Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVariational sparse inverse Cholesky approximation for latent Gaussian processes via double Kullback-Leibler minimization
To achieve scalable and accurate inference for latent Gaussian processes, we propose a variational approximation based on a family of Gaussian distributions whose covariance matrices have sparse inverse Cholesky (SIC) factors. We combine this variational approximation of the posterior with a similar and efficient SIC-restricted Kullback-Leibler-optimal approximation of the prior. We then focus on a particular SIC ordering and nearest-neighbor-based sparsity pattern resulting in highly accurate prior and posterior approximations. For this setting, our variational approximation can be computed via stochastic gradient descent in polylogarithmic time per iteration. We provide numerical comparisons showing that the proposed double-Kullback-Leibler-optimal Gaussian-process approximation (DKLGP) can sometimes be vastly more accurate for stationary kernels than alternative approaches such as inducing-point and mean-field approximations at similar computational complexity.
Markovian Gaussian Process Variational Autoencoders
Sequential VAEs have been successfully considered for many high-dimensional time series modelling problems, with many variant models relying on discrete-time mechanisms such as recurrent neural networks (RNNs). On the other hand, continuous-time methods have recently gained attraction, especially in the context of irregularly-sampled time series, where they can better handle the data than discrete-time methods. One such class are Gaussian process variational autoencoders (GPVAEs), where the VAE prior is set as a Gaussian process (GP). However, a major limitation of GPVAEs is that it inherits the cubic computational cost as GPs, making it unattractive to practioners. In this work, we leverage the equivalent discrete state space representation of Markovian GPs to enable linear time GPVAE training via Kalman filtering and smoothing. We show on a variety of high-dimensional temporal and spatiotemporal tasks that our method performs favourably compared to existing approaches whilst being computationally highly scalable.
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
This work introduces the Efficient Transformed Gaussian Process (ETGP), a new way of creating C stochastic processes characterized by: 1) the C processes are non-stationary, 2) the C processes are dependent by construction without needing a mixing matrix, 3) training and making predictions is very efficient since the number of Gaussian Processes (GP) operations (e.g. inverting the inducing point's covariance matrix) do not depend on the number of processes. This makes the ETGP particularly suited for multi-class problems with a very large number of classes, which are the problems studied in this work. ETGPs exploit the recently proposed Transformed Gaussian Process (TGP), a stochastic process specified by transforming a Gaussian Process using an invertible transformation. However, unlike TGPs, ETGPs are constructed by transforming a single sample from a GP using C invertible transformations. We derive an efficient sparse variational inference algorithm for the proposed model and demonstrate its utility in 5 classification tasks which include low/medium/large datasets and a different number of classes, ranging from just a few to hundreds. Our results show that ETGPs, in general, outperform state-of-the-art methods for multi-class classification based on GPs, and have a lower computational cost (around one order of magnitude smaller).
Sparse within Sparse Gaussian Processes using Neighbor Information
Approximations to Gaussian processes based on inducing variables, combined with variational inference techniques, enable state-of-the-art sparse approaches to infer GPs at scale through mini batch-based learning. In this work, we address one limitation of sparse GPs, which is due to the challenge in dealing with a large number of inducing variables without imposing a special structure on the inducing inputs. In particular, we introduce a novel hierarchical prior, which imposes sparsity on the set of inducing variables. We treat our model variationally, and we experimentally show considerable computational gains compared to standard sparse GPs when sparsity on the inducing variables is realized considering the nearest inducing inputs of a random mini-batch of the data. We perform an extensive experimental validation that demonstrates the effectiveness of our approach compared to the state-of-the-art. Our approach enables the possibility to use sparse GPs using a large number of inducing points without incurring a prohibitive computational cost.
Training Bayesian Neural Networks with Sparse Subspace Variational Inference
Bayesian neural networks (BNNs) offer uncertainty quantification but come with the downside of substantially increased training and inference costs. Sparse BNNs have been investigated for efficient inference, typically by either slowly introducing sparsity throughout the training or by post-training compression of dense BNNs. The dilemma of how to cut down massive training costs remains, particularly given the requirement to learn about the uncertainty. To solve this challenge, we introduce Sparse Subspace Variational Inference (SSVI), the first fully sparse BNN framework that maintains a consistently highly sparse Bayesian model throughout the training and inference phases. Starting from a randomly initialized low-dimensional sparse subspace, our approach alternately optimizes the sparse subspace basis selection and its associated parameters. While basis selection is characterized as a non-differentiable problem, we approximate the optimal solution with a removal-and-addition strategy, guided by novel criteria based on weight distribution statistics. Our extensive experiments show that SSVI sets new benchmarks in crafting sparse BNNs, achieving, for instance, a 10-20x compression in model size with under 3\% performance drop, and up to 20x FLOPs reduction during training compared with dense VI training. Remarkably, SSVI also demonstrates enhanced robustness to hyperparameters, reducing the need for intricate tuning in VI and occasionally even surpassing VI-trained dense BNNs on both accuracy and uncertainty metrics.
A theory of representation learning gives a deep generalisation of kernel methods
The successes of modern deep machine learning methods are founded on their ability to transform inputs across multiple layers to build good high-level representations. It is therefore critical to understand this process of representation learning. However, standard theoretical approaches (formally NNGPs) involving infinite width limits eliminate representation learning. We therefore develop a new infinite width limit, the Bayesian representation learning limit, that exhibits representation learning mirroring that in finite-width models, yet at the same time, retains some of the simplicity of standard infinite-width limits. In particular, we show that Deep Gaussian processes (DGPs) in the Bayesian representation learning limit have exactly multivariate Gaussian posteriors, and the posterior covariances can be obtained by optimizing an interpretable objective combining a log-likelihood to improve performance with a series of KL-divergences which keep the posteriors close to the prior. We confirm these results experimentally in wide but finite DGPs. Next, we introduce the possibility of using this limit and objective as a flexible, deep generalisation of kernel methods, that we call deep kernel machines (DKMs). Like most naive kernel methods, DKMs scale cubically in the number of datapoints. We therefore use methods from the Gaussian process inducing point literature to develop a sparse DKM that scales linearly in the number of datapoints. Finally, we extend these approaches to NNs (which have non-Gaussian posteriors) in the Appendices.
Bayesian Optimization through Gaussian Cox Process Models for Spatio-temporal Data
Bayesian optimization (BO) has established itself as a leading strategy for efficiently optimizing expensive-to-evaluate functions. Existing BO methods mostly rely on Gaussian process (GP) surrogate models and are not applicable to (doubly-stochastic) Gaussian Cox processes, where the observation process is modulated by a latent intensity function modeled as a GP. In this paper, we propose a novel maximum a posteriori inference of Gaussian Cox processes. It leverages the Laplace approximation and change of kernel technique to transform the problem into a new reproducing kernel Hilbert space, where it becomes more tractable computationally. It enables us to obtain both a functional posterior of the latent intensity function and the covariance of the posterior, thus extending existing works that often focus on specific link functions or estimating the posterior mean. Using the result, we propose a BO framework based on the Gaussian Cox process model and further develop a Nystr\"om approximation for efficient computation. Extensive evaluations on various synthetic and real-world datasets demonstrate significant improvement over state-of-the-art inference solutions for Gaussian Cox processes, as well as effective BO with a wide range of acquisition functions designed through the underlying Gaussian Cox process model.
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes
Despite their many desirable properties, Gaussian processes (GPs) are often compared unfavorably to deep neural networks (NNs) for lacking the ability to learn representations. Recent efforts to bridge the gap between GPs and deep NNs have yielded a new class of inter-domain variational GPs in which the inducing variables correspond to hidden units of a feedforward NN. In this work, we examine some practical issues associated with this approach and propose an extension that leverages the orthogonal decomposition of GPs to mitigate these limitations. In particular, we introduce spherical inter-domain features to construct more flexible data-dependent basis functions for both the principal and orthogonal components of the GP approximation and show that incorporating NN activation features under this framework not only alleviates these shortcomings but is more scalable than alternative strategies. Experiments on multiple benchmark datasets demonstrate the effectiveness of our approach.
Finding Manifolds With Bilinear Autoencoders
Sparse autoencoders are a standard tool for uncovering interpretable latent representations in neural networks. Yet, their interpretation depends on the inputs, making their isolated study incomplete. Polynomials offer a solution; they serve as algebraic primitives that can be analysed without reference to input and can describe structures ranging from linear concepts to complicated manifolds. This work uses bilinear autoencoders to efficiently decompose representations into quadratic polynomials. We discuss improvements that induce importance ordering, clustering, and activation sparsity. This is an initial step toward nonlinear yet analysable latents through their algebraic properties.
Transformers Can Do Bayesian Inference
Currently, it is hard to reap the benefits of deep learning for Bayesian methods, which allow the explicit specification of prior knowledge and accurately capture model uncertainty. We present Prior-Data Fitted Networks (PFNs). PFNs leverage large-scale machine learning techniques to approximate a large set of posteriors. The only requirement for PFNs to work is the ability to sample from a prior distribution over supervised learning tasks (or functions). Our method restates the objective of posterior approximation as a supervised classification problem with a set-valued input: it repeatedly draws a task (or function) from the prior, draws a set of data points and their labels from it, masks one of the labels and learns to make probabilistic predictions for it based on the set-valued input of the rest of the data points. Presented with a set of samples from a new supervised learning task as input, PFNs make probabilistic predictions for arbitrary other data points in a single forward propagation, having learned to approximate Bayesian inference. We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems, with over 200-fold speedups in multiple setups compared to current methods. We obtain strong results in very diverse areas such as Gaussian process regression, Bayesian neural networks, classification for small tabular data sets, and few-shot image classification, demonstrating the generality of PFNs. Code and trained PFNs are released at https://github.com/automl/TransformersCanDoBayesianInference.
Model Selection for Bayesian Autoencoders
We develop a novel method for carrying out model selection for Bayesian autoencoders (BAEs) by means of prior hyper-parameter optimization. Inspired by the common practice of type-II maximum likelihood optimization and its equivalence to Kullback-Leibler divergence minimization, we propose to optimize the distributional sliced-Wasserstein distance (DSWD) between the output of the autoencoder and the empirical data distribution. The advantages of this formulation are that we can estimate the DSWD based on samples and handle high-dimensional problems. We carry out posterior estimation of the BAE parameters via stochastic gradient Hamiltonian Monte Carlo and turn our BAE into a generative model by fitting a flexible Dirichlet mixture model in the latent space. Consequently, we obtain a powerful alternative to variational autoencoders, which are the preferred choice in modern applications of autoencoders for representation learning with uncertainty. We evaluate our approach qualitatively and quantitatively using a vast experimental campaign on a number of unsupervised learning tasks and show that, in small-data regimes where priors matter, our approach provides state-of-the-art results, outperforming multiple competitive baselines.
Scaling and evaluating sparse autoencoders
Sparse autoencoders provide a promising unsupervised approach for extracting interpretable features from a language model by reconstructing activations from a sparse bottleneck layer. Since language models learn many concepts, autoencoders need to be very large to recover all relevant features. However, studying the properties of autoencoder scaling is difficult due to the need to balance reconstruction and sparsity objectives and the presence of dead latents. We propose using k-sparse autoencoders [Makhzani and Frey, 2013] to directly control sparsity, simplifying tuning and improving the reconstruction-sparsity frontier. Additionally, we find modifications that result in few dead latents, even at the largest scales we tried. Using these techniques, we find clean scaling laws with respect to autoencoder size and sparsity. We also introduce several new metrics for evaluating feature quality based on the recovery of hypothesized features, the explainability of activation patterns, and the sparsity of downstream effects. These metrics all generally improve with autoencoder size. To demonstrate the scalability of our approach, we train a 16 million latent autoencoder on GPT-4 activations for 40 billion tokens. We release training code and autoencoders for open-source models, as well as a visualizer.
Scale Mixtures of Neural Network Gaussian Processes
Recent works have revealed that infinitely-wide feed-forward or recurrent neural networks of any architecture correspond to Gaussian processes referred to as Neural Network Gaussian Processes (NNGPs). While these works have extended the class of neural networks converging to Gaussian processes significantly, however, there has been little focus on broadening the class of stochastic processes that such neural networks converge to. In this work, inspired by the scale mixture of Gaussian random variables, we propose the scale mixture of NNGPs for which we introduce a prior distribution on the scale of the last-layer parameters. We show that simply introducing a scale prior on the last-layer parameters can turn infinitely-wide neural networks of any architecture into a richer class of stochastic processes. With certain scale priors, we obtain heavy-tailed stochastic processes, and in the case of inverse gamma priors, we recover Student's t processes. We further analyze the distributions of the neural networks initialized with our prior setting and trained with gradient descents and obtain similar results as for NNGPs. We present a practical posterior-inference algorithm for the scale mixture of NNGPs and empirically demonstrate its usefulness on regression and classification tasks. In particular, we show that in both tasks, the heavy-tailed stochastic processes obtained from our framework are robust to out-of-distribution data.
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models
Approximate inference in Gaussian process (GP) models with non-conjugate likelihoods gets entangled with the learning of the model hyperparameters. We improve hyperparameter learning in GP models and focus on the interplay between variational inference (VI) and the learning target. While VI's lower bound to the marginal likelihood is a suitable objective for inferring the approximate posterior, we show that a direct approximation of the marginal likelihood as in Expectation Propagation (EP) is a better learning objective for hyperparameter optimization. We design a hybrid training procedure to bring the best of both worlds: it leverages conjugate-computation VI for inference and uses an EP-like marginal likelihood approximation for hyperparameter learning. We compare VI, EP, Laplace approximation, and our proposed training procedure and empirically demonstrate the effectiveness of our proposal across a wide range of data sets.
