated excellent tool-use capabilities but are unfortunately closed source. To facilitate tool-use capabilities within open-source LLMs, we introduce ToolLLM, a general tool-use framework of data construction, model training and evaluation. We first present ToolBench, an instruction-tuning dataset for tool use, which is created automatically using ChatGPT. Specifically, we collect 16,464 real-world RESTful APIs spanning 49 categories from RapidAPI Hub, then prompt ChatGPT to generate diverse human instructions involving these APIs, covering both single-tool and multi-tool scenarios. Finally, we use ChatGPT to search for a valid solution path (chain of API calls) for each instruction. To make the searching process more efficient, we develop a novel depth-first search-based decision tree (DFSDT), enabling LLMs to evaluate multiple reasoning traces and expand the search space. We show that DFSDT significantly enhances the planning and reasoning capabilities of LLMs. For efficient tool-use assessment, we develop an automatic evaluator: ToolEval. We fine-tune LLaMA on ToolBench and obtain ToolLLaMA. Our ToolEval reveals that ToolLLaMA demonstrates a remarkable ability to execute complex instructions and generalize to unseen APIs, and exhibits comparable performance to ChatGPT. To make the pipeline more practical, we devise a neural API retriever to recommend appropriate APIs for each instruction, negating the need for manual API selection.
PEFT-Ref: A Modular Reference Architecture and Typology for Parameter-Efficient Finetuning Techniques
Recent parameter-efficient finetuning (PEFT) techniques aim to improve over the considerable cost of fully finetuning large pretrained language models (PLM). As different PEFT techniques proliferate, it is becoming difficult to compare them, in particular in terms of (i) the structure and functionality they add to the PLM, (ii) the different types and degrees of efficiency improvements achieved, (iii) performance at different downstream tasks, and (iv) how differences in structure and functionality relate to efficiency and task performance. To facilitate such comparisons, this paper presents a reference architecture which standardises aspects shared by different PEFT techniques, while isolating differences to specific locations and interactions with the standard components. Through this process of standardising and isolating differences, a modular view of PEFT techniques emerges, supporting not only direct comparison of different techniques and their efficiency and task performance, but also systematic exploration of reusability and composability of the different types of finetuned modules. We demonstrate how the reference architecture can be applied to understand properties and relative advantages of PEFT techniques, hence to inform selection of techniques for specific tasks, and design choices for new PEFT techniques.
On the relevance of APIs facing fairwashed audits
Recent legislation required AI platforms to provide APIs for regulators to assess their compliance with the law. Research has nevertheless shown that platforms can manipulate their API answers through fairwashing. Facing this threat for reliable auditing, this paper studies the benefits of the joint use of platform scraping and of APIs. In this setup, we elaborate on the use of scraping to detect manipulated answers: since fairwashing only manipulates API answers, exploiting scraps may reveal a manipulation. To abstract the wide range of specific API-scrap situations, we introduce a notion of proxy that captures the consistency an auditor might expect between both data sources. If the regulator has a good proxy of the consistency, then she can easily detect manipulation and even bypass the API to conduct her audit. On the other hand, without a good proxy, relying on the API is necessary, and the auditor cannot defend against fairwashing. We then simulate practical scenarios in which the auditor may mostly rely on the API to conveniently conduct the audit task, while maintaining her chances to detect a potential manipulation. To highlight the tension between the audit task and the API fairwashing detection task, we identify Pareto-optimal strategies in a practical audit scenario. We believe this research sets the stage for reliable audits in practical and manipulation-prone setups.
A11YN: aligning LLMs for accessible web UI code generation
Large language models (LLMs) have recently demonstrated strong capabilities in generating functional and aesthetic web interfaces directly from instructions. However, these models often replicate accessibility flaws from their training data, resulting in interfaces that exclude users with diverse needs and contexts. To address this gap, we introduce A11yn, the first method that aligns code-generating LLMs to reliably produce accessibility-compliant web UIs. A11yn optimizes a novel reward function that penalizes violations of the Web Content Accessibility Guidelines (WCAG), with penalties scaled to the severity of each violation as identified by an accessibility testing engine. To support training, we construct UIReq-6.8K, a dataset of 6,800 diverse instructions for web UI generation. For evaluation, we introduce RealUIReq-300, a benchmark of 300 real-world web UI requests grounded and manually curated from public web pages, spanning a broad range of use cases. Empirical results show that A11yn significantly outperforms strong baselines, lowering the Inaccessibility Rate by 60% over the base model while preserving semantic fidelity and visual quality of generated UIs. These findings demonstrate that accessibility can be systematically optimized within LLMs, showing the feasibility of aligning code generation for accessibility.
DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation
We introduce DS-1000, a code generation benchmark with a thousand data science problems spanning seven Python libraries, such as NumPy and Pandas. Compared to prior works, DS-1000 incorporates three core features. First, our problems reflect diverse, realistic, and practical use cases since we collected them from StackOverflow. Second, our automatic evaluation is highly specific (reliable) -- across all Codex-002-predicted solutions that our evaluation accept, only 1.8% of them are incorrect; we achieve this with multi-criteria metrics, checking both functional correctness by running test cases and surface-form constraints by restricting API usages or keywords. Finally, we proactively defend against memorization by slightly modifying our problems to be different from the original StackOverflow source; consequently, models cannot answer them correctly by memorizing the solutions from pre-training. The current best public system (Codex-002) achieves 43.3% accuracy, leaving ample room for improvement. We release our benchmark at https://ds1000-code-gen.github.io.
Experimental Standards for Deep Learning in Natural Language Processing Research
The field of Deep Learning (DL) has undergone explosive growth during the last decade, with a substantial impact on Natural Language Processing (NLP) as well. Yet, compared to more established disciplines, a lack of common experimental standards remains an open challenge to the field at large. Starting from fundamental scientific principles, we distill ongoing discussions on experimental standards in NLP into a single, widely-applicable methodology. Following these best practices is crucial to strengthen experimental evidence, improve reproducibility and support scientific progress. These standards are further collected in a public repository to help them transparently adapt to future needs.
RestGPT: Connecting Large Language Models with Real-World RESTful APIs
Tool-augmented large language models (LLMs) have achieved remarkable progress in tackling a broad range of tasks. However, existing methods are mainly restricted to specifically designed tools and fail to fulfill complex instructions, having great limitations when confronted with real-world scenarios. In this paper, we explore a more realistic scenario by connecting LLMs with RESTful APIs, which adhere to the widely adopted REST software architectural style for web service development. To address the practical challenges of tackling complex instructions, we propose RestGPT, which exploits the power of LLMs and conducts a coarse-to-fine online planning mechanism to enhance the abilities of task decomposition and API selection. RestGPT also contains an API executor tailored for calling RESTful APIs, which can meticulously formulate parameters and parse API responses. To fully evaluate the performance of RestGPT, we propose RestBench, a high-quality benchmark which consists of two real-world scenarios and human-annotated instructions with gold solution paths. Experiments show that RestGPT is able to achieve impressive results in complex tasks and has strong robustness, which paves a new way towards AGI. RestGPT and RestBench is publicly available at https://restgpt.github.io/.
