new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

The implications of stochastic gas torques for asymmetric binaries in the LISA band

Gravitational waves from asymmetric mass-ratio black-hole binaries carry unique information about their astrophysical environment. For instance, the Laser Interferometer Space Antenna (LISA) could potentially measure the amplitude and slope of gas torques in binaries embedded in the accretion disks of Active Galactic Nuclei, helping differentiate competing accretion disk models. However, this relies on simplified analytic models, which do not account for the stochastic variability of torques seen in hydrodynamic simulations. In this work, we use hydrodynamic simulations to create gravitational waveforms for extreme and intermediate mass-ratio inspirals in the LISA band. We then analyze these simulated waveforms using simpler templates that assume analytic torques, without stochastic time variability. By performing realistic Bayesian parameter estimation, we find no bias at 90% confidence in the binary parameters; however, estimates of accretion disk parameters, such as torque amplitude and slope, may be biased. Typically, the posterior distribution is centered around the average value of the torques, but when stochastic variability is large, the posterior can indicate no torques, even though they are present in the simulation. Our results suggest that while simplified analytic torque models work well for estimating binary parameters, caution is needed when using them to infer properties of the accretion disk. This work moves towards a more realistic assessment of one of the LISA science objectives, i.e., probing the properties of the astrophysical environments of black holes.

  • 5 authors
·
Feb 14, 2025

Outward Migration of a Gas Accreting Planet: A Semi-Analytical Formula

Type II orbital migration is a key process to regulate the mass and semimajor axis distribution of exoplanetary giant planets. The conventional formula of type II migration generally predicts too rapid inward migration to reconcile with the observed pile-up of gas giant beyond 1 au. Analyzing the recent high-resolution hydrodynamical simulations by Li et al. (2024) and Pan et al. (2025) that show robust outward migration of a gas accreting planet, we here clarify the condition for the outward migration to occur and derive a general semi-analytical formula that can be applied for broad range of planet mass and disk conditions. The striking outward migration is caused by azimuthal asymmetry in corotation torque exerted from cicumplanetary disk regions (connecting to horseshoe flow) that is produced by the planetary gas accretion, while the conventional inward migration model is based on radial asymmetry in the torques from the circumstellar protoplanetry disk. We found that the azimuthal asymmetry dominates and the migration is outward, when the gap depth defined by the surface density reduction factor of 1/(1+K') is in the range of 0.03 lesssim K' lesssim 50. Using simple models with the new formula, we demonstrate that the outward migration plays an important role in shaping the mass and semimajor axis distribution of gas giants. The concurrent dependence of planets' accretion rate and migration direction on their masses and disk properties potentially reproduces the observed pile-up of exoplanetary gas giants beyond 1 au, although more detailed planet population synthesis calculations are needed in the future.

  • 5 authors
·
Nov 28, 2025

RABBITS -- I. The crucial role of nuclear star formation in driving the coalescence of supermassive black hole binaries

In this study of the `Resolving supermAssive Black hole Binaries In galacTic hydrodynamical Simulations' (RABBITS) series, we focus on the hardening and coalescing process of supermassive black hole (SMBH) binaries in galaxy mergers. For simulations including different galaxy formation processes (i.e. gas cooling, star formation, SMBH accretion, stellar and AGN feedback), we systematically control the effect of stochastic eccentricity by fixing it to similar values during the SMBH hardening phase. We find a strong correlation between the SMBH merger time-scales and the presence of nuclear star formation. Throughout the galaxy merging process, gas condenses at the centre due to cooling and tidal torques, leading to nuclear star formation. These recently formed stars, which inherit low angular momenta from the gas, contribute to the loss cone and assist in the SMBH hardening via three-body interactions. Compared to non-radiative hydrodynamical runs, the SMBH merger time-scales measured from the runs including cooling, stellar and SMBH physical processes tend to be shortened by a factor of {sim}1.7. After fixing the eccentricity to the range of e sim 0.6--0.8 during the hardening phase, the simulations with AGN feedback reveal merger time-scales of {sim} 100--500 Myr for disc mergers and {sim} 1--2 Gyr for elliptical mergers. With a semi-analytical approach, we find that the torque interaction between the binary and its circumbinary disc has minimal impact on the shrinking of the binary orbit in our retrograde galaxy merger. Our results are useful in improving the modelling of SMBH merger time-scales and gravitational wave event rates.

  • 8 authors
·
Nov 2, 2023

Real-Time Prediction of Gas Flow Dynamics in Diesel Engines using a Deep Neural Operator Framework

We develop a data-driven deep neural operator framework to approximate multiple output states for a diesel engine and generate real-time predictions with reasonable accuracy. As emission norms become more stringent, the need for fast and accurate models that enable analysis of system behavior have become an essential requirement for system development. The fast transient processes involved in the operation of a combustion engine make it difficult to develop accurate physics-based models for such systems. As an alternative to physics based models, we develop an operator-based regression model (DeepONet) to learn the relevant output states for a mean-value gas flow engine model using the engine operating conditions as input variables. We have adopted a mean-value model as a benchmark for comparison, simulated using Simulink. The developed approach necessitates using the initial conditions of the output states to predict the accurate sequence over the temporal domain. To this end, a sequence-to-sequence approach is embedded into the proposed framework. The accuracy of the model is evaluated by comparing the prediction output to ground truth generated from Simulink model. The maximum mathcal L_2 relative error observed was approximately 6.5%. The sensitivity of the DeepONet model is evaluated under simulated noise conditions and the model shows relatively low sensitivity to noise. The uncertainty in model prediction is further assessed by using a mean ensemble approach. The worst-case error at the (mu + 2sigma) boundary was found to be 12%. The proposed framework provides the ability to predict output states in real-time and enables data-driven learning of complex input-output operator mapping. As a result, this model can be applied during initial development stages, where accurate models may not be available.

  • 4 authors
·
Apr 2, 2023