Train One Sparse Autoencoder Across Multiple Sparsity Budgets to Preserve Interpretability and Accuracy
Sparse Autoencoders (SAEs) have proven to be powerful tools for interpreting neural networks by decomposing hidden representations into disentangled, interpretable features via sparsity constraints. However, conventional SAEs are constrained by the fixed sparsity level chosen during training; meeting different sparsity requirements therefore demands separate models and increases the computational footprint during both training and evaluation. We introduce a novel training objective, HierarchicalTopK, which trains a single SAE to optimise reconstructions across multiple sparsity levels simultaneously. Experiments with Gemma-2 2B demonstrate that our approach achieves Pareto-optimal trade-offs between sparsity and explained variance, outperforming traditional SAEs trained at individual sparsity levels. Further analysis shows that HierarchicalTopK preserves high interpretability scores even at higher sparsity. The proposed objective thus closes an important gap between flexibility and interpretability in SAE design.
Freeze-Thaw Bayesian Optimization
In this paper we develop a dynamic form of Bayesian optimization for machine learning models with the goal of rapidly finding good hyperparameter settings. Our method uses the partial information gained during the training of a machine learning model in order to decide whether to pause training and start a new model, or resume the training of a previously-considered model. We specifically tailor our method to machine learning problems by developing a novel positive-definite covariance kernel to capture a variety of training curves. Furthermore, we develop a Gaussian process prior that scales gracefully with additional temporal observations. Finally, we provide an information-theoretic framework to automate the decision process. Experiments on several common machine learning models show that our approach is extremely effective in practice.
Memory-Based Dual Gaussian Processes for Sequential Learning
Sequential learning with Gaussian processes (GPs) is challenging when access to past data is limited, for example, in continual and active learning. In such cases, errors can accumulate over time due to inaccuracies in the posterior, hyperparameters, and inducing points, making accurate learning challenging. Here, we present a method to keep all such errors in check using the recently proposed dual sparse variational GP. Our method enables accurate inference for generic likelihoods and improves learning by actively building and updating a memory of past data. We demonstrate its effectiveness in several applications involving Bayesian optimization, active learning, and continual learning.
k-Sparse Autoencoders
Recently, it has been observed that when representations are learnt in a way that encourages sparsity, improved performance is obtained on classification tasks. These methods involve combinations of activation functions, sampling steps and different kinds of penalties. To investigate the effectiveness of sparsity by itself, we propose the k-sparse autoencoder, which is an autoencoder with linear activation function, where in hidden layers only the k highest activities are kept. When applied to the MNIST and NORB datasets, we find that this method achieves better classification results than denoising autoencoders, networks trained with dropout, and RBMs. k-sparse autoencoders are simple to train and the encoding stage is very fast, making them well-suited to large problem sizes, where conventional sparse coding algorithms cannot be applied.
Sparsity-Aware Distributed Learning for Gaussian Processes with Linear Multiple Kernel
Gaussian processes (GPs) stand as crucial tools in machine learning and signal processing, with their effectiveness hinging on kernel design and hyper-parameter optimization. This paper presents a novel GP linear multiple kernel (LMK) and a generic sparsity-aware distributed learning framework to optimize the hyper-parameters. The newly proposed grid spectral mixture product (GSMP) kernel is tailored for multi-dimensional data, effectively reducing the number of hyper-parameters while maintaining good approximation capability. We further demonstrate that the associated hyper-parameter optimization of this kernel yields sparse solutions. To exploit the inherent sparsity of the solutions, we introduce the Sparse LInear Multiple Kernel Learning (SLIM-KL) framework. The framework incorporates a quantized alternating direction method of multipliers (ADMM) scheme for collaborative learning among multiple agents, where the local optimization problem is solved using a distributed successive convex approximation (DSCA) algorithm. SLIM-KL effectively manages large-scale hyper-parameter optimization for the proposed kernel, simultaneously ensuring data privacy and minimizing communication costs. Theoretical analysis establishes convergence guarantees for the learning framework, while experiments on diverse datasets demonstrate the superior prediction performance and efficiency of our proposed methods.
Near-linear Time Gaussian Process Optimization with Adaptive Batching and Resparsification
Gaussian processes (GP) are one of the most successful frameworks to model uncertainty. However, GP optimization (e.g., GP-UCB) suffers from major scalability issues. Experimental time grows linearly with the number of evaluations, unless candidates are selected in batches (e.g., using GP-BUCB) and evaluated in parallel. Furthermore, computational cost is often prohibitive since algorithms such as GP-BUCB require a time at least quadratic in the number of dimensions and iterations to select each batch. In this paper, we introduce BBKB (Batch Budgeted Kernel Bandits), the first no-regret GP optimization algorithm that provably runs in near-linear time and selects candidates in batches. This is obtained with a new guarantee for the tracking of the posterior variances that allows BBKB to choose increasingly larger batches, improving over GP-BUCB. Moreover, we show that the same bound can be used to adaptively delay costly updates to the sparse GP approximation used by BBKB, achieving a near-constant per-step amortized cost. These findings are then confirmed in several experiments, where BBKB is much faster than state-of-the-art methods.
Features that Make a Difference: Leveraging Gradients for Improved Dictionary Learning
Sparse Autoencoders (SAEs) are a promising approach for extracting neural network representations by learning a sparse and overcomplete decomposition of the network's internal activations. However, SAEs are traditionally trained considering only activation values and not the effect those activations have on downstream computations. This limits the information available to learn features, and biases the autoencoder towards neglecting features which are represented with small activation values but strongly influence model outputs. To address this, we introduce Gradient SAEs (g-SAEs), which modify the k-sparse autoencoder architecture by augmenting the TopK activation function to rely on the gradients of the input activation when selecting the k elements. For a given sparsity level, g-SAEs produce reconstructions that are more faithful to original network performance when propagated through the network. Additionally, we find evidence that g-SAEs learn latents that are on average more effective at steering models in arbitrary contexts. By considering the downstream effects of activations, our approach leverages the dual nature of neural network features as both representations, retrospectively, and actions, prospectively. While previous methods have approached the problem of feature discovery primarily focused on the former aspect, g-SAEs represent a step towards accounting for the latter as well.
Variational Bayes image restoration with compressive autoencoders
Regularization of inverse problems is of paramount importance in computational imaging. The ability of neural networks to learn efficient image representations has been recently exploited to design powerful data-driven regularizers. While state-of-the-art plug-and-play (PnP) methods rely on an implicit regularization provided by neural denoisers, alternative Bayesian approaches consider Maximum A Posteriori (MAP) estimation in the latent space of a generative model, thus with an explicit regularization. However, state-of-the-art deep generative models require a huge amount of training data compared to denoisers. Besides, their complexity hampers the optimization involved in latent MAP derivation. In this work, we first propose to use compressive autoencoders instead. These networks, which can be seen as variational autoencoders with a flexible latent prior, are smaller and easier to train than state-of-the-art generative models. As a second contribution, we introduce the Variational Bayes Latent Estimation (VBLE) algorithm, which performs latent estimation within the framework of variational inference. Thanks to a simple yet efficient parameterization of the variational posterior, VBLE allows for fast and easy (approximate) posterior sampling. Experimental results on image datasets BSD and FFHQ demonstrate that VBLE reaches similar performance as state-of-the-art PnP methods, while being able to quantify uncertainties significantly faster than other existing posterior sampling techniques. The code associated to this paper is available in https://github.com/MaudBqrd/VBLE.
Bayesian Algorithms for Kronecker-structured Sparse Vector Recovery With Application to IRS-MIMO Channel Estimation
We study the sparse recovery problem with an underdetermined linear system characterized by a Kronecker-structured dictionary and a Kronecker-supported sparse vector. We cast this problem into the sparse Bayesian learning (SBL) framework and rely on the expectation-maximization method for a solution. To this end, we model the Kronecker-structured support with a hierarchical Gaussian prior distribution parameterized by a Kronecker-structured hyperparameter, leading to a non-convex optimization problem. The optimization problem is solved using the alternating minimization (AM) method and a singular value decomposition (SVD)-based method, resulting in two algorithms. Further, we analytically guarantee that the AM-based method converges to the stationary point of the SBL cost function. The SVD-based method, though it adopts approximations, is empirically shown to be more efficient and accurate. We then apply our algorithm to estimate the uplink wireless channel in an intelligent reflecting surface-aided MIMO system and extend the AM-based algorithm to address block sparsity in the channel. We also study the SBL cost to show that the minima of the cost function are achieved at sparse solutions and that incorporating the Kronecker structure reduces the number of local minima of the SBL cost function. Our numerical results demonstrate the effectiveness of our algorithms compared to the state-of-the-art.
Approximate Inference for Fully Bayesian Gaussian Process Regression
Learning in Gaussian Process models occurs through the adaptation of hyperparameters of the mean and the covariance function. The classical approach entails maximizing the marginal likelihood yielding fixed point estimates (an approach called Type II maximum likelihood or ML-II). An alternative learning procedure is to infer the posterior over hyperparameters in a hierarchical specification of GPs we call Fully Bayesian Gaussian Process Regression (GPR). This work considers two approximation schemes for the intractable hyperparameter posterior: 1) Hamiltonian Monte Carlo (HMC) yielding a sampling-based approximation and 2) Variational Inference (VI) where the posterior over hyperparameters is approximated by a factorized Gaussian (mean-field) or a full-rank Gaussian accounting for correlations between hyperparameters. We analyze the predictive performance for fully Bayesian GPR on a range of benchmark data sets.
Gemma Scope: Open Sparse Autoencoders Everywhere All At Once on Gemma 2
Sparse autoencoders (SAEs) are an unsupervised method for learning a sparse decomposition of a neural network's latent representations into seemingly interpretable features. Despite recent excitement about their potential, research applications outside of industry are limited by the high cost of training a comprehensive suite of SAEs. In this work, we introduce Gemma Scope, an open suite of JumpReLU SAEs trained on all layers and sub-layers of Gemma 2 2B and 9B and select layers of Gemma 2 27B base models. We primarily train SAEs on the Gemma 2 pre-trained models, but additionally release SAEs trained on instruction-tuned Gemma 2 9B for comparison. We evaluate the quality of each SAE on standard metrics and release these results. We hope that by releasing these SAE weights, we can help make more ambitious safety and interpretability research easier for the community. Weights and a tutorial can be found at https://huggingface.co/google/gemma-scope and an interactive demo can be found at https://www.neuronpedia.org/gemma-scope
Deep Neural Network Initialization with Sparsity Inducing Activations
Inducing and leveraging sparse activations during training and inference is a promising avenue for improving the computational efficiency of deep networks, which is increasingly important as network sizes continue to grow and their application becomes more widespread. Here we use the large width Gaussian process limit to analyze the behaviour, at random initialization, of nonlinear activations that induce sparsity in the hidden outputs. A previously unreported form of training instability is proven for arguably two of the most natural candidates for hidden layer sparsification; those being a shifted ReLU (phi(x)=max(0, x-tau) for tauge 0) and soft thresholding (phi(x)=0 for |x|letau and x-sign(x)tau for |x|>tau). We show that this instability is overcome by clipping the nonlinear activation magnitude, at a level prescribed by the shape of the associated Gaussian process variance map. Numerical experiments verify the theory and show that the proposed magnitude clipped sparsifying activations can be trained with training and test fractional sparsity as high as 85\% while retaining close to full accuracy.
Linear Time GPs for Inferring Latent Trajectories from Neural Spike Trains
Latent Gaussian process (GP) models are widely used in neuroscience to uncover hidden state evolutions from sequential observations, mainly in neural activity recordings. While latent GP models provide a principled and powerful solution in theory, the intractable posterior in non-conjugate settings necessitates approximate inference schemes, which may lack scalability. In this work, we propose cvHM, a general inference framework for latent GP models leveraging Hida-Mat\'ern kernels and conjugate computation variational inference (CVI). With cvHM, we are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods. The reparameterization of stationary kernels using Hida-Mat\'ern GPs helps us connect the latent variable models that encode prior assumptions through dynamical systems to those that encode trajectory assumptions through GPs. In contrast to previous work, we use bidirectional information filtering, leading to a more concise implementation. Furthermore, we employ the Whittle approximate likelihood to achieve highly efficient hyperparameter learning.
Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series
Forecasting on sparse multivariate time series (MTS) aims to model the predictors of future values of time series given their incomplete past, which is important for many emerging applications. However, most existing methods process MTS's individually, and do not leverage the dynamic distributions underlying the MTS's, leading to sub-optimal results when the sparsity is high. To address this challenge, we propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations, to achieve robust modeling. It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures, and is used for emitting timeseries. The generative model is parameterized by neural networks. A structured inference network is also designed for enabling inductive analysis. A gating mechanism is further introduced to dynamically tune the Gaussian mixture distributions. Extensive experimental results on a variety of real-life datasets demonstrate the effectiveness of our method.
Masked Bayesian Neural Networks : Theoretical Guarantee and its Posterior Inference
Bayesian approaches for learning deep neural networks (BNN) have been received much attention and successfully applied to various applications. Particularly, BNNs have the merit of having better generalization ability as well as better uncertainty quantification. For the success of BNN, search an appropriate architecture of the neural networks is an important task, and various algorithms to find good sparse neural networks have been proposed. In this paper, we propose a new node-sparse BNN model which has good theoretical properties and is computationally feasible. We prove that the posterior concentration rate to the true model is near minimax optimal and adaptive to the smoothness of the true model. In particular the adaptiveness is the first of its kind for node-sparse BNNs. In addition, we develop a novel MCMC algorithm which makes the Bayesian inference of the node-sparse BNN model feasible in practice.
Gradient Origin Networks
This paper proposes a new type of generative model that is able to quickly learn a latent representation without an encoder. This is achieved using empirical Bayes to calculate the expectation of the posterior, which is implemented by initialising a latent vector with zeros, then using the gradient of the log-likelihood of the data with respect to this zero vector as new latent points. The approach has similar characteristics to autoencoders, but with a simpler architecture, and is demonstrated in a variational autoencoder equivalent that permits sampling. This also allows implicit representation networks to learn a space of implicit functions without requiring a hypernetwork, retaining their representation advantages across datasets. The experiments show that the proposed method converges faster, with significantly lower reconstruction error than autoencoders, while requiring half the parameters.