Optimizing Large Language Models for OpenAPI Code Completion
Recent advancements in Large Language Models (LLMs) and their utilization in code generation tasks have significantly reshaped the field of software development. Despite the remarkable efficacy of code completion solutions in mainstream programming languages, their performance lags when applied to less ubiquitous formats such as OpenAPI definitions. This study evaluates the OpenAPI completion performance of GitHub Copilot, a prevalent commercial code completion tool, and proposes a set of task-specific optimizations leveraging Meta's open-source model Code Llama. A semantics-aware OpenAPI completion benchmark proposed in this research is used to perform a series of experiments through which the impact of various prompt-engineering and fine-tuning techniques on the Code Llama model's performance is analyzed. The fine-tuned Code Llama model reaches a peak correctness improvement of 55.2% over GitHub Copilot despite utilizing 25 times fewer parameters than the commercial solution's underlying Codex model. Additionally, this research proposes an enhancement to a widely used code infilling training technique, addressing the issue of underperformance when the model is prompted with context sizes smaller than those used during training. The dataset, the benchmark, and the model fine-tuning code are made publicly available.
DocTer: Documentation Guided Fuzzing for Testing Deep Learning API Functions
Input constraints are useful for many software development tasks. For example, input constraints of a function enable the generation of valid inputs, i.e., inputs that follow these constraints, to test the function deeper. API functions of deep learning (DL) libraries have DL specific input constraints, which are described informally in the free form API documentation. Existing constraint extraction techniques are ineffective for extracting DL specific input constraints. To fill this gap, we design and implement a new technique, DocTer, to analyze API documentation to extract DL specific input constraints for DL API functions. DocTer features a novel algorithm that automatically constructs rules to extract API parameter constraints from syntactic patterns in the form of dependency parse trees of API descriptions. These rules are then applied to a large volume of API documents in popular DL libraries to extract their input parameter constraints. To demonstrate the effectiveness of the extracted constraints, DocTer uses the constraints to enable the automatic generation of valid and invalid inputs to test DL API functions. Our evaluation on three popular DL libraries (TensorFlow, PyTorch, and MXNet) shows that the precision of DocTer in extracting input constraints is 85.4%. DocTer detects 94 bugs from 174 API functions, including one previously unknown security vulnerability that is now documented in the CVE database, while a baseline technique without input constraints detects only 59 bugs. Most (63) of the 94 bugs are previously unknown, 54 of which have been fixed or confirmed by developers after we report them. In addition, DocTer detects 43 inconsistencies in documents, 39 of which are fixed or confirmed.
RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation
The task of repository-level code completion is to continue writing the unfinished code based on a broader context of the repository. While for automated code completion tools, it is difficult to utilize the useful information scattered in different files. We propose RepoCoder, a simple, generic, and effective framework to address the challenge. It streamlines the repository-level code completion process by incorporating a similarity-based retriever and a pre-trained code language model in an iterative retrieval-generation pipeline. RepoCoder makes effective utilization of repository-level information for code completion and has the ability to generate code at various levels of granularity. Moreover, we propose a new benchmark RepoEval, which consists of the latest and high-quality real-world repositories covering line, API invocation, and function body completion scenarios. Experimental results indicate that RepoCoder significantly improves the In-File completion baseline by over 10% in all settings and consistently outperforms the vanilla retrieval-augmented code completion approach. Furthermore, we validate the effectiveness of RepoCoder through comprehensive analysis, providing valuable insights for future research. Our source code and benchmark are publicly available: https://github.com/microsoft/CodeT/tree/main/RepoCoder
Instruction-Following Evaluation in Function Calling for Large Language Models
Function calling is a core capability of large language models, essential for AI agents. Existing benchmarks such as the Berkeley Function Calling Leaderboard (BFCL), tau^2-Bench (arXiv:2506.07982), and ACEBench (arXiv:2501.12851) evaluate argument correctness but do not test adherence to format instructions embedded in parameter descriptions, such as enclosing values in double quotes or using ISO date formats. We introduce IFEval-FC, a benchmark inspired by IFEval (arXiv:2311.07911) that assesses precise instruction following in function calling. IFEval-FC encodes verifiable formats directly within JSON schema descriptions, for example specifying that a value must not contain punctuation. It includes 750 test cases, each consisting of a function with an embedded format for one of its input parameters and a corresponding user query. Evaluation is fully algorithmic, ensuring objectivity, reproducibility, and scalability. Our results show that even state-of-the-art proprietary models, including GPT-5 and Claude 4.1 Opus, frequently fail to follow basic formatting rules, highlighting a practical limitation for real-world agent systems. The complete codebase and data are publicly available at https://github.com/Skripkon/IFEval-FC.
PaperArena: An Evaluation Benchmark for Tool-Augmented Agentic Reasoning on Scientific Literature
Understanding and reasoning on the web-scale scientific literature is a crucial touchstone for large language model (LLM) based agents designed to support complex knowledge-intensive tasks. However, existing works are mainly restricted to tool-free tasks within isolated papers, largely due to the lack of a benchmark for cross-paper reasoning and multi-tool orchestration in real research scenarios. In this work, we propose PaperArena, an evaluation benchmark for agents to address real-world research questions that typically require integrating information across multiple papers with the assistance of external tools. Given a research question, agents should integrate diverse formats across multiple papers through reasoning and interacting with appropriate tools, thereby producing a well-grounded answer. To support standardized evaluation, we provide a modular and extensible platform for agent execution, offering tools such as multimodal parsing, context retrieval, and programmatic computation. Experimental results reveal that even the most advanced LLM powering a well-established agent system achieves merely 38.78% average accuracy. On the hard subset, accuracy drops to only 18.47%, highlighting great potential for improvement. We also present several empirical findings, including that all agents tested exhibit inefficient tool usage, often invoking more tools than necessary to solve a task. We invite the community to adopt PaperArena to develop and evaluate more capable agents for scientific discovery. Our code and data are available https://github.com/Melmaphother/PaperArena.
FAX: Scalable and Differentiable Federated Primitives in JAX
We present FAX, a JAX-based library designed to support large-scale distributed and federated computations in both data center and cross-device applications. FAX leverages JAX's sharding mechanisms to enable native targeting of TPUs and state-of-the-art JAX runtimes, including Pathways. FAX embeds building blocks for federated computations as primitives in JAX. This enables three key benefits. First, FAX computations can be translated to XLA HLO. Second, FAX provides a full implementation of federated automatic differentiation, greatly simplifying the expression of federated computations. Last, FAX computations can be interpreted out to existing production cross-device federated compute systems. We show that FAX provides an easily programmable, performant, and scalable framework for federated computations in the data center. FAX is available at https://github.com/google-research/google-research/tree/master/fax .
Benchmarking AI Models in Software Engineering: A Review, Search Tool, and Enhancement Protocol
Benchmarks are essential for consistent evaluation and reproducibility. The integration of Artificial Intelligence into Software Engineering (AI4SE) has given rise to numerous benchmarks for tasks such as code generation and bug fixing. However, this surge presents challenges: (1) scattered benchmark knowledge across tasks, (2) difficulty in selecting relevant benchmarks, (3) the absence of a uniform standard for benchmark development, and (4) limitations of existing benchmarks. In this paper, we review 173 studies and identify 204 AI4SE benchmarks. We classify these benchmarks, analyze their limitations, and expose gaps in practices. Based on our review, we created BenchScout, a semantic search tool to find relevant benchmarks, using automated clustering of the contexts from associated studies. We conducted a user study with 22 participants to evaluate BenchScout's usability, effectiveness, and intuitiveness which resulted in average scores of 4.5, 4.0, and 4.1 out of 5. To advance benchmarking standards, we propose BenchFrame, a unified method to enhance benchmark quality. As a case study, we applied BenchFrame to the HumanEval benchmark and addressed its main limitations. This led to HumanEvalNext, featuring (1) corrected errors, (2) improved language conversion, (3) expanded test coverage, and (4) increased difficulty. We then evaluated ten state-of-the-art code language models on HumanEval, HumanEvalPlus, and HumanEvalNext. On HumanEvalNext, models showed a pass@1 score reduction of 31.22% and 19.94% compared to HumanEval and HumanEvalPlus, respectively.
