- Invariant subspaces for finite index shifts in Hardy spaces and the invariant subspace problem for finite defect operators Let mathbb H be the finite direct sums of H^2(mathbb D). In this paper, we give a characterization of the closed subspaces of mathbb H which are invariant under the shift, thus obtaining a concrete Beurling-type theorem for the finite index shift. This characterization presents any such a subspace as the finite intersection, up to an inner function, of pre-images of a closed shift-invariant subspace of H^2(mathbb D) under ``determinantal operators'' from mathbb H to H^2(mathbb D), that is, continuous linear operators which intertwine the shifts and appear as determinants of matrices with entries given by bounded holomorphic functions. With simple algebraic manipulations we provide a direct proof that every invariant closed subspace of codimension at least two sits into a non-trivial closed invariant subspace. As a consequence every bounded linear operator with finite defect has a nontrivial closed invariant subspace. 2 authors · Nov 4, 2024
- Asymptotic characterisation of localised defect modes: Su-Schrieffer-Heeger and related models Motivated by topologically protected states in wave physics, we study localised eigenmodes in one-dimensional periodic media with defects. The Su-Schrieffer-Heeger model (the canonical example of a one-dimensional system with topologically protected localised defect states) is used to demonstrate the method. Our approach can be used to describe two broad classes of perturbations to periodic differential problems: those caused by inserting a finite-sized piece of arbitrary material and those caused by creating an interface between two different periodic media. The results presented here characterise the existence of localised eigenmodes in each case and, when they exist, determine their eigenfrequencies and provide concise analytic results that quantify the decay rate of these modes. These results are obtained using both high-frequency homogenisation and transfer matrix analysis, with good agreement between the two methods. 2 authors · Feb 15, 2022
- ADAPT: Lightweight, Long-Range Machine Learning Force Fields Without Graphs Point defects play a central role in driving the properties of materials. First-principles methods are widely used to compute defect energetics and structures, including at scale for high-throughput defect databases. However, these methods are computationally expensive, making machine-learning force fields (MLFFs) an attractive alternative for accelerating structural relaxations. Most existing MLFFs are based on graph neural networks (GNNs), which can suffer from oversmoothing and poor representation of long-range interactions. Both of these issues are especially of concern when modeling point defects. To address these challenges, we introduce the Accelerated Deep Atomic Potential Transformer (ADAPT), an MLFF that replaces graph representations with a direct coordinates-in-space formulation and explicitly considers all pairwise atomic interactions. Atoms are treated as tokens, with a Transformer encoder modeling their interactions. Applied to a dataset of silicon point defects, ADAPT achieves a roughly 33 percent reduction in both force and energy prediction errors relative to a state-of-the-art GNN-based model, while requiring only a fraction of the computational cost. 7 authors · Sep 28, 2025
- Creation of single vacancies in hBN with electron irradiation Understanding electron irradiation effects is vital not only for reliable transmission electron microscopy characterization, but increasingly also for the controlled manipulation of two-dimensional materials. The displacement cross sections of monolayer hBN are measured using aberration-corrected scanning transmission electron microscopy in near ultra-high vacuum at primary beam energies between 50 and 90 keV. Damage rates below 80 keV are up to three orders of magnitude lower than previously measured at edges under poorer residual vacuum conditions where chemical etching appears to have been dominant. Notably, is possible to create single vacancies in hBN using electron irradiation, with boron almost twice as likely as nitrogen to be ejected below 80 keV. Moreover, any damage at such low energies cannot be explained by elastic knock-on, even when accounting for vibrations of the atoms. A theoretical description is developed to account for lowering of the displacement threshold due to valence ionization resulting from inelastic scattering of probe electrons, modelled using charge-constrained density functional theory molecular dynamics. Although significant reductions are found depending on the constrained charge, quantitative predictions for realistic ionization states are currently not possible. Nonetheless, there is potential for defect-engineering of hBN at the level of single vacancies using electron irradiation. 9 authors · Mar 1, 2023