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
Bayesian optimization is a highly efficient approach to optimizing objective functions which are expensive to query. These objectives are typically represented by Gaussian process (GP) surrogate models which are easy to optimize and support exact inference. While standard GP surrogates have been well-established in Bayesian optimization, Bayesian neural networks (BNNs) have recently become practical function approximators, with many benefits over standard GPs such as the ability to naturally handle non-stationarity and learn representations for high-dimensional data. In this paper, we study BNNs as alternatives to standard GP surrogates for optimization. We consider a variety of approximate inference procedures for finite-width BNNs, including high-quality Hamiltonian Monte Carlo, low-cost stochastic MCMC, and heuristics such as deep ensembles. We also consider infinite-width BNNs and partially stochastic models such as deep kernel learning. We evaluate this collection of surrogate models on diverse problems with varying dimensionality, number of objectives, non-stationarity, and discrete and continuous inputs. We find: (i) the ranking of methods is highly problem dependent, suggesting the need for tailored inductive biases; (ii) HMC is the most successful approximate inference procedure for fully stochastic BNNs; (iii) full stochasticity may be unnecessary as deep kernel learning is relatively competitive; (iv) infinite-width BNNs are particularly promising, especially in high dimensions.
Evaluating and Designing Sparse Autoencoders by Approximating Quasi-Orthogonality
Sparse autoencoders (SAEs) are widely used in mechanistic interpretability research for large language models; however, the state-of-the-art method of using k-sparse autoencoders lacks a theoretical grounding for selecting the hyperparameter k that represents the number of nonzero activations, often denoted by ell_0. In this paper, we reveal a theoretical link that the ell_2-norm of the sparse feature vector can be approximated with the ell_2-norm of the dense vector with a closed-form error, which allows sparse autoencoders to be trained without the need to manually determine ell_0. Specifically, we validate two applications of our theoretical findings. First, we introduce a new methodology that can assess the feature activations of pre-trained SAEs by computing the theoretically expected value from the input embedding, which has been overlooked by existing SAE evaluation methods and loss functions. Second, we introduce a novel activation function, top-AFA, which builds upon our formulation of approximate feature activation (AFA). This function enables top-k style activation without requiring a constant hyperparameter k to be tuned, dynamically determining the number of activated features for each input. By training SAEs on three intermediate layers to reconstruct GPT2 hidden embeddings for over 80 million tokens from the OpenWebText dataset, we demonstrate the empirical merits of this approach and compare it with current state-of-the-art k-sparse autoencoders. Our code is available at: https://github.com/SewoongLee/top-afa-sae.
AbsTopK: Rethinking Sparse Autoencoders For Bidirectional Features
Sparse autoencoders (SAEs) have emerged as powerful techniques for interpretability of large language models (LLMs), aiming to decompose hidden states into meaningful semantic features. While several SAE variants have been proposed, there remains no principled framework to derive SAEs from the original dictionary learning formulation. In this work, we introduce such a framework by unrolling the proximal gradient method for sparse coding. We show that a single-step update naturally recovers common SAE variants, including ReLU, JumpReLU, and TopK. Through this lens, we reveal a fundamental limitation of existing SAEs: their sparsity-inducing regularizers enforce non-negativity, preventing a single feature from representing bidirectional concepts (e.g., male vs. female). This structural constraint fragments semantic axes into separate, redundant features, limiting representational completeness. To address this issue, we propose AbsTopK SAE, a new variant derived from the ell_0 sparsity constraint that applies hard thresholding over the largest-magnitude activations. By preserving both positive and negative activations, AbsTopK uncovers richer, bidirectional conceptual representations. Comprehensive experiments across four LLMs and seven probing and steering tasks show that AbsTopK improves reconstruction fidelity, enhances interpretability, and enables single features to encode contrasting concepts. Remarkably, AbsTopK matches or even surpasses the Difference-in-Mean method, a supervised approach that requires labeled data for each concept and has been shown in prior work to outperform SAEs.
Can sparse autoencoders make sense of latent representations?
Sparse autoencoders (SAEs) have lately been used to uncover interpretable latent features in large language models. Here, we explore their potential for decomposing latent representations in complex and high-dimensional biological data, where the underlying variables are often unknown. On simulated data we show that generative hidden variables can be captured in learned representations in the form of superpositions. The degree to which they are learned depends on the completeness of the representations. Superpositions, however, are not identifiable if these generative variables are unknown. SAEs can to some extent recover these variables, yielding interpretable features. Applied to single-cell multi-omics data, we show that an SAE can uncover key biological processes such as carbon dioxide transport and ion homeostasis, which are crucial for red blood cell differentiation and immune function. Our findings highlight how SAEs can be used in advancing interpretability in biological and other scientific domains.
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
While Bayesian inference provides a principled framework for reasoning under uncertainty, its widespread adoption is limited by the intractability of exact posterior computation, necessitating the use of approximate inference. However, existing methods are often computationally expensive, or demand costly retraining when priors change, limiting their utility, particularly in sequential inference problems such as real-time sensor fusion. To address these challenges, we introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings. Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset -- thus performing approximate Bayesian inference. Our novel architecture represents a prior distribution as a (universally-approximating) Gaussian Mixture Model (GMM), and transforms it into a GMM representation of the posterior. The components of the GMM attend to each other via self-attention, and to the datapoints via cross-attention. We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces computation times-from minutes to milliseconds-while achieving log-likelihood performance on par with or superior to existing approximate inference methods across tasks such as sequential inference, quantum system parameter inference, and Gaussian Process predictive posterior inference with hyperpriors.
A GAMP Based Low Complexity Sparse Bayesian Learning Algorithm
In this paper, we present an algorithm for the sparse signal recovery problem that incorporates damped Gaussian generalized approximate message passing (GGAMP) into Expectation-Maximization (EM)-based sparse Bayesian learning (SBL). In particular, GGAMP is used to implement the E-step in SBL in place of matrix inversion, leveraging the fact that GGAMP is guaranteed to converge with appropriate damping. The resulting GGAMP-SBL algorithm is much more robust to arbitrary measurement matrix A than the standard damped GAMP algorithm while being much lower complexity than the standard SBL algorithm. We then extend the approach from the single measurement vector (SMV) case to the temporally correlated multiple measurement vector (MMV) case, leading to the GGAMP-TSBL algorithm. We verify the robustness and computational advantages of the proposed algorithms through numerical experiments.
Implicit Gaussian process representation of vector fields over arbitrary latent manifolds
Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.
Interpreting CLIP with Hierarchical Sparse Autoencoders
Sparse autoencoders (SAEs) are useful for detecting and steering interpretable features in neural networks, with particular potential for understanding complex multimodal representations. Given their ability to uncover interpretable features, SAEs are particularly valuable for analyzing large-scale vision-language models (e.g., CLIP and SigLIP), which are fundamental building blocks in modern systems yet remain challenging to interpret and control. However, current SAE methods are limited by optimizing both reconstruction quality and sparsity simultaneously, as they rely on either activation suppression or rigid sparsity constraints. To this end, we introduce Matryoshka SAE (MSAE), a new architecture that learns hierarchical representations at multiple granularities simultaneously, enabling a direct optimization of both metrics without compromise. MSAE establishes a new state-of-the-art Pareto frontier between reconstruction quality and sparsity for CLIP, achieving 0.99 cosine similarity and less than 0.1 fraction of variance unexplained while maintaining ~80% sparsity. Finally, we demonstrate the utility of MSAE as a tool for interpreting and controlling CLIP by extracting over 120 semantic concepts from its representation to perform concept-based similarity search and bias analysis in downstream tasks like CelebA.
Learning minimal representations of stochastic processes with variational autoencoders
Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are however difficult to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set of parameters required to effectively describe the dynamics of a stochastic process. Our method builds upon an extended beta-variational autoencoder architecture. By means of simulated datasets corresponding to paradigmatic diffusion models, we showcase its effectiveness in extracting the minimal relevant parameters that accurately describe these dynamics. Furthermore, the method enables the generation of new trajectories that faithfully replicate the expected stochastic behavior. Overall, our approach enables for the autonomous discovery of unknown parameters describing stochastic processes, hence enhancing our comprehension of complex phenomena across various fields.
Analysis of Variational Sparse Autoencoders
Sparse Autoencoders (SAEs) have emerged as a promising approach for interpreting neural network representations by learning sparse, human-interpretable features from dense activations. We investigate whether incorporating variational methods into SAE architectures can improve feature organization and interpretability. We introduce the Variational Sparse Autoencoder (vSAE), which replaces deterministic ReLU gating with stochastic sampling from learned Gaussian posteriors and incorporates KL divergence regularization toward a standard normal prior. Our hypothesis is that this probabilistic sampling creates dispersive pressure, causing features to organize more coherently in the latent space while avoiding overlap. We evaluate a TopK vSAE against a standard TopK SAE on Pythia-70M transformer residual stream activations using comprehensive benchmarks including SAE Bench, individual feature interpretability analysis, and global latent space visualization through t-SNE. The vSAE underperforms standard SAE across core evaluation metrics, though excels at feature independence and ablation metrics. The KL divergence term creates excessive regularization pressure that substantially reduces the fraction of living features, leading to observed performance degradation. While vSAE features demonstrate improved robustness, they exhibit many more dead features than baseline. Our findings suggest that naive application of variational methods to SAEs does not improve feature organization or interpretability.
SAEs Are Good for Steering -- If You Select the Right Features
Sparse Autoencoders (SAEs) have been proposed as an unsupervised approach to learn a decomposition of a model's latent space. This enables useful applications such as steering - influencing the output of a model towards a desired concept - without requiring labeled data. Current methods identify SAE features to steer by analyzing the input tokens that activate them. However, recent work has highlighted that activations alone do not fully describe the effect of a feature on the model's output. In this work, we draw a distinction between two types of features: input features, which mainly capture patterns in the model's input, and output features, which have a human-understandable effect on the model's output. We propose input and output scores to characterize and locate these types of features, and show that high values for both scores rarely co-occur in the same features. These findings have practical implications: after filtering out features with low output scores, we obtain 2-3x improvements when steering with SAEs, making them competitive with supervised methods.
Interpreting Attention Layer Outputs with Sparse Autoencoders
Decomposing model activations into interpretable components is a key open problem in mechanistic interpretability. Sparse autoencoders (SAEs) are a popular method for decomposing the internal activations of trained transformers into sparse, interpretable features, and have been applied to MLP layers and the residual stream. In this work we train SAEs on attention layer outputs and show that also here SAEs find a sparse, interpretable decomposition. We demonstrate this on transformers from several model families and up to 2B parameters. We perform a qualitative study of the features computed by attention layers, and find multiple families: long-range context, short-range context and induction features. We qualitatively study the role of every head in GPT-2 Small, and estimate that at least 90% of the heads are polysemantic, i.e. have multiple unrelated roles. Further, we show that Sparse Autoencoders are a useful tool that enable researchers to explain model behavior in greater detail than prior work. For example, we explore the mystery of why models have so many seemingly redundant induction heads, use SAEs to motivate the hypothesis that some are long-prefix whereas others are short-prefix, and confirm this with more rigorous analysis. We use our SAEs to analyze the computation performed by the Indirect Object Identification circuit (Wang et al.), validating that the SAEs find causally meaningful intermediate variables, and deepening our understanding of the semantics of the circuit. We open-source the trained SAEs and a tool for exploring arbitrary prompts through the lens of Attention Output SAEs.
From Flat to Hierarchical: Extracting Sparse Representations with Matching Pursuit
Motivated by the hypothesis that neural network representations encode abstract, interpretable features as linearly accessible, approximately orthogonal directions, sparse autoencoders (SAEs) have become a popular tool in interpretability. However, recent work has demonstrated phenomenology of model representations that lies outside the scope of this hypothesis, showing signatures of hierarchical, nonlinear, and multi-dimensional features. This raises the question: do SAEs represent features that possess structure at odds with their motivating hypothesis? If not, does avoiding this mismatch help identify said features and gain further insights into neural network representations? To answer these questions, we take a construction-based approach and re-contextualize the popular matching pursuits (MP) algorithm from sparse coding to design MP-SAE -- an SAE that unrolls its encoder into a sequence of residual-guided steps, allowing it to capture hierarchical and nonlinearly accessible features. Comparing this architecture with existing SAEs on a mixture of synthetic and natural data settings, we show: (i) hierarchical concepts induce conditionally orthogonal features, which existing SAEs are unable to faithfully capture, and (ii) the nonlinear encoding step of MP-SAE recovers highly meaningful features, helping us unravel shared structure in the seemingly dichotomous representation spaces of different modalities in a vision-language model, hence demonstrating the assumption that useful features are solely linearly accessible is insufficient. We also show that the sequential encoder principle of MP-SAE affords an additional benefit of adaptive sparsity at inference time, which may be of independent interest. Overall, we argue our results provide credence to the idea that interpretability should begin with the phenomenology of representations, with methods emerging from assumptions that fit it.
A Tutorial on Bayesian Optimization
Bayesian optimization is an approach to optimizing objective functions that take a long time (minutes or hours) to evaluate. It is best-suited for optimization over continuous domains of less than 20 dimensions, and tolerates stochastic noise in function evaluations. It builds a surrogate for the objective and quantifies the uncertainty in that surrogate using a Bayesian machine learning technique, Gaussian process regression, and then uses an acquisition function defined from this surrogate to decide where to sample. In this tutorial, we describe how Bayesian optimization works, including Gaussian process regression and three common acquisition functions: expected improvement, entropy search, and knowledge gradient. We then discuss more advanced techniques, including running multiple function evaluations in parallel, multi-fidelity and multi-information source optimization, expensive-to-evaluate constraints, random environmental conditions, multi-task Bayesian optimization, and the inclusion of derivative information. We conclude with a discussion of Bayesian optimization software and future research directions in the field. Within our tutorial material we provide a generalization of expected improvement to noisy evaluations, beyond the noise-free setting where it is more commonly applied. This generalization is justified by a formal decision-theoretic argument, standing in contrast to previous ad hoc modifications.