The BrowserGym Ecosystem for Web Agent Research
The BrowserGym ecosystem addresses the growing need for efficient evaluation and benchmarking of web agents, particularly those leveraging automation and Large Language Models (LLMs) for web interaction tasks. Many existing benchmarks suffer from fragmentation and inconsistent evaluation methodologies, making it challenging to achieve reliable comparisons and reproducible results. BrowserGym aims to solve this by providing a unified, gym-like environment with well-defined observation and action spaces, facilitating standardized evaluation across diverse benchmarks. Combined with AgentLab, a complementary framework that aids in agent creation, testing, and analysis, BrowserGym offers flexibility for integrating new benchmarks while ensuring consistent evaluation and comprehensive experiment management. This standardized approach seeks to reduce the time and complexity of developing web agents, supporting more reliable comparisons and facilitating in-depth analysis of agent behaviors, and could result in more adaptable, capable agents, ultimately accelerating innovation in LLM-driven automation. As a supporting evidence, we conduct the first large-scale, multi-benchmark web agent experiment and compare the performance of 6 state-of-the-art LLMs across all benchmarks currently available in BrowserGym. Among other findings, our results highlight a large discrepancy between OpenAI and Anthropic's latests models, with Claude-3.5-Sonnet leading the way on almost all benchmarks, except on vision-related tasks where GPT-4o is superior. Despite these advancements, our results emphasize that building robust and efficient web agents remains a significant challenge, due to the inherent complexity of real-world web environments and the limitations of current models.
Code Llama: Open Foundation Models for Code
We release Code Llama, a family of large language models for code based on Llama 2 providing state-of-the-art performance among open models, infilling capabilities, support for large input contexts, and zero-shot instruction following ability for programming tasks. We provide multiple flavors to cover a wide range of applications: foundation models (Code Llama), Python specializations (Code Llama - Python), and instruction-following models (Code Llama - Instruct) with 7B, 13B and 34B parameters each. All models are trained on sequences of 16k tokens and show improvements on inputs with up to 100k tokens. 7B and 13B Code Llama and Code Llama - Instruct variants support infilling based on surrounding content. Code Llama reaches state-of-the-art performance among open models on several code benchmarks, with scores of up to 53% and 55% on HumanEval and MBPP, respectively. Notably, Code Llama - Python 7B outperforms Llama 2 70B on HumanEval and MBPP, and all our models outperform every other publicly available model on MultiPL-E. We release Code Llama under a permissive license that allows for both research and commercial use.
Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track
Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems.
API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs
Recent research has demonstrated that Large Language Models (LLMs) can enhance their capabilities by utilizing external tools. However, three pivotal questions remain unanswered: (1) How effective are current LLMs in utilizing tools? (2) How can we enhance LLMs' ability to utilize tools? (3) What obstacles need to be overcome to leverage tools? To address these questions, we introduce API-Bank, a groundbreaking benchmark, specifically designed for tool-augmented LLMs. For the first question, we develop a runnable evaluation system consisting of 73 API tools. We annotate 314 tool-use dialogues with 753 API calls to assess the existing LLMs' capabilities in planning, retrieving, and calling APIs. For the second question, we construct a comprehensive training set containing 1,888 tool-use dialogues from 2,138 APIs spanning 1,000 distinct domains. Using this dataset, we train Lynx, a tool-augmented LLM initialized from Alpaca. Experimental results demonstrate that GPT-3.5 exhibits improved tool utilization compared to GPT-3, while GPT-4 excels in planning. However, there is still significant potential for further improvement. Moreover, Lynx surpasses Alpaca's tool utilization performance by more than 26 pts and approaches the effectiveness of GPT-3.5. Through error analysis, we highlight the key challenges for future research in this field to answer the third question.
The Open Syndrome Definition
Case definitions are essential for effectively communicating public health threats. However, the absence of a standardized, machine-readable format poses significant challenges to interoperability, epidemiological research, the exchange of qualitative data, and the effective application of computational analysis methods, including artificial intelligence (AI). This complicates comparisons and collaborations across organizations and regions, limits data integration, and hinders technological innovation in public health. To address these issues, we propose the first open, machine-readable format for representing case and syndrome definitions. Additionally, we introduce the first comprehensive dataset of standardized case definitions and tools to convert existing human-readable definitions into machine-readable formats. We also provide an accessible online platform for browsing, analyzing, and contributing new definitions, available at https://opensyndrome.org. The Open Syndrome Definition format enables consistent, scalable use of case definitions across systems, unlocking AI's potential to strengthen public health preparedness and response. The source code for the format can be found at https://github.com/OpenSyndrome/schema under the MIT license.
CodeReef: an open platform for portable MLOps, reusable automation actions and reproducible benchmarking
We present CodeReef - an open platform to share all the components necessary to enable cross-platform MLOps (MLSysOps), i.e. automating the deployment of ML models across diverse systems in the most efficient way. We also introduce the CodeReef solution - a way to package and share models as non-virtualized, portable, customizable and reproducible archive files. Such ML packages include JSON meta description of models with all dependencies, Python APIs, CLI actions and portable workflows necessary to automatically build, benchmark, test and customize models across diverse platforms, AI frameworks, libraries, compilers and datasets. We demonstrate several CodeReef solutions to automatically build, run and measure object detection based on SSD-Mobilenets, TensorFlow and COCO dataset from the latest MLPerf inference benchmark across a wide range of platforms from Raspberry Pi, Android phones and IoT devices to data centers. Our long-term goal is to help researchers share their new techniques as production-ready packages along with research papers to participate in collaborative and reproducible benchmarking, compare the different ML/software/hardware stacks and select the most efficient ones on a Pareto frontier using online CodeReef dashboards.
DeepResearchGym: A Free, Transparent, and Reproducible Evaluation Sandbox for Deep Research
Deep research systems represent an emerging class of agentic information retrieval methods that generate comprehensive and well-supported reports to complex queries. However, most existing frameworks rely on dynamic commercial search APIs, which pose reproducibility and transparency challenges in addition to their cost. To address these limitations, we introduce DeepResearchGym, an open-source sandbox that combines a reproducible search API with a rigorous evaluation protocol for benchmarking deep research systems. The API indexes large-scale public web corpora, namely ClueWeb22 and FineWeb, using a state-of-the-art dense retriever and approximate nearest neighbor search via DiskANN. It achieves lower latency than popular commercial APIs while ensuring stable document rankings across runs, and is freely available for research use. To evaluate deep research systems' outputs, we extend the Researchy Questions benchmark with automatic metrics through LLM-as-a-judge assessments to measure alignment with users' information needs, retrieval faithfulness, and report quality. Experimental results show that systems integrated with DeepResearchGym achieve performance comparable to those using commercial APIs, with performance rankings remaining consistent across evaluation metrics. A human evaluation study further confirms that our automatic protocol aligns with human preferences, validating the framework's ability to help support controlled assessment of deep research systems. Our code and API documentation are available at https://www.deepresearchgym.ai.
