- CISSIR: Beam Codebooks with Self-Interference Reduction Guarantees for Integrated Sensing and Communication Beyond 5G We propose a beam codebook design for integrated sensing and communication (ISAC) that reduces self-interference (SI) to alleviate analog distortion. Our optimization framework, which considers either tapered beamforming or phased arrays for both analog and hybrid schemes, modifies given reference codebooks such that a certain SI power level is achieved. In contrast to other low-SI codebooks, which often rely on hardly interpretable optimization parameters, we provide design guidelines to obtain sensing performance guarantees by deriving analytical bounds on saturation and analog-to-digital quantization in relation to the multipath SI level. By selecting standard reference codebooks in our simulations, we show how our method substantially improves the signal-to-noise ratio for sensing with little impact on 5G-NR communication. 4 authors · Feb 14, 2025 1
1 Massive MIMO Beam Management in Sub-6 GHz 5G NR Beam codebooks are a new feature of massive multiple-input multiple-output (M-MIMO) in 5G new radio (NR). Codebooks comprised of beamforming vectors are used to transmit reference signals and obtain limited channel state information (CSI) from receivers via the codeword index. This enables large arrays that cannot otherwise obtain sufficient CSI. The performance, however, is limited by the codebook design. In this paper, we show that machine learning can be used to train site-specific codebooks for initial access. We design a neural network based on an autoencoder architecture that uses a beamspace observation in combination with RF environment characteristics to improve the synchronization signal (SS) burst codebook. We test our algorithm using a flexible dataset of channels generated from QuaDRiGa. The results show that our model outperforms the industry standard (DFT beams) and approaches the optimal performance (perfect CSI and singular value decomposition (SVD)-based beamforming), using only a few bits of feedback. 3 authors · Apr 12, 2022