A Framework and Benchmark for Deep Batch Active Learning for Regression
The acquisition of labels for supervised learning can be expensive. To improve the sample efficiency of neural network regression, we study active learning methods that adaptively select batches of unlabeled data for labeling. We present a framework for constructing such methods out of (network-dependent) base kernels, kernel transformations, and selection methods. Our framework encompasses many existing Bayesian methods based on Gaussian process approximations of neural networks as well as non-Bayesian methods. Additionally, we propose to replace the commonly used last-layer features with sketched finite-width neural tangent kernels and to combine them with a novel clustering method. To evaluate different methods, we introduce an open-source benchmark consisting of 15 large tabular regression data sets. Our proposed method outperforms the state-of-the-art on our benchmark, scales to large data sets, and works out-of-the-box without adjusting the network architecture or training code. We provide open-source code that includes efficient implementations of all kernels, kernel transformations, and selection methods, and can be used for reproducing our results.
Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods
Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.
What do you Mean? The Role of the Mean Function in Bayesian Optimisation
Bayesian optimisation is a popular approach for optimising expensive black-box functions. The next location to be evaluated is selected via maximising an acquisition function that balances exploitation and exploration. Gaussian processes, the surrogate models of choice in Bayesian optimisation, are often used with a constant prior mean function equal to the arithmetic mean of the observed function values. We show that the rate of convergence can depend sensitively on the choice of mean function. We empirically investigate 8 mean functions (constant functions equal to the arithmetic mean, minimum, median and maximum of the observed function evaluations, linear, quadratic polynomials, random forests and RBF networks), using 10 synthetic test problems and two real-world problems, and using the Expected Improvement and Upper Confidence Bound acquisition functions. We find that for design dimensions ge5 using a constant mean function equal to the worst observed quality value is consistently the best choice on the synthetic problems considered. We argue that this worst-observed-quality function promotes exploitation leading to more rapid convergence. However, for the real-world tasks the more complex mean functions capable of modelling the fitness landscape may be effective, although there is no clearly optimum choice.
Stochastic Gradient Descent for Gaussian Processes Done Right
We study the optimisation problem associated with Gaussian process regression using squared loss. The most common approach to this problem is to apply an exact solver, such as conjugate gradient descent, either directly, or to a reduced-order version of the problem. Recently, driven by successes in deep learning, stochastic gradient descent has gained traction as an alternative. In this paper, we show that when done rightx2014by which we mean using specific insights from the optimisation and kernel communitiesx2014this approach is highly effective. We thus introduce a particular stochastic dual gradient descent algorithm, that may be implemented with a few lines of code using any deep learning framework. We explain our design decisions by illustrating their advantage against alternatives with ablation studies and show that the new method is highly competitive. Our evaluations on standard regression benchmarks and a Bayesian optimisation task set our approach apart from preconditioned conjugate gradients, variational Gaussian process approximations, and a previous version of stochastic gradient descent for Gaussian processes. On a molecular binding affinity prediction task, our method places Gaussian process regression on par in terms of performance with state-of-the-art graph neural networks.
Sparse Autoencoder Features for Classifications and Transferability
Sparse Autoencoders (SAEs) provide potentials for uncovering structured, human-interpretable representations in Large Language Models (LLMs), making them a crucial tool for transparent and controllable AI systems. We systematically analyze SAE for interpretable feature extraction from LLMs in safety-critical classification tasks. Our framework evaluates (1) model-layer selection and scaling properties, (2) SAE architectural configurations, including width and pooling strategies, and (3) the effect of binarizing continuous SAE activations. SAE-derived features achieve macro F1 > 0.8, outperforming hidden-state and BoW baselines while demonstrating cross-model transfer from Gemma 2 2B to 9B-IT models. These features generalize in a zero-shot manner to cross-lingual toxicity detection and visual classification tasks. Our analysis highlights the significant impact of pooling strategies and binarization thresholds, showing that binarization offers an efficient alternative to traditional feature selection while maintaining or improving performance. These findings establish new best practices for SAE-based interpretability and enable scalable, transparent deployment of LLMs in real-world applications. Full repo: https://github.com/shan23chen/MOSAIC.
Multi-modal Gaussian Process Variational Autoencoders for Neural and Behavioral Data
Characterizing the relationship between neural population activity and behavioral data is a central goal of neuroscience. While latent variable models (LVMs) are successful in describing high-dimensional time-series data, they are typically only designed for a single type of data, making it difficult to identify structure shared across different experimental data modalities. Here, we address this shortcoming by proposing an unsupervised LVM which extracts temporally evolving shared and independent latents for distinct, simultaneously recorded experimental modalities. We do this by combining Gaussian Process Factor Analysis (GPFA), an interpretable LVM for neural spiking data with temporally smooth latent space, with Gaussian Process Variational Autoencoders (GP-VAEs), which similarly use a GP prior to characterize correlations in a latent space, but admit rich expressivity due to a deep neural network mapping to observations. We achieve interpretability in our model by partitioning latent variability into components that are either shared between or independent to each modality. We parameterize the latents of our model in the Fourier domain, and show improved latent identification using this approach over standard GP-VAE methods. We validate our model on simulated multi-modal data consisting of Poisson spike counts and MNIST images that scale and rotate smoothly over time. We show that the multi-modal GP-VAE (MM-GPVAE) is able to not only identify the shared and independent latent structure across modalities accurately, but provides good reconstructions of both images and neural rates on held-out trials. Finally, we demonstrate our framework on two real world multi-modal experimental settings: Drosophila whole-brain calcium imaging alongside tracked limb positions, and Manduca sexta spike train measurements from ten wing muscles as the animal tracks a visual stimulus.
Interpretability as Compression: Reconsidering SAE Explanations of Neural Activations with MDL-SAEs
Sparse Autoencoders (SAEs) have emerged as a useful tool for interpreting the internal representations of neural networks. However, naively optimising SAEs for reconstruction loss and sparsity results in a preference for SAEs that are extremely wide and sparse. We present an information-theoretic framework for interpreting SAEs as lossy compression algorithms for communicating explanations of neural activations. We appeal to the Minimal Description Length (MDL) principle to motivate explanations of activations which are both accurate and concise. We further argue that interpretable SAEs require an additional property, "independent additivity": features should be able to be understood separately. We demonstrate an example of applying our MDL-inspired framework by training SAEs on MNIST handwritten digits and find that SAE features representing significant line segments are optimal, as opposed to SAEs with features for memorised digits from the dataset or small digit fragments. We argue that using MDL rather than sparsity may avoid potential pitfalls with naively maximising sparsity such as undesirable feature splitting and that this framework naturally suggests new hierarchical SAE architectures which provide more concise explanations.
Learning Hyperparameters via a Data-Emphasized Variational Objective
When training large flexible models, practitioners often rely on grid search to select hyperparameters that control over-fitting. This grid search has several disadvantages: the search is computationally expensive, requires carving out a validation set that reduces the available data for training, and requires users to specify candidate values. In this paper, we propose an alternative: directly learning regularization hyperparameters on the full training set via the evidence lower bound ("ELBo") objective from variational methods. For deep neural networks with millions of parameters, we recommend a modified ELBo that upweights the influence of the data likelihood relative to the prior. Our proposed technique overcomes all three disadvantages of grid search. In a case study on transfer learning of image classifiers, we show how our method reduces the 88+ hour grid search of past work to under 3 hours while delivering comparable accuracy. We further demonstrate how our approach enables efficient yet accurate approximations of Gaussian processes with learnable length-scale kernels.
Sparse Three-parameter Restricted Indian Buffet Process for Understanding International Trade
This paper presents a Bayesian nonparametric latent feature model specially suitable for exploratory analysis of high-dimensional count data. We perform a non-negative doubly sparse matrix factorization that has two main advantages: not only we are able to better approximate the row input distributions, but the inferred topics are also easier to interpret. By combining the three-parameter and restricted Indian buffet processes into a single prior, we increase the model flexibility, allowing for a full spectrum of sparse solutions in the latent space. We demonstrate the usefulness of our approach in the analysis of countries' economic structure. Compared to other approaches, empirical results show our model's ability to give easy-to-interpret information and better capture the underlying sparsity structure of data.
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.
Learning Multi-Level Features with Matryoshka Sparse Autoencoders
Sparse autoencoders (SAEs) have emerged as a powerful tool for interpreting neural networks by extracting the concepts represented in their activations. However, choosing the size of the SAE dictionary (i.e. number of learned concepts) creates a tension: as dictionary size increases to capture more relevant concepts, sparsity incentivizes features to be split or absorbed into more specific features, leaving high-level features missing or warped. We introduce Matryoshka SAEs, a novel variant that addresses these issues by simultaneously training multiple nested dictionaries of increasing size, forcing the smaller dictionaries to independently reconstruct the inputs without using the larger dictionaries. This organizes features hierarchically - the smaller dictionaries learn general concepts, while the larger dictionaries learn more specific concepts, without incentive to absorb the high-level features. We train Matryoshka SAEs on Gemma-2-2B and TinyStories and find superior performance on sparse probing and targeted concept erasure tasks, more disentangled concept representations, and reduced feature absorption. While there is a minor tradeoff with reconstruction performance, we believe Matryoshka SAEs are a superior alternative for practical tasks, as they enable training arbitrarily large SAEs while retaining interpretable features at different levels of abstraction.
Model-based Asynchronous Hyperparameter and Neural Architecture Search
We introduce a model-based asynchronous multi-fidelity method for hyperparameter and neural architecture search that combines the strengths of asynchronous Hyperband and Gaussian process-based Bayesian optimization. At the heart of our method is a probabilistic model that can simultaneously reason across hyperparameters and resource levels, and supports decision-making in the presence of pending evaluations. We demonstrate the effectiveness of our method on a wide range of challenging benchmarks, for tabular data, image classification and language modelling, and report substantial speed-ups over current state-of-the-art methods. Our new methods, along with asynchronous baselines, are implemented in a distributed framework which will be open sourced along with this publication.
Llama Scope: Extracting Millions of Features from Llama-3.1-8B with Sparse Autoencoders
Sparse Autoencoders (SAEs) have emerged as a powerful unsupervised method for extracting sparse representations from language models, yet scalable training remains a significant challenge. We introduce a suite of 256 SAEs, trained on each layer and sublayer of the Llama-3.1-8B-Base model, with 32K and 128K features. Modifications to a state-of-the-art SAE variant, Top-K SAEs, are evaluated across multiple dimensions. In particular, we assess the generalizability of SAEs trained on base models to longer contexts and fine-tuned models. Additionally, we analyze the geometry of learned SAE latents, confirming that feature splitting enables the discovery of new features. The Llama Scope SAE checkpoints are publicly available at~https://huggingface.co/fnlp/Llama-Scope, alongside our scalable training, interpretation, and visualization tools at https://github.com/OpenMOSS/Language-Model-SAEs. These contributions aim to advance the open-source Sparse Autoencoder ecosystem and support mechanistic interpretability research by reducing the need for redundant SAE training.
A Coreset-based, Tempered Variational Posterior for Accurate and Scalable Stochastic Gaussian Process Inference
We present a novel stochastic variational Gaussian process (GP) inference method, based on a posterior over a learnable set of weighted pseudo input-output points (coresets). Instead of a free-form variational family, the proposed coreset-based, variational tempered family for GPs (CVTGP) is defined in terms of the GP prior and the data-likelihood; hence, accommodating the modeling inductive biases. We derive CVTGP's lower bound for the log-marginal likelihood via marginalization of the proposed posterior over latent GP coreset variables, and show it is amenable to stochastic optimization. CVTGP reduces the learnable parameter size to O(M), enjoys numerical stability, and maintains O(M^3) time- and O(M^2) space-complexity, by leveraging a coreset-based tempered posterior that, in turn, provides sparse and explainable representations of the data. Results on simulated and real-world regression problems with Gaussian observation noise validate that CVTGP provides better evidence lower-bound estimates and predictive root mean squared error than alternative stochastic GP inference methods.
Function-space Parameterization of Neural Networks for Sequential Learning
Sequential learning paradigms pose challenges for gradient-based deep learning due to difficulties incorporating new data and retaining prior knowledge. While Gaussian processes elegantly tackle these problems, they struggle with scalability and handling rich inputs, such as images. To address these issues, we introduce a technique that converts neural networks from weight space to function space, through a dual parameterization. Our parameterization offers: (i) a way to scale function-space methods to large data sets via sparsification, (ii) retention of prior knowledge when access to past data is limited, and (iii) a mechanism to incorporate new data without retraining. Our experiments demonstrate that we can retain knowledge in continual learning and incorporate new data efficiently. We further show its strengths in uncertainty quantification and guiding exploration in model-based RL. Further information and code is available on the project website.
All You Need is a Good Functional Prior for Bayesian Deep Learning
The Bayesian treatment of neural networks dictates that a prior distribution is specified over their weight and bias parameters. This poses a challenge because modern neural networks are characterized by a large number of parameters, and the choice of these priors has an uncontrolled effect on the induced functional prior, which is the distribution of the functions obtained by sampling the parameters from their prior distribution. We argue that this is a hugely limiting aspect of Bayesian deep learning, and this work tackles this limitation in a practical and effective way. Our proposal is to reason in terms of functional priors, which are easier to elicit, and to "tune" the priors of neural network parameters in a way that they reflect such functional priors. Gaussian processes offer a rigorous framework to define prior distributions over functions, and we propose a novel and robust framework to match their prior with the functional prior of neural networks based on the minimization of their Wasserstein distance. We provide vast experimental evidence that coupling these priors with scalable Markov chain Monte Carlo sampling offers systematically large performance improvements over alternative choices of priors and state-of-the-art approximate Bayesian deep learning approaches. We consider this work a considerable step in the direction of making the long-standing challenge of carrying out a fully Bayesian treatment of neural networks, including convolutional neural networks, a concrete possibility.