What to Retrieve for Effective Retrieval-Augmented Code Generation? An Empirical Study and Beyond
Repository-level code generation remains challenging due to complex code dependencies and the limitations of large language models (LLMs) in processing long contexts. While retrieval-augmented generation (RAG) frameworks are widely adopted, the effectiveness of different retrieved information sources-contextual code, APIs, and similar snippets-has not been rigorously analyzed. Through an empirical study on two benchmarks, we demonstrate that in-context code and potential API information significantly enhance LLM performance, whereas retrieved similar code often introduces noise, degrading results by up to 15%. Based on the preliminary results, we propose AllianceCoder, a novel context-integrated method that employs chain-of-thought prompting to decompose user queries into implementation steps and retrieves APIs via semantic description matching. Through extensive experiments on CoderEval and RepoExec, AllianceCoder achieves state-of-the-art performance, improving Pass@1 by up to 20% over existing approaches.
Class-Level Code Generation from Natural Language Using Iterative, Tool-Enhanced Reasoning over Repository
LLMs have demonstrated significant potential in code generation tasks, achieving promising results at the function or statement level across various benchmarks. However, the complexities associated with creating code artifacts like classes, particularly within the context of real-world software repositories, remain underexplored. Prior research treats class-level generation as an isolated task, neglecting the intricate dependencies & interactions that characterize real-world software environments. To address this gap, we introduce RepoClassBench, a comprehensive benchmark designed to rigorously evaluate LLMs in generating complex, class-level code within real-world repositories. RepoClassBench includes "Natural Language to Class generation" tasks across Java, Python & C# from a selection of repositories. We ensure that each class in our dataset not only has cross-file dependencies within the repository but also includes corresponding test cases to verify its functionality. We find that current models struggle with the realistic challenges posed by our benchmark, primarily due to their limited exposure to relevant repository contexts. To address this shortcoming, we introduce Retrieve-Repotools-Reflect (RRR), a novel approach that equips LLMs with static analysis tools to iteratively navigate & reason about repository-level context in an agent-based framework. Our experiments demonstrate that RRR significantly outperforms existing baselines on RepoClassBench, showcasing its effectiveness across programming languages & under various settings. Our findings emphasize the critical need for code-generation benchmarks to incorporate repo-level dependencies to more accurately reflect the complexities of software development. Our work shows the benefits of leveraging specialized tools to enhance LLMs' understanding of repository context. We plan to make our dataset & evaluation harness public.
RepoQA: Evaluating Long Context Code Understanding
Recent advances have been improving the context windows of Large Language Models (LLMs). To quantify the real long-context capabilities of LLMs, evaluators such as the popular Needle in a Haystack have been developed to test LLMs over a large chunk of raw texts. While effective, current evaluations overlook the insight of how LLMs work with long-context code, i.e., repositories. To this end, we initiate the RepoQA benchmark to evaluate LLMs on long-context code understanding. Traditional needle testers ask LLMs to directly retrieve the answer from the context without necessary deep understanding. In RepoQA, we built our initial task, namely Searching Needle Function (SNF), which exercises LLMs to search functions given their natural-language description, i.e., LLMs cannot find the desired function if they cannot understand the description and code. RepoQA is multilingual and comprehensive: it includes 500 code search tasks gathered from 50 popular repositories across 5 modern programming languages. By evaluating 26 general and code-specific LLMs on RepoQA, we show (i) there is still a small gap between the best open and proprietary models; (ii) different models are good at different languages; and (iii) models may understand code better without comments.
NESTFUL: A Benchmark for Evaluating LLMs on Nested Sequences of API Calls
Autonomous agent applications powered by large language models (LLMs) have recently risen to prominence as effective tools for addressing complex real-world tasks. At their core, agentic workflows rely on LLMs to plan and execute the use of tools and external Application Programming Interfaces (APIs) in sequence to arrive at the answer to a user's request. Various benchmarks and leaderboards have emerged to evaluate an LLM's capabilities for tool and API use; however, most of these evaluations only track single or multiple isolated API calling capabilities. In this paper, we present NESTFUL, a benchmark to evaluate LLMs on nested sequences of API calls, i.e., sequences where the output of one API call is passed as input to a subsequent call. NESTFUL has a total of 300 human annotated samples divided into two types - executable and non-executable. The executable samples are curated manually by crawling Rapid-APIs whereas the non-executable samples are hand picked by human annotators from data synthetically generated using an LLM. We evaluate state-of-the-art LLMs with function calling abilities on NESTFUL. Our results show that most models do not perform well on nested APIs in NESTFUL as compared to their performance on the simpler problem settings available in existing benchmarks.
MRG-Bench: Evaluating and Exploring the Requirements of Context for Repository-Level Code Generation
Large Language Models (LLMs) have demonstrated impressive capabilities in code generation. However, current evaluation datasets suffer from issues such as the lack of runnable test cases, deviation from the distribution of real-world code, and the ability to evaluate only the Python language. These limitations undermine the credibility of the evaluation results. To address these limitations, we introduce MRG-Bench (Multi-language Repository-level Code Generation Benchmark), a novel dataset that provides a more accurate evaluation of LLMs in practical repository-level code generation tasks. MRG-Bench has three main features: (1) practical data sourced from real-world code repositories that align to the practical distribution, (2) multiple programming languages support, including Python, Java, and Go, and (3) project-level runnable test cases to assess the quality of the generated code. Based on MRG-Bench, we conducted extensive experiments including large language models, long-context models, and RAG-related methods. These evaluation results demonstrate that current repository-level code generation techniques suffer from significant performance deficiencies. To further investigate why models fail, we designed novel experiments to annotate the underlying causes of generation errors. The results explicitly show that the majority of methods suffer from "difficulty in understanding user requirements," failing to comprehend their assigned tasks accurately. Moreover, the impact of different repository-level contexts on this issue exhibits significant disparities across different programming languages, suggesting that, in practice, specialized contextual information needs to be designed for different languages.
CodeArena: A Collective Evaluation Platform for LLM Code Generation
Large Language Models (LLMs) have reshaped code generation by synergizing their exceptional comprehension of natural language and programming syntax, thereby substantially boosting developer productivity. These advancements have prompted numerous efforts to quantitatively evaluate their coding capabilities. However, persistent challenges, such as benchmark leakage, data dissipation, and limited system accessibility, continue to impede a timely and accurate assessment. To address these limitations, we introduce CodeArena, an online evaluation framework tailored for LLM code generation. The key innovation is a collective evaluation mechanism, which dynamically recalibrates individual model scores based on the holistic performance of all participating models, mitigating score biases caused by widespread benchmark leakage. In addition, CodeArena ensures open access to all submitted solutions and test cases and provides automation-friendly APIs to streamline the code evaluation workflow. Our main contributions are: (1) a collective evaluation system for unbiased assessment, (2) a public repository of solutions and test cases, and (3) automation-ready APIs for seamless integration.
PyRadar: Towards Automatically Retrieving and Validating Source Code Repository Information for PyPI Packages
A package's source code repository records the development history of the package, providing indispensable information for the use and risk monitoring of the package. However, a package release often misses its source code repository due to the separation of the package's development platform from its distribution platform. Existing tools retrieve the release's repository information from its metadata, which suffers from two limitations: the metadata may not contain or contain wrong information. Our analysis shows that existing tools can only retrieve repository information for up to 70.5% of PyPI releases. To address the limitations, this paper proposes PyRadar, a novel framework that utilizes the metadata and source distribution to retrieve and validate the repository information for PyPI releases. We start with an empirical study to compare four existing tools on 4,227,425 PyPI releases and analyze phantom files (files appearing in the release's distribution but not in the release's repository) in 14,375 correct package-repository links and 2,064 incorrect links. Based on the findings, we design PyRadar with three components, i.e., Metadata-based Retriever, Source Code Repository Validator, and Source Code-based Retriever. In particular, the Metadata-based Retriever combines best practices of existing tools and successfully retrieves repository information from the metadata for 72.1% of PyPI releases. The Source Code Repository Validator applies common machine learning algorithms on six crafted features and achieves an AUC of up to 0.995. The Source Code-based Retriever queries World of Code with the SHA-1 hashes of all Python files in the release's source distribution and retrieves repository information for 90.2% of packages in our dataset with an accuracy of 0.970. Both practitioners and researchers can employ the PyRadar to better use PyPI packages.