ROOT: Rethinking Offline Optimization as Distributional Translation via Probabilistic Bridge
This paper studies the black-box optimization task which aims to find the maxima of a black-box function using a static set of its observed input-output pairs. This is often achieved via learning and optimizing a surrogate function with that offline data. Alternatively, it can also be framed as an inverse modeling task that maps a desired performance to potential input candidates that achieve it. Both approaches are constrained by the limited amount of offline data. To mitigate this limitation, we introduce a new perspective that casts offline optimization as a distributional translation task. This is formulated as learning a probabilistic bridge transforming an implicit distribution of low-value inputs (i.e., offline data) into another distribution of high-value inputs (i.e., solution candidates). Such probabilistic bridge can be learned using low- and high-value inputs sampled from synthetic functions that resemble the target function. These synthetic functions are constructed as the mean posterior of multiple Gaussian processes fitted with different parameterizations on the offline data, alleviating the data bottleneck. The proposed approach is evaluated on an extensive benchmark comprising most recent methods, demonstrating significant improvement and establishing a new state-of-the-art performance. Our code is publicly available at https://github.com/cuong-dm/ROOT.
Teach Old SAEs New Domain Tricks with Boosting
Sparse Autoencoders have emerged as powerful tools for interpreting the internal representations of Large Language Models, yet they often fail to capture domain-specific features not prevalent in their training corpora. This paper introduces a residual learning approach that addresses this feature blindness without requiring complete retraining. We propose training a secondary SAE specifically to model the reconstruction error of a pretrained SAE on domain-specific texts, effectively capturing features missed by the primary model. By summing the outputs of both models during inference, we demonstrate significant improvements in both LLM cross-entropy and explained variance metrics across multiple specialized domains. Our experiments show that this method efficiently incorporates new domain knowledge into existing SAEs while maintaining their performance on general tasks. This approach enables researchers to selectively enhance SAE interpretability for specific domains of interest, opening new possibilities for targeted mechanistic interpretability of LLMs.
Convolutional Deep Kernel Machines
Standard infinite-width limits of neural networks sacrifice the ability for intermediate layers to learn representations from data. Recent work (A theory of representation learning gives a deep generalisation of kernel methods, Yang et al. 2023) modified the Neural Network Gaussian Process (NNGP) limit of Bayesian neural networks so that representation learning is retained. Furthermore, they found that applying this modified limit to a deep Gaussian process gives a practical learning algorithm which they dubbed the deep kernel machine (DKM). However, they only considered the simplest possible setting: regression in small, fully connected networks with e.g. 10 input features. Here, we introduce convolutional deep kernel machines. This required us to develop a novel inter-domain inducing point approximation, as well as introducing and experimentally assessing a number of techniques not previously seen in DKMs, including analogues to batch normalisation, different likelihoods, and different types of top-layer. The resulting model trains in roughly 77 GPU hours, achieving around 99% test accuracy on MNIST, 72% on CIFAR-100, and 92.7% on CIFAR-10, which is SOTA for kernel methods.
Adaptive Sparse Allocation with Mutual Choice & Feature Choice Sparse Autoencoders
Sparse autoencoders (SAEs) are a promising approach to extracting features from neural networks, enabling model interpretability as well as causal interventions on model internals. SAEs generate sparse feature representations using a sparsifying activation function that implicitly defines a set of token-feature matches. We frame the token-feature matching as a resource allocation problem constrained by a total sparsity upper bound. For example, TopK SAEs solve this allocation problem with the additional constraint that each token matches with at most k features. In TopK SAEs, the k active features per token constraint is the same across tokens, despite some tokens being more difficult to reconstruct than others. To address this limitation, we propose two novel SAE variants, Feature Choice SAEs and Mutual Choice SAEs, which each allow for a variable number of active features per token. Feature Choice SAEs solve the sparsity allocation problem under the additional constraint that each feature matches with at most m tokens. Mutual Choice SAEs solve the unrestricted allocation problem where the total sparsity budget can be allocated freely between tokens and features. Additionally, we introduce a new auxiliary loss function, aux_zipf_loss, which generalises the aux_k_loss to mitigate dead and underutilised features. Our methods result in SAEs with fewer dead features and improved reconstruction loss at equivalent sparsity levels as a result of the inherent adaptive computation. More accurate and scalable feature extraction methods provide a path towards better understanding and more precise control of foundation models.
Probing the Representational Power of Sparse Autoencoders in Vision Models
Sparse Autoencoders (SAEs) have emerged as a popular tool for interpreting the hidden states of large language models (LLMs). By learning to reconstruct activations from a sparse bottleneck layer, SAEs discover interpretable features from the high-dimensional internal representations of LLMs. Despite their popularity with language models, SAEs remain understudied in the visual domain. In this work, we provide an extensive evaluation the representational power of SAEs for vision models using a broad range of image-based tasks. Our experimental results demonstrate that SAE features are semantically meaningful, improve out-of-distribution generalization, and enable controllable generation across three vision model architectures: vision embedding models, multi-modal LMMs and diffusion models. In vision embedding models, we find that learned SAE features can be used for OOD detection and provide evidence that they recover the ontological structure of the underlying model. For diffusion models, we demonstrate that SAEs enable semantic steering through text encoder manipulation and develop an automated pipeline for discovering human-interpretable attributes. Finally, we conduct exploratory experiments on multi-modal LLMs, finding evidence that SAE features reveal shared representations across vision and language modalities. Our study provides a foundation for SAE evaluation in vision models, highlighting their strong potential improving interpretability, generalization, and steerability in the visual domain.
AdaptiveK Sparse Autoencoders: Dynamic Sparsity Allocation for Interpretable LLM Representations
Understanding the internal representations of large language models (LLMs) remains a central challenge for interpretability research. Sparse autoencoders (SAEs) offer a promising solution by decomposing activations into interpretable features, but existing approaches rely on fixed sparsity constraints that fail to account for input complexity. We propose Adaptive Top K Sparse Autoencoders (AdaptiveK), a novel framework that dynamically adjusts sparsity levels based on the semantic complexity of each input. Leveraging linear probes, we demonstrate that context complexity is linearly encoded in LLM representations, and we use this signal to guide feature allocation during training. Experiments across three language models (Pythia-70M, Pythia-160M, and Gemma-2-2B) demonstrate that this complexity-driven adaptation significantly outperforms fixed-sparsity approaches on reconstruction fidelity, explained variance, and cosine similarity metrics while eliminating the computational burden of extensive hyperparameter tuning.
How Bayesian Should Bayesian Optimisation Be?
Bayesian optimisation (BO) uses probabilistic surrogate models - usually Gaussian processes (GPs) - for the optimisation of expensive black-box functions. At each BO iteration, the GP hyperparameters are fit to previously-evaluated data by maximising the marginal likelihood. However, this fails to account for uncertainty in the hyperparameters themselves, leading to overconfident model predictions. This uncertainty can be accounted for by taking the Bayesian approach of marginalising out the model hyperparameters. We investigate whether a fully-Bayesian treatment of the Gaussian process hyperparameters in BO (FBBO) leads to improved optimisation performance. Since an analytic approach is intractable, we compare FBBO using three approximate inference schemes to the maximum likelihood approach, using the Expected Improvement (EI) and Upper Confidence Bound (UCB) acquisition functions paired with ARD and isotropic Matern kernels, across 15 well-known benchmark problems for 4 observational noise settings. FBBO using EI with an ARD kernel leads to the best performance in the noise-free setting, with much less difference between combinations of BO components when the noise is increased. FBBO leads to over-exploration with UCB, but is not detrimental with EI. Therefore, we recommend that FBBO using EI with an ARD kernel as the default choice for BO.
Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times
Computing a Gaussian process (GP) posterior has a computational cost cubical in the number of historical points. A reformulation of the same GP posterior highlights that this complexity mainly depends on how many unique historical points are considered. This can have important implication in active learning settings, where the set of historical points is constructed sequentially by the learner. We show that sequential black-box optimization based on GPs (GP-Opt) can be made efficient by sticking to a candidate solution for multiple evaluation steps and switch only when necessary. Limiting the number of switches also limits the number of unique points in the history of the GP. Thus, the efficient GP reformulation can be used to exactly and cheaply compute the posteriors required to run the GP-Opt algorithms. This approach is especially useful in real-world applications of GP-Opt with high switch costs (e.g. switching chemicals in wet labs, data/model loading in hyperparameter optimization). As examples of this meta-approach, we modify two well-established GP-Opt algorithms, GP-UCB and GP-EI, to switch candidates as infrequently as possible adapting rules from batched GP-Opt. These versions preserve all the theoretical no-regret guarantees while improving practical aspects of the algorithms such as runtime, memory complexity, and the ability of batching candidates and evaluating them in parallel.
Train Sparse Autoencoders Efficiently by Utilizing Features Correlation
Sparse Autoencoders (SAEs) have demonstrated significant promise in interpreting the hidden states of language models by decomposing them into interpretable latent directions. However, training SAEs at scale remains challenging, especially when large dictionary sizes are used. While decoders can leverage sparse-aware kernels for efficiency, encoders still require computationally intensive linear operations with large output dimensions. To address this, we propose KronSAE, a novel architecture that factorizes the latent representation via Kronecker product decomposition, drastically reducing memory and computational overhead. Furthermore, we introduce mAND, a differentiable activation function approximating the binary AND operation, which improves interpretability and performance in our factorized framework.
Analysis of learning a flow-based generative model from limited sample complexity
We study the problem of training a flow-based generative model, parametrized by a two-layer autoencoder, to sample from a high-dimensional Gaussian mixture. We provide a sharp end-to-end analysis of the problem. First, we provide a tight closed-form characterization of the learnt velocity field, when parametrized by a shallow denoising auto-encoder trained on a finite number n of samples from the target distribution. Building on this analysis, we provide a sharp description of the corresponding generative flow, which pushes the base Gaussian density forward to an approximation of the target density. In particular, we provide closed-form formulae for the distance between the mean of the generated mixture and the mean of the target mixture, which we show decays as Theta_n(1{n}). Finally, this rate is shown to be in fact Bayes-optimal.
Enhancing Neural Network Interpretability with Feature-Aligned Sparse Autoencoders
Sparse Autoencoders (SAEs) have shown promise in improving the interpretability of neural network activations, but can learn features that are not features of the input, limiting their effectiveness. We propose Mutual Feature Regularization (MFR), a regularization technique for improving feature learning by encouraging SAEs trained in parallel to learn similar features. We motivate MFR by showing that features learned by multiple SAEs are more likely to correlate with features of the input. By training on synthetic data with known features of the input, we show that MFR can help SAEs learn those features, as we can directly compare the features learned by the SAE with the input features for the synthetic data. We then scale MFR to SAEs that are trained to denoise electroencephalography (EEG) data and SAEs that are trained to reconstruct GPT-2 Small activations. We show that MFR can improve the reconstruction loss of SAEs by up to 21.21\% on GPT-2 Small, and 6.67\% on EEG data. Our results suggest that the similarity between features learned by different SAEs can be leveraged to improve SAE training, thereby enhancing performance and the usefulness of SAEs for model interpretability.
FaithfulSAE: Towards Capturing Faithful Features with Sparse Autoencoders without External Dataset Dependencies
Sparse Autoencoders (SAEs) have emerged as a promising solution for decomposing large language model representations into interpretable features. However, Paulo and Belrose (2025) have highlighted instability across different initialization seeds, and Heap et al. (2025) have pointed out that SAEs may not capture model-internal features. These problems likely stem from training SAEs on external datasets - either collected from the Web or generated by another model - which may contain out-of-distribution (OOD) data beyond the model's generalisation capabilities. This can result in hallucinated SAE features, which we term "Fake Features", that misrepresent the model's internal activations. To address these issues, we propose FaithfulSAE, a method that trains SAEs on the model's own synthetic dataset. Using FaithfulSAEs, we demonstrate that training SAEs on less-OOD instruction datasets results in SAEs being more stable across seeds. Notably, FaithfulSAEs outperform SAEs trained on web-based datasets in the SAE probing task and exhibit a lower Fake Feature Ratio in 5 out of 7 models. Overall, our approach eliminates the dependency on external datasets, advancing interpretability by better capturing model-internal features while highlighting the often neglected importance of SAE training datasets.
Decomposing The Dark Matter of Sparse Autoencoders
Sparse autoencoders (SAEs) are a promising technique for decomposing language model activations into interpretable linear features. However, current SAEs fall short of completely explaining model performance, resulting in "dark matter": unexplained variance in activations. This work investigates dark matter as an object of study in its own right. Surprisingly, we find that much of SAE dark matter--about half of the error vector itself and >90% of its norm--can be linearly predicted from the initial activation vector. Additionally, we find that the scaling behavior of SAE error norms at a per token level is remarkably predictable: larger SAEs mostly struggle to reconstruct the same contexts as smaller SAEs. We build on the linear representation hypothesis to propose models of activations that might lead to these observations, including postulating a new type of "introduced error"; these insights imply that the part of the SAE error vector that cannot be linearly predicted ("nonlinear" error) might be fundamentally different from the linearly predictable component. To validate this hypothesis, we empirically analyze nonlinear SAE error and show that 1) it contains fewer not yet learned features, 2) SAEs trained on it are quantitatively worse, 3) it helps predict SAE per-token scaling behavior, and 4) it is responsible for a proportional amount of the downstream increase in cross entropy loss when SAE activations are inserted into the model. Finally, we examine two methods to reduce nonlinear SAE error at a fixed sparsity: inference time gradient pursuit, which leads to a very slight decrease in nonlinear error, and linear transformations from earlier layer SAE outputs, which leads to a larger reduction.
Optimizing Neural Network Hyperparameters with Gaussian Processes for Dialog Act Classification
Systems based on artificial neural networks (ANNs) have achieved state-of-the-art results in many natural language processing tasks. Although ANNs do not require manually engineered features, ANNs have many hyperparameters to be optimized. The choice of hyperparameters significantly impacts models' performances. However, the ANN hyperparameters are typically chosen by manual, grid, or random search, which either requires expert experiences or is computationally expensive. Recent approaches based on Bayesian optimization using Gaussian processes (GPs) is a more systematic way to automatically pinpoint optimal or near-optimal machine learning hyperparameters. Using a previously published ANN model yielding state-of-the-art results for dialog act classification, we demonstrate that optimizing hyperparameters using GP further improves the results, and reduces the computational time by a factor of 4 compared to a random search. Therefore it is a useful technique for tuning ANN models to yield the best performances for natural language processing tasks.
Archetypal SAE: Adaptive and Stable Dictionary Learning for Concept Extraction in Large Vision Models
Sparse Autoencoders (SAEs) have emerged as a powerful framework for machine learning interpretability, enabling the unsupervised decomposition of model representations into a dictionary of abstract, human-interpretable concepts. However, we reveal a fundamental limitation: existing SAEs exhibit severe instability, as identical models trained on similar datasets can produce sharply different dictionaries, undermining their reliability as an interpretability tool. To address this issue, we draw inspiration from the Archetypal Analysis framework introduced by Cutler & Breiman (1994) and present Archetypal SAEs (A-SAE), wherein dictionary atoms are constrained to the convex hull of data. This geometric anchoring significantly enhances the stability of inferred dictionaries, and their mildly relaxed variants RA-SAEs further match state-of-the-art reconstruction abilities. To rigorously assess dictionary quality learned by SAEs, we introduce two new benchmarks that test (i) plausibility, if dictionaries recover "true" classification directions and (ii) identifiability, if dictionaries disentangle synthetic concept mixtures. Across all evaluations, RA-SAEs consistently yield more structured representations while uncovering novel, semantically meaningful concepts in large-scale vision models.
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent approximate posterior distributions, and that acts as a stochastic encoder of the data. We develop stochastic back-propagation -- rules for back-propagation through stochastic variables -- and use this to develop an algorithm that allows for joint optimisation of the parameters of both the generative and recognition model. We demonstrate on several real-world data sets that the model generates realistic samples, provides accurate imputations of missing data and is a useful tool for high-dimensional data visualisation.
OrtSAE: Orthogonal Sparse Autoencoders Uncover Atomic Features
Sparse autoencoders (SAEs) are a technique for sparse decomposition of neural network activations into human-interpretable features. However, current SAEs suffer from feature absorption, where specialized features capture instances of general features creating representation holes, and feature composition, where independent features merge into composite representations. In this work, we introduce Orthogonal SAE (OrtSAE), a novel approach aimed to mitigate these issues by enforcing orthogonality between the learned features. By implementing a new training procedure that penalizes high pairwise cosine similarity between SAE features, OrtSAE promotes the development of disentangled features while scaling linearly with the SAE size, avoiding significant computational overhead. We train OrtSAE across different models and layers and compare it with other methods. We find that OrtSAE discovers 9% more distinct features, reduces feature absorption (by 65%) and composition (by 15%), improves performance on spurious correlation removal (+6%), and achieves on-par performance for other downstream tasks compared to traditional SAEs.
Empirical Evaluation of Progressive Coding for Sparse Autoencoders
Sparse autoencoders (SAEs) bricken2023monosemanticity,gao2024scalingevaluatingsparseautoencoders rely on dictionary learning to extract interpretable features from neural networks at scale in an unsupervised manner, with applications to representation engineering and information retrieval. SAEs are, however, computationally expensive lieberum2024gemmascopeopensparse, especially when multiple SAEs of different sizes are needed. We show that dictionary importance in vanilla SAEs follows a power law. We compare progressive coding based on subset pruning of SAEs -- to jointly training nested SAEs, or so-called {\em Matryoshka} SAEs bussmann2024learning,nabeshima2024Matryoshka -- on a language modeling task. We show Matryoshka SAEs exhibit lower reconstruction loss and recaptured language modeling loss, as well as higher representational similarity. Pruned vanilla SAEs are more interpretable, however. We discuss the origins and implications of this trade-off.
Cluster-Specific Predictions with Multi-Task Gaussian Processes
A model involving Gaussian processes (GPs) is introduced to simultaneously handle multi-task learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for functional data as well as a learning step for subsequent predictions for new tasks. The model is instantiated as a mixture of multi-task GPs with common mean processes. A variational EM algorithm is derived for dealing with the optimisation of the hyper-parameters along with the hyper-posteriors' estimation of latent variables and processes. We establish explicit formulas for integrating the mean processes and the latent clustering variables within a predictive distribution, accounting for uncertainty on both aspects. This distribution is defined as a mixture of cluster-specific GP predictions, which enhances the performances when dealing with group-structured data. The model handles irregular grid of observations and offers different hypotheses on the covariance structure for sharing additional information across tasks. The performances on both clustering and prediction tasks are assessed through various simulated scenarios and real datasets. The overall algorithm, called MagmaClust, is publicly available as an R package.
A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition
This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.
Ensembling Sparse Autoencoders
Sparse autoencoders (SAEs) are used to decompose neural network activations into human-interpretable features. Typically, features learned by a single SAE are used for downstream applications. However, it has recently been shown that SAEs trained with different initial weights can learn different features, demonstrating that a single SAE captures only a limited subset of features that can be extracted from the activation space. Motivated by this limitation, we propose to ensemble multiple SAEs through naive bagging and boosting. Specifically, SAEs trained with different weight initializations are ensembled in naive bagging, whereas SAEs sequentially trained to minimize the residual error are ensembled in boosting. We evaluate our ensemble approaches with three settings of language models and SAE architectures. Our empirical results demonstrate that ensembling SAEs can improve the reconstruction of language model activations, diversity of features, and SAE stability. Furthermore, ensembling SAEs performs better than applying a single SAE on downstream tasks such as concept detection and spurious correlation removal, showing improved practical utility.
Applying sparse autoencoders to unlearn knowledge in language models
We investigate whether sparse autoencoders (SAEs) can be used to remove knowledge from language models. We use the biology subset of the Weapons of Mass Destruction Proxy dataset and test on the gemma-2b-it and gemma-2-2b-it language models. We demonstrate that individual interpretable biology-related SAE features can be used to unlearn a subset of WMDP-Bio questions with minimal side-effects in domains other than biology. Our results suggest that negative scaling of feature activations is necessary and that zero ablating features is ineffective. We find that intervening using multiple SAE features simultaneously can unlearn multiple different topics, but with similar or larger unwanted side-effects than the existing Representation Misdirection for Unlearning technique. Current SAE quality or intervention techniques would need to improve to make SAE-based unlearning comparable to the existing fine-tuning based techniques.
Neural Diffusion Processes
Neural network approaches for meta-learning distributions over functions have desirable properties such as increased flexibility and a reduced complexity of inference. Building on the successes of denoising diffusion models for generative modelling, we propose Neural Diffusion Processes (NDPs), a novel approach that learns to sample from a rich distribution over functions through its finite marginals. By introducing a custom attention block we are able to incorporate properties of stochastic processes, such as exchangeability, directly into the NDP's architecture. We empirically show that NDPs can capture functional distributions close to the true Bayesian posterior, demonstrating that they can successfully emulate the behaviour of Gaussian processes and surpass the performance of neural processes. NDPs enable a variety of downstream tasks, including regression, implicit hyperparameter marginalisation, non-Gaussian posterior prediction and global optimisation.
Explaining How Visual, Textual and Multimodal Encoders Share Concepts
Sparse autoencoders (SAEs) have emerged as a powerful technique for extracting human-interpretable features from neural networks activations. Previous works compared different models based on SAE-derived features but those comparisons have been restricted to models within the same modality. We propose a novel indicator allowing quantitative comparison of models across SAE features, and use it to conduct a comparative study of visual, textual and multimodal encoders. We also propose to quantify the Comparative Sharedness of individual features between different classes of models. With these two new tools, we conduct several studies on 21 encoders of the three types, with two significantly different sizes, and considering generalist and domain specific datasets. The results allow to revisit previous studies at the light of encoders trained in a multimodal context and to quantify to which extent all these models share some representations or features. They also suggest that visual features that are specific to VLMs among vision encoders are shared with text encoders, highlighting the impact of text pretraining. The code is available at https://github.com/CEA-LIST/SAEshareConcepts
Sparse Autoencoders Trained on the Same Data Learn Different Features
Sparse autoencoders (SAEs) are a useful tool for uncovering human-interpretable features in the activations of large language models (LLMs). While some expect SAEs to find the true underlying features used by a model, our research shows that SAEs trained on the same model and data, differing only in the random seed used to initialize their weights, identify different sets of features. For example, in an SAE with 131K latents trained on a feedforward network in Llama 3 8B, only 30% of the features were shared across different seeds. We observed this phenomenon across multiple layers of three different LLMs, two datasets, and several SAE architectures. While ReLU SAEs trained with the L1 sparsity loss showed greater stability across seeds, SAEs using the state-of-the-art TopK activation function were more seed-dependent, even when controlling for the level of sparsity. Our results suggest that the set of features uncovered by an SAE should be viewed as a pragmatically useful decomposition of activation space, rather than an exhaustive and universal list of features "truly used" by the model.
Disentangling Dense Embeddings with Sparse Autoencoders
Sparse autoencoders (SAEs) have shown promise in extracting interpretable features from complex neural networks. We present one of the first applications of SAEs to dense text embeddings from large language models, demonstrating their effectiveness in disentangling semantic concepts. By training SAEs on embeddings of over 420,000 scientific paper abstracts from computer science and astronomy, we show that the resulting sparse representations maintain semantic fidelity while offering interpretability. We analyse these learned features, exploring their behaviour across different model capacities and introducing a novel method for identifying ``feature families'' that represent related concepts at varying levels of abstraction. To demonstrate the practical utility of our approach, we show how these interpretable features can be used to precisely steer semantic search, allowing for fine-grained control over query semantics. This work bridges the gap between the semantic richness of dense embeddings and the interpretability of sparse representations. We open source our embeddings, trained sparse autoencoders, and interpreted features, as well as a web app for exploring them.
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data
Tucker decomposition is a powerful tensor model to handle multi-aspect data. It demonstrates the low-rank property by decomposing the grid-structured data as interactions between a core tensor and a set of object representations (factors). A fundamental assumption of such decomposition is that there are finite objects in each aspect or mode, corresponding to discrete indexes of data entries. However, real-world data is often not naturally posed in this setting. For example, geographic data is represented as continuous indexes of latitude and longitude coordinates, and cannot fit tensor models directly. To generalize Tucker decomposition to such scenarios, we propose Functional Bayesian Tucker Decomposition (FunBaT). We treat the continuous-indexed data as the interaction between the Tucker core and a group of latent functions. We use Gaussian processes (GP) as functional priors to model the latent functions. Then, we convert each GP into a state-space prior by constructing an equivalent stochastic differential equation (SDE) to reduce computational cost. An efficient inference algorithm is developed for scalable posterior approximation based on advanced message-passing techniques. The advantage of our method is shown in both synthetic data and several real-world applications. We release the code of FunBaT at https://github.com/xuangu-fang/Functional-Bayesian-Tucker-Decomposition.
Latent Autoregressive Source Separation
Autoregressive models have achieved impressive results over a wide range of domains in terms of generation quality and downstream task performance. In the continuous domain, a key factor behind this success is the usage of quantized latent spaces (e.g., obtained via VQ-VAE autoencoders), which allow for dimensionality reduction and faster inference times. However, using existing pre-trained models to perform new non-trivial tasks is difficult since it requires additional fine-tuning or extensive training to elicit prompting. This paper introduces LASS as a way to perform vector-quantized Latent Autoregressive Source Separation (i.e., de-mixing an input signal into its constituent sources) without requiring additional gradient-based optimization or modifications of existing models. Our separation method relies on the Bayesian formulation in which the autoregressive models are the priors, and a discrete (non-parametric) likelihood function is constructed by performing frequency counts over latent sums of addend tokens. We test our method on images and audio with several sampling strategies (e.g., ancestral, beam search) showing competitive results with existing approaches in terms of separation quality while offering at the same time significant speedups in terms of inference time and scalability to higher dimensional data.
Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders
Sparse autoencoders (SAEs) are a promising unsupervised approach for identifying causally relevant and interpretable linear features in a language model's (LM) activations. To be useful for downstream tasks, SAEs need to decompose LM activations faithfully; yet to be interpretable the decomposition must be sparse -- two objectives that are in tension. In this paper, we introduce JumpReLU SAEs, which achieve state-of-the-art reconstruction fidelity at a given sparsity level on Gemma 2 9B activations, compared to other recent advances such as Gated and TopK SAEs. We also show that this improvement does not come at the cost of interpretability through manual and automated interpretability studies. JumpReLU SAEs are a simple modification of vanilla (ReLU) SAEs -- where we replace the ReLU with a discontinuous JumpReLU activation function -- and are similarly efficient to train and run. By utilising straight-through-estimators (STEs) in a principled manner, we show how it is possible to train JumpReLU SAEs effectively despite the discontinuous JumpReLU function introduced in the SAE's forward pass. Similarly, we use STEs to directly train L0 to be sparse, instead of training on proxies such as L1, avoiding problems like shrinkage.
Attention Layers Add Into Low-Dimensional Residual Subspaces
While transformer models are widely believed to operate in high-dimensional hidden spaces, we show that attention outputs are confined to a surprisingly low-dimensional subspace, where about 60\% of the directions account for 99\% of the variance--a phenomenon that is induced by the attention output projection matrix and consistently observed across diverse model families and datasets. Critically, we find this low-rank structure as a fundamental cause of the prevalent dead feature problem in sparse dictionary learning, where it creates a mismatch between randomly initialized features and the intrinsic geometry of the activation space. Building on this insight, we propose a subspace-constrained training method for sparse autoencoders (SAEs), initializing feature directions into the active subspace of activations. Our approach reduces dead features from 87\% to below 1\% in Attention Output SAEs with 1M features, and can further extend to other sparse dictionary learning methods. Our findings provide both new insights into the geometry of attention and practical tools for improving sparse dictionary learning in large language models.
LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors
We aim to address sparse-view reconstruction of a 3D scene by leveraging priors from large-scale vision models. While recent advancements such as 3D Gaussian Splatting (3DGS) have demonstrated remarkable successes in 3D reconstruction, these methods typically necessitate hundreds of input images that densely capture the underlying scene, making them time-consuming and impractical for real-world applications. However, sparse-view reconstruction is inherently ill-posed and under-constrained, often resulting in inferior and incomplete outcomes. This is due to issues such as failed initialization, overfitting on input images, and a lack of details. To mitigate these challenges, we introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images. Specifically, we propose a robust initialization module that leverages stereo priors to aid in the recovery of camera poses and the reliable point clouds. Additionally, a diffusion-based refinement is iteratively applied to incorporate image diffusion priors into the Gaussian optimization process to preserve intricate scene details. Finally, we utilize video diffusion priors to further enhance the rendered images for realistic visual effects. Overall, our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods. We validate the effectiveness of our framework through experiments on various public datasets, demonstrating its potential for high-quality 360-degree scene reconstruction. Visual results are on our website.
Evaluating Sparse Autoencoders for Monosemantic Representation
A key barrier to interpreting large language models is polysemanticity, where neurons activate for multiple unrelated concepts. Sparse autoencoders (SAEs) have been proposed to mitigate this issue by transforming dense activations into sparse, more interpretable features. While prior work suggests that SAEs promote monosemanticity, no quantitative comparison has examined how concept activation distributions differ between SAEs and their base models. This paper provides the first systematic evaluation of SAEs against base models through activation distribution lens. We introduce a fine-grained concept separability score based on the Jensen-Shannon distance, which captures how distinctly a neuron's activation distributions vary across concepts. Using two large language models (Gemma-2-2B and DeepSeek-R1) and multiple SAE variants across five datasets (including word-level and sentence-level), we show that SAEs reduce polysemanticity and achieve higher concept separability. To assess practical utility, we evaluate concept-level interventions using two strategies: full neuron masking and partial suppression. We find that, compared to base models, SAEs enable more precise concept-level control when using partial suppression. Building on this, we propose Attenuation via Posterior Probabilities (APP), a new intervention method that uses concept-conditioned activation distributions for targeted suppression. APP achieves the smallest perplexity increase while remaining highly effective at concept removal.
AUTOSPARSE: Towards Automated Sparse Training of Deep Neural Networks
Sparse training is emerging as a promising avenue for reducing the computational cost of training neural networks. Several recent studies have proposed pruning methods using learnable thresholds to efficiently explore the non-uniform distribution of sparsity inherent within the models. In this paper, we propose Gradient Annealing (GA), where gradients of masked weights are scaled down in a non-linear manner. GA provides an elegant trade-off between sparsity and accuracy without the need for additional sparsity-inducing regularization. We integrated GA with the latest learnable pruning methods to create an automated sparse training algorithm called AutoSparse, which achieves better accuracy and/or training/inference FLOPS reduction than existing learnable pruning methods for sparse ResNet50 and MobileNetV1 on ImageNet-1K: AutoSparse achieves (2x, 7x) reduction in (training,inference) FLOPS for ResNet50 on ImageNet at 80% sparsity. Finally, AutoSparse outperforms sparse-to-sparse SotA method MEST (uniform sparsity) for 80% sparse ResNet50 with similar accuracy, where MEST uses 12% more training FLOPS and 50% more inference FLOPS.
A Survey on Sparse Autoencoders: Interpreting the Internal Mechanisms of Large Language Models
Large Language Models (LLMs) have transformed natural language processing, yet their internal mechanisms remain largely opaque. Recently, mechanistic interpretability has attracted significant attention from the research community as a means to understand the inner workings of LLMs. Among various mechanistic interpretability approaches, Sparse Autoencoders (SAEs) have emerged as a promising method due to their ability to disentangle the complex, superimposed features within LLMs into more interpretable components. This paper presents a comprehensive survey of SAEs for interpreting and understanding the internal workings of LLMs. Our major contributions include: (1) exploring the technical framework of SAEs, covering basic architecture, design improvements, and effective training strategies; (2) examining different approaches to explaining SAE features, categorized into input-based and output-based explanation methods; (3) discussing evaluation methods for assessing SAE performance, covering both structural and functional metrics; and (4) investigating real-world applications of SAEs in understanding and manipulating LLM behaviors.
Sparse Probabilistic Circuits via Pruning and Growing
Probabilistic circuits (PCs) are a tractable representation of probability distributions allowing for exact and efficient computation of likelihoods and marginals. There has been significant recent progress on improving the scale and expressiveness of PCs. However, PC training performance plateaus as model size increases. We discover that most capacity in existing large PC structures is wasted: fully-connected parameter layers are only sparsely used. We propose two operations: pruning and growing, that exploit the sparsity of PC structures. Specifically, the pruning operation removes unimportant sub-networks of the PC for model compression and comes with theoretical guarantees. The growing operation increases model capacity by increasing the size of the latent space. By alternatingly applying pruning and growing, we increase the capacity that is meaningfully used, allowing us to significantly scale up PC learning. Empirically, our learner achieves state-of-the-art likelihoods on MNIST-family image datasets and on Penn Tree Bank language data compared to other PC learners and less tractable deep generative models such as flow-based models and variational autoencoders (VAEs).
Generative Diffusions in Augmented Spaces: A Complete Recipe
Score-based Generative Models (SGMs) have achieved state-of-the-art synthesis results on diverse tasks. However, the current design space of the forward diffusion process is largely unexplored and often relies on physical intuition or simplifying assumptions. Leveraging results from the design of scalable Bayesian posterior samplers, we present a complete recipe for constructing forward processes in SGMs, all of which are guaranteed to converge to the target distribution of interest. We show that several existing SGMs can be cast as specific instantiations of this parameterization. Furthermore, building on this recipe, we construct a novel SGM: Phase Space Langevin Diffusion (PSLD), which performs score-based modeling in a space augmented with auxiliary variables akin to a physical phase space. We show that PSLD outperforms competing baselines in terms of sample quality and the speed-vs-quality tradeoff across different samplers on various standard image synthesis benchmarks. Moreover, we show that PSLD achieves sample quality comparable to state-of-the-art SGMs (FID: 2.10 on unconditional CIFAR-10 generation), providing an attractive alternative as an SGM backbone for further development. We will publish our code and model checkpoints for reproducibility at https://github.com/mandt-lab/PSLD.
Optimizing Hyperparameters with Conformal Quantile Regression
Many state-of-the-art hyperparameter optimization (HPO) algorithms rely on model-based optimizers that learn surrogate models of the target function to guide the search. Gaussian processes are the de facto surrogate model due to their ability to capture uncertainty but they make strong assumptions about the observation noise, which might not be warranted in practice. In this work, we propose to leverage conformalized quantile regression which makes minimal assumptions about the observation noise and, as a result, models the target function in a more realistic and robust fashion which translates to quicker HPO convergence on empirical benchmarks. To apply our method in a multi-fidelity setting, we propose a simple, yet effective, technique that aggregates observed results across different resource levels and outperforms conventional methods across many empirical tasks.
Free-Form Variational Inference for Gaussian Process State-Space Models
Gaussian process state-space models (GPSSMs) provide a principled and flexible approach to modeling the dynamics of a latent state, which is observed at discrete-time points via a likelihood model. However, inference in GPSSMs is computationally and statistically challenging due to the large number of latent variables in the model and the strong temporal dependencies between them. In this paper, we propose a new method for inference in Bayesian GPSSMs, which overcomes the drawbacks of previous approaches, namely over-simplified assumptions, and high computational requirements. Our method is based on free-form variational inference via stochastic gradient Hamiltonian Monte Carlo within the inducing-variable formalism. Furthermore, by exploiting our proposed variational distribution, we provide a collapsed extension of our method where the inducing variables are marginalized analytically. We also showcase results when combining our framework with particle MCMC methods. We show that, on six real-world datasets, our approach can learn transition dynamics and latent states more accurately than competing methods.
CRISP: Persistent Concept Unlearning via Sparse Autoencoders
As large language models (LLMs) are increasingly deployed in real-world applications, the need to selectively remove unwanted knowledge while preserving model utility has become paramount. Recent work has explored sparse autoencoders (SAEs) to perform precise interventions on monosemantic features. However, most SAE-based methods operate at inference time, which does not create persistent changes in the model's parameters. Such interventions can be bypassed or reversed by malicious actors with parameter access. We introduce CRISP, a parameter-efficient method for persistent concept unlearning using SAEs. CRISP automatically identifies salient SAE features across multiple layers and suppresses their activations. We experiment with two LLMs and show that our method outperforms prior approaches on safety-critical unlearning tasks from the WMDP benchmark, successfully removing harmful knowledge while preserving general and in-domain capabilities. Feature-level analysis reveals that CRISP achieves semantically coherent separation between target and benign concepts, allowing precise suppression of the target features.
Gaussian Process Priors for Systems of Linear Partial Differential Equations with Constant Coefficients
Partial differential equations (PDEs) are important tools to model physical systems, and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works like a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or pointwise defined initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDE, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude.
Disentangled Multi-Fidelity Deep Bayesian Active Learning
To balance quality and cost, various domain areas of science and engineering run simulations at multiple levels of sophistication. Multi-fidelity active learning aims to learn a direct mapping from input parameters to simulation outputs at the highest fidelity by actively acquiring data from multiple fidelity levels. However, existing approaches based on Gaussian processes are hardly scalable to high-dimensional data. Deep learning-based methods often impose a hierarchical structure in hidden representations, which only supports passing information from low-fidelity to high-fidelity. These approaches can lead to the undesirable propagation of errors from low-fidelity representations to high-fidelity ones. We propose a novel framework called Disentangled Multi-fidelity Deep Bayesian Active Learning (D-MFDAL), which learns the surrogate models conditioned on the distribution of functions at multiple fidelities. On benchmark tasks of learning deep surrogates of partial differential equations including heat equation, Poisson's equation and fluid simulations, our approach significantly outperforms state-of-the-art in prediction accuracy and sample efficiency.
Importance Weighted Autoencoders
The variational autoencoder (VAE; Kingma, Welling (2014)) is a recently proposed generative model pairing a top-down generative network with a bottom-up recognition network which approximates posterior inference. It typically makes strong assumptions about posterior inference, for instance that the posterior distribution is approximately factorial, and that its parameters can be approximated with nonlinear regression from the observations. As we show empirically, the VAE objective can lead to overly simplified representations which fail to use the network's entire modeling capacity. We present the importance weighted autoencoder (IWAE), a generative model with the same architecture as the VAE, but which uses a strictly tighter log-likelihood lower bound derived from importance weighting. In the IWAE, the recognition network uses multiple samples to approximate the posterior, giving it increased flexibility to model complex posteriors which do not fit the VAE modeling assumptions. We show empirically that IWAEs learn richer latent space representations than VAEs, leading to improved test log-likelihood on density estimation benchmarks.
Training Superior Sparse Autoencoders for Instruct Models
As large language models (LLMs) grow in scale and capability, understanding their internal mechanisms becomes increasingly critical. Sparse autoencoders (SAEs) have emerged as a key tool in mechanistic interpretability, enabling the extraction of human-interpretable features from LLMs. However, existing SAE training methods are primarily designed for base models, resulting in reduced reconstruction quality and interpretability when applied to instruct models. To bridge this gap, we propose textbf{F}inetuning-textbf{a}ligned textbf{S}equential textbf{T}raining (FAST), a novel training method specifically tailored for instruct models. FAST aligns the training process with the data distribution and activation patterns characteristic of instruct models, resulting in substantial improvements in both reconstruction and feature interpretability. On Qwen2.5-7B-Instruct, FAST achieves a mean squared error of 0.6468 in token reconstruction, significantly outperforming baseline methods with errors of 5.1985 and 1.5096. In feature interpretability, FAST yields a higher proportion of high-quality features, for Llama3.2-3B-Instruct, 21.1% scored in the top range, compared to 7.0% and 10.2% for BT(P) and BT(F). Surprisingly, we discover that intervening on the activations of special tokens via the SAEs leads to improvements in output quality, suggesting new opportunities for fine-grained control of model behavior. Code, data, and 240 trained SAEs are available at https://github.com/Geaming2002/FAST.
Use Your INSTINCT: INSTruction optimization for LLMs usIng Neural bandits Coupled with Transformers
Large language models (LLMs) have shown remarkable instruction-following capabilities and achieved impressive performances in various applications. However, the performances of LLMs depend heavily on the instructions given to them, which are typically manually tuned with substantial human efforts. Recent work has used the query-efficient Bayesian optimization (BO) algorithm to automatically optimize the instructions given to black-box LLMs. However, BO usually falls short when optimizing highly sophisticated (e.g., high-dimensional) objective functions, such as the functions mapping an instruction to the performance of an LLM. This is mainly due to the limited expressive power of the Gaussian process (GP) which is used by BO as a surrogate to model the objective function. Meanwhile, it has been repeatedly shown that neural networks (NNs), especially pre-trained transformers, possess strong expressive power and can model highly complex functions. So, we adopt a neural bandit algorithm which replaces the GP in BO by an NN surrogate to optimize instructions for black-box LLMs. More importantly, the neural bandit algorithm allows us to naturally couple the NN surrogate with the hidden representation learned by a pre-trained transformer (i.e., an open-source LLM), which significantly boosts its performance. These motivate us to propose our INSTruction optimization usIng Neural bandits Coupled with Transformers (INSTINCT) algorithm. We perform instruction optimization for ChatGPT and use extensive experiments to show that INSTINCT consistently outperforms baselines in different tasks, e.g., various instruction induction tasks and the task of improving zero-shot chain-of-thought instructions. Our code is available at https://github.com/xqlin98/INSTINCT.
Re-envisioning Euclid Galaxy Morphology: Identifying and Interpreting Features with Sparse Autoencoders
Sparse Autoencoders (SAEs) can efficiently identify candidate monosemantic features from pretrained neural networks for galaxy morphology. We demonstrate this on Euclid Q1 images using both supervised (Zoobot) and new self-supervised (MAE) models. Our publicly released MAE achieves superhuman image reconstruction performance. While a Principal Component Analysis (PCA) on the supervised model primarily identifies features already aligned with the Galaxy Zoo decision tree, SAEs can identify interpretable features outside of this framework. SAE features also show stronger alignment than PCA with Galaxy Zoo labels. Although challenges in interpretability remain, SAEs provide a powerful engine for discovering astrophysical phenomena beyond the confines of human-defined classification.