APIGen: Automated Pipeline for Generating Verifiable and Diverse Function-Calling Datasets
The advancement of function-calling agent models requires diverse, reliable, and high-quality datasets. This paper presents APIGen, an automated data generation pipeline designed to synthesize verifiable high-quality datasets for function-calling applications. We leverage APIGen and collect 3,673 executable APIs across 21 different categories to generate diverse function-calling datasets in a scalable and structured manner. Each data in our dataset is verified through three hierarchical stages: format checking, actual function executions, and semantic verification, ensuring its reliability and correctness. We demonstrate that models trained with our curated datasets, even with only 7B parameters, can achieve state-of-the-art performance on the Berkeley Function-Calling Benchmark, outperforming multiple GPT-4 models. Moreover, our 1B model achieves exceptional performance, surpassing GPT-3.5-Turbo and Claude-3 Haiku. We release a dataset containing 60,000 high-quality entries, aiming to advance the field of function-calling agent domains. The dataset is available on Huggingface: https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k and the project homepage: https://apigen-pipeline.github.io/
AppWorld: A Controllable World of Apps and People for Benchmarking Interactive Coding Agents
Autonomous agents that address day-to-day digital tasks (e.g., ordering groceries for a household), must not only operate multiple apps (e.g., notes, messaging, shopping app) via APIs, but also generate rich code with complex control flow in an iterative manner based on their interaction with the environment. However, existing benchmarks for tool use are inadequate, as they only cover tasks that require a simple sequence of API calls. To remedy this gap, we built AppWorld Engine, a high-quality execution environment (60K lines of code) of 9 day-to-day apps operable via 457 APIs and populated with realistic digital activities simulating the lives of ~100 fictitious users. We then created AppWorld Benchmark (40K lines of code), a suite of 750 natural, diverse, and challenging autonomous agent tasks requiring rich and interactive code generation. It supports robust programmatic evaluation with state-based unit tests, allowing for different ways of completing a task while also checking for unexpected changes, i.e., collateral damage. The state-of-the-art LLM, GPT-4o, solves only ~49% of our 'normal' tasks and ~30% of 'challenge' tasks, while other models solve at least 16% fewer. This highlights the benchmark's difficulty and AppWorld's potential to push the frontiers of interactive coding agents. The project website is available at https://appworld.dev/.
Dynamic Documentation for AI Systems
AI documentation is a rapidly-growing channel for coordinating the design of AI technologies with policies for transparency and accessibility. Calls to standardize and enact documentation of algorithmic harms and impacts are now commonplace. However, documentation standards for AI remain inchoate, and fail to match the capabilities and social effects of increasingly impactful architectures such as Large Language Models (LLMs). In this paper, we show the limits of present documentation protocols, and argue for dynamic documentation as a new paradigm for understanding and evaluating AI systems. We first review canonical approaches to system documentation outside the context of AI, focusing on the complex history of Environmental Impact Statements (EISs). We next compare critical elements of the EIS framework to present challenges with algorithmic documentation, which have inherited the limitations of EISs without incorporating their strengths. These challenges are specifically illustrated through the growing popularity of Model Cards and two case studies of algorithmic impact assessment in China and Canada. Finally, we evaluate more recent proposals, including Reward Reports, as potential components of fully dynamic AI documentation protocols.
Named Clinical Entity Recognition Benchmark
This technical report introduces a Named Clinical Entity Recognition Benchmark for evaluating language models in healthcare, addressing the crucial natural language processing (NLP) task of extracting structured information from clinical narratives to support applications like automated coding, clinical trial cohort identification, and clinical decision support. The leaderboard provides a standardized platform for assessing diverse language models, including encoder and decoder architectures, on their ability to identify and classify clinical entities across multiple medical domains. A curated collection of openly available clinical datasets is utilized, encompassing entities such as diseases, symptoms, medications, procedures, and laboratory measurements. Importantly, these entities are standardized according to the Observational Medical Outcomes Partnership (OMOP) Common Data Model, ensuring consistency and interoperability across different healthcare systems and datasets, and a comprehensive evaluation of model performance. Performance of models is primarily assessed using the F1-score, and it is complemented by various assessment modes to provide comprehensive insights into model performance. The report also includes a brief analysis of models evaluated to date, highlighting observed trends and limitations. By establishing this benchmarking framework, the leaderboard aims to promote transparency, facilitate comparative analyses, and drive innovation in clinical entity recognition tasks, addressing the need for robust evaluation methods in healthcare NLP.
BenchmarkCards: Standardized Documentation for Large Language Model Benchmarks
Large language models (LLMs) are powerful tools capable of handling diverse tasks. Comparing and selecting appropriate LLMs for specific tasks requires systematic evaluation methods, as models exhibit varying capabilities across different domains. However, finding suitable benchmarks is difficult given the many available options. This complexity not only increases the risk of benchmark misuse and misinterpretation but also demands substantial effort from LLM users, seeking the most suitable benchmarks for their specific needs. To address these issues, we introduce BenchmarkCards, an intuitive and validated documentation framework that standardizes critical benchmark attributes such as objectives, methodologies, data sources, and limitations. Through user studies involving benchmark creators and users, we show that BenchmarkCards can simplify benchmark selection and enhance transparency, facilitating informed decision-making in evaluating LLMs. Data & Code: https://github.com/SokolAnn/BenchmarkCards
DeepfakeBench: A Comprehensive Benchmark of Deepfake Detection
A critical yet frequently overlooked challenge in the field of deepfake detection is the lack of a standardized, unified, comprehensive benchmark. This issue leads to unfair performance comparisons and potentially misleading results. Specifically, there is a lack of uniformity in data processing pipelines, resulting in inconsistent data inputs for detection models. Additionally, there are noticeable differences in experimental settings, and evaluation strategies and metrics lack standardization. To fill this gap, we present the first comprehensive benchmark for deepfake detection, called DeepfakeBench, which offers three key contributions: 1) a unified data management system to ensure consistent input across all detectors, 2) an integrated framework for state-of-the-art methods implementation, and 3) standardized evaluation metrics and protocols to promote transparency and reproducibility. Featuring an extensible, modular-based codebase, DeepfakeBench contains 15 state-of-the-art detection methods, 9 deepfake datasets, a series of deepfake detection evaluation protocols and analysis tools, as well as comprehensive evaluations. Moreover, we provide new insights based on extensive analysis of these evaluations from various perspectives (e.g., data augmentations, backbones). We hope that our efforts could facilitate future research and foster innovation in this increasingly critical domain. All codes, evaluations, and analyses of our benchmark are publicly available at https://github.com/SCLBD/DeepfakeBench.
CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges
Large Language Models (LLMs) have shown promise in automated code generation but typically excel only in simpler tasks such as generating standalone code units. Real-world software development, however, often involves complex code repositories (named repo) with complex dependencies and extensive documentation. To fill this gap, our research pivots towards evaluating LLMs in a more realistic setting -- real-world repo-level code generation. We introduce CodeAgentBench, a manually curated benchmark for repo-level code generation. This benchmark comprises five high-quality Python projects, encompassing a total of 101 samples. We assess nine leading LLMs on repo-level tasks and observe a decline in their performance. To tackle this, we present CodeAgent, a novel LLM-based agent framework that employs external tools for effective repo-level code generation. CodeAgent integrates five programming tools, enabling interaction with software artifacts for information retrieval, code symbol navigation, and code testing. We implement four agent strategies to optimize these tools' usage. Our experiments on CodeAgentBench show that CodeAgent enhances LLM performance significantly, with improvements ranging from 18.1\% to 250\%. Further tests on the HumanEval benchmark confirm CodeAgent's adaptability and efficacy across various code generation tasks. Notably, CodeAgent outperforms commercial products like Github Copilot, showcasing superior accuracy and efficiency. These results demonstrate CodeAgent's robust capabilities in code generation, highlighting its potential for real-world repo-level coding challenges.
Skill Discovery for Software Scripting Automation via Offline Simulations with LLMs
Scripting interfaces enable users to automate tasks and customize software workflows, but creating scripts traditionally requires programming expertise and familiarity with specific APIs, posing barriers for many users. While Large Language Models (LLMs) can generate code from natural language queries, runtime code generation is severely limited due to unverified code, security risks, longer response times, and higher computational costs. To bridge the gap, we propose an offline simulation framework to curate a software-specific skillset, a collection of verified scripts, by exploiting LLMs and publicly available scripting guides. Our framework comprises two components: (1) task creation, using top-down functionality guidance and bottom-up API synergy exploration to generate helpful tasks; and (2) skill generation with trials, refining and validating scripts based on execution feedback. To efficiently navigate the extensive API landscape, we introduce a Graph Neural Network (GNN)-based link prediction model to capture API synergy, enabling the generation of skills involving underutilized APIs and expanding the skillset's diversity. Experiments with Adobe Illustrator demonstrate that our framework significantly improves automation success rates, reduces response time, and saves runtime token costs compared to traditional runtime code generation. This is the first attempt to use software scripting interfaces as a testbed for LLM-based systems, highlighting the advantages of leveraging execution feedback in a controlled environment and offering valuable insights into aligning AI capabilities with user needs in specialized software domains.
rerankers: A Lightweight Python Library to Unify Ranking Methods
This paper presents rerankers, a Python library which provides an easy-to-use interface to the most commonly used re-ranking approaches. Re-ranking is an integral component of many retrieval pipelines; however, there exist numerous approaches to it, relying on different implementation methods. rerankers unifies these methods into a single user-friendly interface, allowing practitioners and researchers alike to explore different methods while only changing a single line of Python code. Moreover ,rerankers ensures that its implementations are done with the fewest dependencies possible, and re-uses the original implementation whenever possible, guaranteeing that our simplified interface results in no performance degradation compared to more complex ones. The full source code and list of supported models are updated regularly and available at https://github.com/answerdotai/rerankers.
Evaluation Metrics for Text Data Augmentation in NLP
Recent surveys on data augmentation for natural language processing have reported different techniques and advancements in the field. Several frameworks, tools, and repositories promote the implementation of text data augmentation pipelines. However, a lack of evaluation criteria and standards for method comparison due to different tasks, metrics, datasets, architectures, and experimental settings makes comparisons meaningless. Also, a lack of methods unification exists and text data augmentation research would benefit from unified metrics to compare different augmentation methods. Thus, academics and the industry endeavor relevant evaluation metrics for text data augmentation techniques. The contribution of this work is to provide a taxonomy of evaluation metrics for text augmentation methods and serve as a direction for a unified benchmark. The proposed taxonomy organizes categories that include tools for implementation and metrics calculation. Finally, with this study, we intend to present opportunities to explore the unification and standardization of text data augmentation metrics.
EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction
To address intricate real-world tasks, there has been a rising interest in tool utilization in applications of large language models (LLMs). To develop LLM-based agents, it usually requires LLMs to understand many tool functions from different tool documentation. But these documentations could be diverse, redundant or incomplete, which immensely affects the capability of LLMs in using tools. To solve this, we introduce EASYTOOL, a framework transforming diverse and lengthy tool documentation into a unified and concise tool instruction for easier tool usage. EasyTool purifies essential information from extensive tool documentation of different sources, and elaborates a unified interface (i.e., tool instruction) to offer standardized tool descriptions and functionalities for LLM-based agents. Extensive experiments on multiple different tasks demonstrate that EasyTool can significantly reduce token consumption and improve the performance of tool utilization in real-world scenarios. Our code will be available at https://github.com/microsoft/JARVIS/ in the future.
FeatBench: Evaluating Coding Agents on Feature Implementation for Vibe Coding
The rapid advancement of Large Language Models (LLMs) has given rise to a novel software development paradigm known as "vibe coding," where users interact with coding agents through high-level natural language. However, existing evaluation benchmarks for code generation inadequately assess an agent's vibe coding capabilities. Existing benchmarks are misaligned, as they either require code-level specifications or focus narrowly on issue-solving, neglecting the critical scenario of feature implementation within the vibe coding paradiam. To address this gap, we propose FeatBench, a novel benchmark for vibe coding that focuses on feature implementation. Our benchmark is distinguished by several key features: 1. Pure Natural Language Prompts. Task inputs consist solely of abstract natural language descriptions, devoid of any code or structural hints. 2. A Rigorous & Evolving Data Collection Process. FeatBench is built on a multi-level filtering pipeline to ensure quality and a fully automated pipeline to evolve the benchmark, mitigating data contamination. 3. Comprehensive Test Cases. Each task includes Fail-to-Pass (F2P) and Pass-to-Pass (P2P) tests to verify correctness and prevent regressions. 4. Diverse Application Domains. The benchmark includes repositories from diverse domains to ensure it reflects real-world scenarios. We evaluate two state-of-the-art agent frameworks with four leading LLMs on FeatBench. Our evaluation reveals that feature implementation within the vibe coding paradigm is a significant challenge, with the highest success rate of only 29.94%. Our analysis also reveals a tendency for "aggressive implementation," a strategy that paradoxically leads to both critical failures and superior software design. We release FeatBench, our automated collection pipeline, and all experimental results to facilitate further community research.
Large Language Models as Fiduciaries: A Case Study Toward Robustly Communicating With Artificial Intelligence Through Legal Standards
Artificial Intelligence (AI) is taking on increasingly autonomous roles, e.g., browsing the web as a research assistant and managing money. But specifying goals and restrictions for AI behavior is difficult. Similar to how parties to a legal contract cannot foresee every potential "if-then" contingency of their future relationship, we cannot specify desired AI behavior for all circumstances. Legal standards facilitate robust communication of inherently vague and underspecified goals. Instructions (in the case of language models, "prompts") that employ legal standards will allow AI agents to develop shared understandings of the spirit of a directive that generalize expectations regarding acceptable actions to take in unspecified states of the world. Standards have built-in context that is lacking from other goal specification languages, such as plain language and programming languages. Through an empirical study on thousands of evaluation labels we constructed from U.S. court opinions, we demonstrate that large language models (LLMs) are beginning to exhibit an "understanding" of one of the most relevant legal standards for AI agents: fiduciary obligations. Performance comparisons across models suggest that, as LLMs continue to exhibit improved core capabilities, their legal standards understanding will also continue to improve. OpenAI's latest LLM has 78% accuracy on our data, their previous release has 73% accuracy, and a model from their 2020 GPT-3 paper has 27% accuracy (worse than random). Our research is an initial step toward a framework for evaluating AI understanding of legal standards more broadly, and for conducting reinforcement learning with legal feedback (RLLF).
Scaling Granite Code Models to 128K Context
This paper introduces long-context Granite code models that support effective context windows of up to 128K tokens. Our solution for scaling context length of Granite 3B/8B code models from 2K/4K to 128K consists of a light-weight continual pretraining by gradually increasing its RoPE base frequency with repository-level file packing and length-upsampled long-context data. Additionally, we also release instruction-tuned models with long-context support which are derived by further finetuning the long context base models on a mix of permissively licensed short and long-context instruction-response pairs. While comparing to the original short-context Granite code models, our long-context models achieve significant improvements on long-context tasks without any noticeable performance degradation on regular code completion benchmarks (e.g., HumanEval). We release all our long-context Granite code models under an Apache 2.0 license for both research and commercial use.
Sharing State Between Prompts and Programs
The rise of large language models (LLMs) has introduced a new type of programming: natural language programming. By writing prompts that direct LLMs to perform natural language processing, code generation, reasoning, etc., users are writing code in natural language -- natural language code -- for the LLM to execute. An emerging area of research enables interoperability between natural language code and formal languages such as Python. We present a novel programming abstraction, shared program state, that removes the manual work required to enable interoperability between natural language code and program state. With shared program state, programmers can write natural code that directly writes program variables, computes with program objects, and implements control flow in the program. We present a schema for specifying natural function interfaces that extend programming systems to support natural code and leverage this schema to specify shared program state as a natural function interface. We implement shared program state in the Nightjar programming system. Nightjar enables programmers to write Python programs that contain natural code that shares the Python program state. We show that Nightjar programs achieve comparable or higher task accuracy than manually written implementations (+4-19%), while decreasing the lines of code by 39.6% on average. The tradeoff to using Nightjar is that it may incur runtime overhead (0.4-4.3x runtime of manual implementations).
SciReplicate-Bench: Benchmarking LLMs in Agent-driven Algorithmic Reproduction from Research Papers
This study evaluates large language models (LLMs) in generating code from algorithm descriptions from recent NLP papers. The task requires two key competencies: (1) algorithm comprehension: synthesizing information from papers and academic literature to understand implementation logic, and (2) coding expertise: identifying dependencies and correctly implementing necessary APIs. To facilitate rigorous evaluation, we introduce SciReplicate-Bench, a benchmark of 100 tasks from 36 NLP papers published in 2024, featuring detailed annotations and comprehensive test cases. Building on SciReplicate-Bench, we propose Sci-Reproducer, a multi-agent framework consisting of a Paper Agent that interprets algorithmic concepts from literature and a Code Agent that retrieves dependencies from repositories and implement solutions. To assess algorithm understanding, we introduce reasoning graph accuracy, which quantifies similarity between generated and reference reasoning graphs derived from code comments and structure. For evaluating implementation quality, we employ execution accuracy, CodeBLEU, and repository dependency/API recall metrics. In our experiments, we evaluate various powerful Non-Reasoning LLMs and Reasoning LLMs as foundational models. The best-performing LLM using Sci-Reproducer achieves only 39% execution accuracy, highlighting the benchmark's difficulty.Our analysis identifies missing or inconsistent algorithm descriptions as key barriers to successful reproduction. We will open-source our benchmark, and code at https://github.com/xyzCS/SciReplicate-Bench.
Octopus v4: Graph of language models
Language models have been effective in a wide range of applications, yet the most sophisticated models are often proprietary. For example, GPT-4 by OpenAI and various models by Anthropic are expensive and consume substantial energy. In contrast, the open-source community has produced competitive models, like Llama3. Furthermore, niche-specific smaller language models, such as those tailored for legal, medical or financial tasks, have outperformed their proprietary counterparts. This paper introduces a novel approach that employs functional tokens to integrate multiple open-source models, each optimized for particular tasks. Our newly developed Octopus v4 model leverages functional tokens to intelligently direct user queries to the most appropriate vertical model and reformat the query to achieve the best performance. Octopus v4, an evolution of the Octopus v1, v2, and v3 models, excels in selection and parameter understanding and reformatting. Additionally, we explore the use of graph as a versatile data structure that effectively coordinates multiple open-source models by harnessing the capabilities of the Octopus model and functional tokens. Use our open-sourced GitHub (https://www.nexa4ai.com/) to try Octopus v4 models (https://huggingface.co/NexaAIDev/Octopus-v4), and contrite to a larger graph of language models. By activating models less than 10B parameters, we achieved SOTA MMLU score of 74.8 among the same level models.
UltraEval: A Lightweight Platform for Flexible and Comprehensive Evaluation for LLMs
Evaluation is pivotal for refining Large Language Models (LLMs), pinpointing their capabilities, and guiding enhancements. The rapid development of LLMs calls for a lightweight and easy-to-use framework for swift evaluation deployment. However, considering various implementation details, developing a comprehensive evaluation platform is never easy. Existing platforms are often complex and poorly modularized, hindering seamless incorporation into research workflows. This paper introduces UltraEval, a user-friendly evaluation framework characterized by its lightweight nature, comprehensiveness, modularity, and efficiency. We identify and reimplement three core components of model evaluation (models, data, and metrics). The resulting composability allows for the free combination of different models, tasks, prompts, benchmarks, and metrics within a unified evaluation workflow. Additionally, UltraEval supports diverse models owing to a unified HTTP service and provides sufficient inference acceleration. UltraEval is now available for researchers publicly.
Automatic Functional Differentiation in JAX
We extend JAX with the capability to automatically differentiate higher-order functions (functionals and operators). By representing functions as a generalization of arrays, we seamlessly use JAX's existing primitive system to implement higher-order functions. We present a set of primitive operators that serve as foundational building blocks for constructing several key types of functionals. For every introduced primitive operator, we derive and implement both linearization and transposition rules, aligning with JAX's internal protocols for forward and reverse mode automatic differentiation. This enhancement allows for functional differentiation in the same syntax traditionally use for functions. The resulting functional gradients are themselves functions ready to be invoked in python. We showcase this tool's efficacy and simplicity through applications where functional derivatives are indispensable. The source code of this work is released at https://github.com/sail-sg/autofd .
PyKale: Knowledge-Aware Machine Learning from Multiple Sources in Python
Machine learning is a general-purpose technology holding promises for many interdisciplinary research problems. However, significant barriers exist in crossing disciplinary boundaries when most machine learning tools are developed in different areas separately. We present Pykale - a Python library for knowledge-aware machine learning on graphs, images, texts, and videos to enable and accelerate interdisciplinary research. We formulate new green machine learning guidelines based on standard software engineering practices and propose a novel pipeline-based application programming interface (API). PyKale focuses on leveraging knowledge from multiple sources for accurate and interpretable prediction, thus supporting multimodal learning and transfer learning (particularly domain adaptation) with latest deep learning and dimensionality reduction models. We build PyKale on PyTorch and leverage the rich PyTorch ecosystem. Our pipeline-based API design enforces standardization and minimalism, embracing green machine learning concepts via reducing repetitions and redundancy, reusing existing resources, and recycling learning models across areas. We demonstrate its interdisciplinary nature via examples in bioinformatics, knowledge graph, image/video recognition, and medical imaging.