A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders
Sparse Autoencoders (SAEs) have emerged as a promising approach to decompose the activations of Large Language Models (LLMs) into human-interpretable latents. In this paper, we pose two questions. First, to what extent do SAEs extract monosemantic and interpretable latents? Second, to what extent does varying the sparsity or the size of the SAE affect monosemanticity / interpretability? By investigating these questions in the context of a simple first-letter identification task where we have complete access to ground truth labels for all tokens in the vocabulary, we are able to provide more detail than prior investigations. Critically, we identify a problematic form of feature-splitting we call feature absorption where seemingly monosemantic latents fail to fire in cases where they clearly should. Our investigation suggests that varying SAE size or sparsity is insufficient to solve this issue, and that there are deeper conceptual issues in need of resolution.
A Hierarchical Bayesian Model for Deep Few-Shot Meta Learning
We propose a novel hierarchical Bayesian model for learning with a large (possibly infinite) number of tasks/episodes, which suits well the few-shot meta learning problem. We consider episode-wise random variables to model episode-specific target generative processes, where these local random variables are governed by a higher-level global random variate. The global variable helps memorize the important information from historic episodes while controlling how much the model needs to be adapted to new episodes in a principled Bayesian manner. Within our model framework, the prediction on a novel episode/task can be seen as a Bayesian inference problem. However, a main obstacle in learning with a large/infinite number of local random variables in online nature, is that one is not allowed to store the posterior distribution of the current local random variable for frequent future updates, typical in conventional variational inference. We need to be able to treat each local variable as a one-time iterate in the optimization. We propose a Normal-Inverse-Wishart model, for which we show that this one-time iterate optimization becomes feasible due to the approximate closed-form solutions for the local posterior distributions. The resulting algorithm is more attractive than the MAML in that it is not required to maintain computational graphs for the whole gradient optimization steps per episode. Our approach is also different from existing Bayesian meta learning methods in that unlike dealing with a single random variable for the whole episodes, our approach has a hierarchical structure that allows one-time episodic optimization, desirable for principled Bayesian learning with many/infinite tasks. The code is available at https://github.com/minyoungkim21/niwmeta.
Inference-Time Decomposition of Activations (ITDA): A Scalable Approach to Interpreting Large Language Models
Sparse autoencoders (SAEs) are a popular method for decomposing Large Langage Models (LLM) activations into interpretable latents. However, due to their substantial training cost, most academic research uses open-source SAEs which are only available for a restricted set of models of up to 27B parameters. SAE latents are also learned from a dataset of activations, which means they do not transfer between models. Motivated by relative representation similarity measures, we introduce Inference-Time Decomposition of Activations (ITDA) models, an alternative method for decomposing language model activations. To train an ITDA, we greedily construct a dictionary of language model activations on a dataset of prompts, selecting those activations which were worst approximated by matching pursuit on the existing dictionary. ITDAs can be trained in just 1% of the time required for SAEs, using 1% of the data. This allowed us to train ITDAs on Llama-3.1 70B and 405B on a single consumer GPU. ITDAs can achieve similar reconstruction performance to SAEs on some target LLMs, but generally incur a performance penalty. However, ITDA dictionaries enable cross-model comparisons, and a simple Jaccard similarity index on ITDA dictionaries outperforms existing methods like CKA, SVCCA, and relative representation similarity metrics. ITDAs provide a cheap alternative to SAEs where computational resources are limited, or when cross model comparisons are necessary. Code available at https://github.com/pleask/itda.
Revisiting Structured Variational Autoencoders
Structured variational autoencoders (SVAEs) combine probabilistic graphical model priors on latent variables, deep neural networks to link latent variables to observed data, and structure-exploiting algorithms for approximate posterior inference. These models are particularly appealing for sequential data, where the prior can capture temporal dependencies. However, despite their conceptual elegance, SVAEs have proven difficult to implement, and more general approaches have been favored in practice. Here, we revisit SVAEs using modern machine learning tools and demonstrate their advantages over more general alternatives in terms of both accuracy and efficiency. First, we develop a modern implementation for hardware acceleration, parallelization, and automatic differentiation of the message passing algorithms at the core of the SVAE. Second, we show that by exploiting structure in the prior, the SVAE learns more accurate models and posterior distributions, which translate into improved performance on prediction tasks. Third, we show how the SVAE can naturally handle missing data, and we leverage this ability to develop a novel, self-supervised training approach. Altogether, these results show that the time is ripe to revisit structured variational autoencoders.
Interpretable Embeddings with Sparse Autoencoders: A Data Analysis Toolkit
Analyzing large-scale text corpora is a core challenge in machine learning, crucial for tasks like identifying undesirable model behaviors or biases in training data. Current methods often rely on costly LLM-based techniques (e.g. annotating dataset differences) or dense embedding models (e.g. for clustering), which lack control over the properties of interest. We propose using sparse autoencoders (SAEs) to create SAE embeddings: representations whose dimensions map to interpretable concepts. Through four data analysis tasks, we show that SAE embeddings are more cost-effective and reliable than LLMs and more controllable than dense embeddings. Using the large hypothesis space of SAEs, we can uncover insights such as (1) semantic differences between datasets and (2) unexpected concept correlations in documents. For instance, by comparing model responses, we find that Grok-4 clarifies ambiguities more often than nine other frontier models. Relative to LLMs, SAE embeddings uncover bigger differences at 2-8x lower cost and identify biases more reliably. Additionally, SAE embeddings are controllable: by filtering concepts, we can (3) cluster documents along axes of interest and (4) outperform dense embeddings on property-based retrieval. Using SAE embeddings, we study model behavior with two case studies: investigating how OpenAI model behavior has changed over time and finding "trigger" phrases learned by Tulu-3 (Lambert et al., 2024) from its training data. These results position SAEs as a versatile tool for unstructured data analysis and highlight the neglected importance of interpreting models through their data.
Decoding Dark Matter: Specialized Sparse Autoencoders for Interpreting Rare Concepts in Foundation Models
Understanding and mitigating the potential risks associated with foundation models (FMs) hinges on developing effective interpretability methods. Sparse Autoencoders (SAEs) have emerged as a promising tool for disentangling FM representations, but they struggle to capture rare, yet crucial concepts in the data. We introduce Specialized Sparse Autoencoders (SSAEs), designed to illuminate these elusive dark matter features by focusing on specific subdomains. We present a practical recipe for training SSAEs, demonstrating the efficacy of dense retrieval for data selection and the benefits of Tilted Empirical Risk Minimization as a training objective to improve concept recall. Our evaluation of SSAEs on standard metrics, such as downstream perplexity and L_0 sparsity, show that they effectively capture subdomain tail concepts, exceeding the capabilities of general-purpose SAEs. We showcase the practical utility of SSAEs in a case study on the Bias in Bios dataset, where SSAEs achieve a 12.5\% increase in worst-group classification accuracy when applied to remove spurious gender information. SSAEs provide a powerful new lens for peering into the inner workings of FMs in subdomains.
Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression
Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive 3.18times compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at https://github.com/xiaosu-zhu/McQuic.
Is Temperature Sample Efficient for Softmax Gaussian Mixture of Experts?
Dense-to-sparse gating mixture of experts (MoE) has recently become an effective alternative to a well-known sparse MoE. Rather than fixing the number of activated experts as in the latter model, which could limit the investigation of potential experts, the former model utilizes the temperature to control the softmax weight distribution and the sparsity of the MoE during training in order to stabilize the expert specialization. Nevertheless, while there are previous attempts to theoretically comprehend the sparse MoE, a comprehensive analysis of the dense-to-sparse gating MoE has remained elusive. Therefore, we aim to explore the impacts of the dense-to-sparse gate on the maximum likelihood estimation under the Gaussian MoE in this paper. We demonstrate that due to interactions between the temperature and other model parameters via some partial differential equations, the convergence rates of parameter estimations are slower than any polynomial rates, and could be as slow as O(1/log(n)), where n denotes the sample size. To address this issue, we propose using a novel activation dense-to-sparse gate, which routes the output of a linear layer to an activation function before delivering them to the softmax function. By imposing linearly independence conditions on the activation function and its derivatives, we show that the parameter estimation rates are significantly improved to polynomial rates.
Dynamic Sparse Training with Structured Sparsity
Dynamic Sparse Training (DST) methods achieve state-of-the-art results in sparse neural network training, matching the generalization of dense models while enabling sparse training and inference. Although the resulting models are highly sparse and theoretically less computationally expensive, achieving speedups with unstructured sparsity on real-world hardware is challenging. In this work, we propose a sparse-to-sparse DST method, Structured RigL (SRigL), to learn a variant of fine-grained structured N:M sparsity by imposing a constant fan-in constraint. Using our empirical analysis of existing DST methods at high sparsity, we additionally employ a neuron ablation method which enables SRigL to achieve state-of-the-art sparse-to-sparse structured DST performance on a variety of Neural Network (NN) architectures. We demonstrate reduced real-world timings on CPU for online inference -- 3.6x/2x faster at 90% sparsity than equivalent dense/unstructured sparse layers, respectively. Our source code is available at https://github.com/calgaryml/condensed-sparsity
Self-Distillation for Gaussian Process Regression and Classification
We propose two approaches to extend the notion of knowledge distillation to Gaussian Process Regression (GPR) and Gaussian Process Classification (GPC); data-centric and distribution-centric. The data-centric approach resembles most current distillation techniques for machine learning, and refits a model on deterministic predictions from the teacher, while the distribution-centric approach, re-uses the full probabilistic posterior for the next iteration. By analyzing the properties of these approaches, we show that the data-centric approach for GPR closely relates to known results for self-distillation of kernel ridge regression and that the distribution-centric approach for GPR corresponds to ordinary GPR with a very particular choice of hyperparameters. Furthermore, we demonstrate that the distribution-centric approach for GPC approximately corresponds to data duplication and a particular scaling of the covariance and that the data-centric approach for GPC requires redefining the model from a Binomial likelihood to a continuous Bernoulli likelihood to be well-specified. To the best of our knowledge, our proposed approaches are the first to formulate knowledge distillation specifically for Gaussian Process models.
Sparse Autoencoder Neural Operators: Model Recovery in Function Spaces
We frame the problem of unifying representations in neural models as one of sparse model recovery and introduce a framework that extends sparse autoencoders (SAEs) to lifted spaces and infinite-dimensional function spaces, enabling mechanistic interpretability of large neural operators (NO). While the Platonic Representation Hypothesis suggests that neural networks converge to similar representations across architectures, the representational properties of neural operators remain underexplored despite their growing importance in scientific computing. We compare the inference and training dynamics of SAEs, lifted-SAE, and SAE neural operators. We highlight how lifting and operator modules introduce beneficial inductive biases, enabling faster recovery, improved recovery of smooth concepts, and robust inference across varying resolutions, a property unique to neural operators.
Taming Polysemanticity in LLMs: Provable Feature Recovery via Sparse Autoencoders
We study the challenge of achieving theoretically grounded feature recovery using Sparse Autoencoders (SAEs) for the interpretation of Large Language Models. Existing SAE training algorithms often lack rigorous mathematical guarantees and suffer from practical limitations such as hyperparameter sensitivity and instability. To address these issues, we first propose a novel statistical framework for the feature recovery problem, which includes a new notion of feature identifiability by modeling polysemantic features as sparse mixtures of underlying monosemantic concepts. Building on this framework, we introduce a new SAE training algorithm based on ``bias adaptation'', a technique that adaptively adjusts neural network bias parameters to ensure appropriate activation sparsity. We theoretically prove that this algorithm correctly recovers all monosemantic features when input data is sampled from our proposed statistical model. Furthermore, we develop an improved empirical variant, Group Bias Adaptation (GBA), and demonstrate its superior performance against benchmark methods when applied to LLMs with up to 1.5 billion parameters. This work represents a foundational step in demystifying SAE training by providing the first SAE algorithm with theoretical recovery guarantees, thereby advancing the development of more transparent and trustworthy AI systems through enhanced mechanistic interpretability.
Interpretable Neural Architecture Search via Bayesian Optimisation with Weisfeiler-Lehman Kernels
Current neural architecture search (NAS) strategies focus only on finding a single, good, architecture. They offer little insight into why a specific network is performing well, or how we should modify the architecture if we want further improvements. We propose a Bayesian optimisation (BO) approach for NAS that combines the Weisfeiler-Lehman graph kernel with a Gaussian process surrogate. Our method optimises the architecture in a highly data-efficient manner: it is capable of capturing the topological structures of the architectures and is scalable to large graphs, thus making the high-dimensional and graph-like search spaces amenable to BO. More importantly, our method affords interpretability by discovering useful network features and their corresponding impact on the network performance. Indeed, we demonstrate empirically that our surrogate model is capable of identifying useful motifs which can guide the generation of new architectures. We finally show that our method outperforms existing NAS approaches to achieve the state of the art on both closed- and open-domain search spaces.
Martingale Posterior Neural Processes
A Neural Process (NP) estimates a stochastic process implicitly defined with neural networks given a stream of data, rather than pre-specifying priors already known, such as Gaussian processes. An ideal NP would learn everything from data without any inductive biases, but in practice, we often restrict the class of stochastic processes for the ease of estimation. One such restriction is the use of a finite-dimensional latent variable accounting for the uncertainty in the functions drawn from NPs. Some recent works show that this can be improved with more "data-driven" source of uncertainty such as bootstrapping. In this work, we take a different approach based on the martingale posterior, a recently developed alternative to Bayesian inference. For the martingale posterior, instead of specifying prior-likelihood pairs, a predictive distribution for future data is specified. Under specific conditions on the predictive distribution, it can be shown that the uncertainty in the generated future data actually corresponds to the uncertainty of the implicitly defined Bayesian posteriors. Based on this result, instead of assuming any form of the latent variables, we equip a NP with a predictive distribution implicitly defined with neural networks and use the corresponding martingale posteriors as the source of uncertainty. The resulting model, which we name as Martingale Posterior Neural Process (MPNP), is demonstrated to outperform baselines on various tasks.