On the Challenges of Using Black-Box APIs for Toxicity Evaluation in Research
Perception of toxicity evolves over time and often differs between geographies and cultural backgrounds. Similarly, black-box commercially available APIs for detecting toxicity, such as the Perspective API, are not static, but frequently retrained to address any unattended weaknesses and biases. We evaluate the implications of these changes on the reproducibility of findings that compare the relative merits of models and methods that aim to curb toxicity. Our findings suggest that research that relied on inherited automatic toxicity scores to compare models and techniques may have resulted in inaccurate findings. Rescoring all models from HELM, a widely respected living benchmark, for toxicity with the recent version of the API led to a different ranking of widely used foundation models. We suggest caution in applying apples-to-apples comparisons between studies and lay recommendations for a more structured approach to evaluating toxicity over time. Code and data are available at https://github.com/for-ai/black-box-api-challenges.
CodeWiki: Evaluating AI's Ability to Generate Holistic Documentation for Large-Scale Codebases
Given a large and evolving codebase, the ability to automatically generate holistic, architecture-aware documentation that captures not only individual functions but also cross-file, cross-module, and system-level interactions remains an open challenge. Comprehensive documentation is essential for long-term software maintenance and collaboration, yet current automated approaches still fail to model the rich semantic dependencies and architectural structures that define real-world software systems. We present CodeWiki, a unified framework for automated repository-level documentation across seven programming languages. CodeWiki introduces three key innovations: (i) hierarchical decomposition that preserves architectural context across multiple levels of granularity, (ii) recursive multi-agent processing with dynamic task delegation for scalable generation, and (iii) multi-modal synthesis that integrates textual descriptions with visual artifacts such as architecture diagrams and data-flow representations. To enable rigorous evaluation, we introduce CodeWikiBench, a comprehensive benchmark featuring multi-dimensional rubrics and LLM-based assessment protocols. Experimental results show that CodeWiki achieves a 68.79\% quality score with proprietary models, outperforming the closed-source DeepWiki baseline (64.06\%) by 4.73\%, with particularly strong improvements on high-level scripting languages (+10.47\%). We open-source CodeWiki to foster future research and community adoption.
Interpreting User Requests in the Context of Natural Language Standing Instructions
Users of natural language interfaces, generally powered by Large Language Models (LLMs),often must repeat their preferences each time they make a similar request. To alleviate this, we propose including some of a user's preferences and instructions in natural language -- collectively termed standing instructions -- as additional context for such interfaces. For example, when a user states I'm hungry, their previously expressed preference for Persian food will be automatically added to the LLM prompt, so as to influence the search for relevant restaurants. We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains, where each dialogue is paired with a user profile (a set of users specific standing instructions) and corresponding structured representations (API calls). A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue. NLSI contains diverse phenomena, from simple preferences to interdependent instructions such as triggering a hotel search whenever the user is booking tickets to an event. We conduct experiments on NLSI using prompting with large language models and various retrieval approaches, achieving a maximum of 44.7% exact match on API prediction. Our results demonstrate the challenges in identifying the relevant standing instructions and their interpretation into API calls.
UI-Bench: A Benchmark for Evaluating Design Capabilities of AI Text-to-App Tools
AI text-to-app tools promise high quality applications and websites in minutes, yet no public benchmark rigorously verifies those claims. We introduce UI-Bench, the first large-scale benchmark that evaluates visual excellence across competing AI text-to-app tools through expert pairwise comparison. Spanning 10 tools, 30 prompts, 300 generated sites, and 4,000+ expert judgments, UI-Bench ranks systems with a TrueSkill-derived model that yields calibrated confidence intervals. UI-Bench establishes a reproducible standard for advancing AI-driven web design. We release (i) the complete prompt set, (ii) an open-source evaluation framework, and (iii) a public leaderboard. The generated sites rated by participants will be released soon. View the UI-Bench leaderboard at https://uibench.ai/leaderboard.
UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet code generation remains a major challenge. Current approaches for obtaining high-quality code data primarily focus on (i) collecting large-scale pre-training data and (ii) synthesizing instruction data through prompt engineering with powerful models. While pre-training data faces quality consistency issues, instruction-based synthesis suffers from limited instruction diversity and inherent biases of LLMs. To address this gap, we introduce UnitCoder, a systematic pipeline leveraging model-generated unit tests to both guide and validate the code generation process. Combined with large-scale package-based retrieval from pre-training corpus, we generate a dataset of 500K+ verifiable programs containing diverse API calls. Evaluations on multiple Python benchmarks (BigCodeBench, HumanEval, MBPP) demonstrate that models fine-tuned on our synthetic data exhibit consistent performance improvements. Notably, Llama3.1-8B and InternLM2.5-7B improve from 31\% and 28\% to 40\% and 39\% success rates on BigCodeBench, respectively. Our work presents a scalable approach that leverages model-generated unit tests to guide the synthesis of high-quality code data from pre-training corpora, demonstrating the potential for producing diverse and high-quality post-training data at scale. All code and data will be released (https://github.com).
SWE-Bench++: A Framework for the Scalable Generation of Software Engineering Benchmarks from Open-Source Repositories
Benchmarks like SWE-bench have standardized the evaluation of Large Language Models (LLMs) on repository-level software engineering tasks. However, these efforts remain limited by manual curation, static datasets, and a focus on Python-based bug fixes. We introduce SWE-Bench++, an automated framework that generates repository-level coding tasks from open-source GitHub projects. Unlike synthetic approaches, our pipeline harvests live pull requests to cover both bug fixes and feature requests across 11 languages. SWE-Bench++ turns GitHub pull requests (PRs) into reproducible, execution-based tasks via four stages: programmatic sourcing, environment synthesis, test oracle extraction, and quality assurance. A final hint-guided trajectory synthesis step converts instances that strong models fail on into training trajectories. Our initial benchmark consists of 11,133 instances from 3,971 repositories across 11 languages. On a subset of 1,782 instances of this benchmark, today's strongest models perform as follows: claude-sonnet-4.5 achieves 36.20% pass@10, gpt-5-2025-08-07 34.57%, gemini/gemini-2.5-pro 24.92%, and gpt-4o 16.89%. We further demonstrate the utility of our dataset by showing that fine-tuning on SWE-Bench++ instances yields measurable improvements on the SWE-bench Multilingual benchmark. SWE-Bench++ provides a scalable, multilingual benchmark for evaluating and improving repository-level code generation.
MultiPL-E: A Scalable and Extensible Approach to Benchmarking Neural Code Generation
Large language models have demonstrated the ability to generate both natural language and programming language text. Such models open up the possibility of multi-language code generation: could code generation models generalize knowledge from one language to another? Although contemporary code generation models can generate semantically correct Python code, little is known about their abilities with other languages. We propose MultiPL-E, a system for translating unit test-driven code generation benchmarks to new languages. We create the first massively multilingual code generation benchmark by using MultiPL-E to translate two popular Python code generation benchmarks to 18 additional programming languages. We use MultiPL-E to extend the HumanEval benchmark and MBPP benchmark to 18 languages that encompass a range of programming paradigms and popularity. Using these new parallel benchmarks, we evaluate the multi-language performance of three state-of-the-art code generation models: Codex, CodeGen, and InCoder. We find that Codex matches or even exceeds its performance on Python for several other languages. The range of programming languages represented in MultiPL-E allow us to explore the impact of language frequency and language features on model performance. Finally, the MultiPL-E approach of compiling code generation benchmarks to new programming languages is both scalable and extensible, making it straightforward to evaluate new models, benchmarks, and languages.
