1 A Fast Fourier Convolutional Deep Neural Network For Accurate and Explainable Discrimination Of Wheat Yellow Rust And Nitrogen Deficiency From Sentinel-2 Time-Series Data Accurate and timely detection of plant stress is essential for yield protection, allowing better-targeted intervention strategies. Recent advances in remote sensing and deep learning have shown great potential for rapid non-invasive detection of plant stress in a fully automated and reproducible manner. However, the existing models always face several challenges: 1) computational inefficiency and the misclassifications between the different stresses with similar symptoms; and 2) the poor interpretability of the host-stress interaction. In this work, we propose a novel fast Fourier Convolutional Neural Network (FFDNN) for accurate and explainable detection of two plant stresses with similar symptoms (i.e. Wheat Yellow Rust And Nitrogen Deficiency). Specifically, unlike the existing CNN models, the main components of the proposed model include: 1) a fast Fourier convolutional block, a newly fast Fourier transformation kernel as the basic perception unit, to substitute the traditional convolutional kernel to capture both local and global responses to plant stress in various time-scale and improve computing efficiency with reduced learning parameters in Fourier domain; 2) Capsule Feature Encoder to encapsulate the extracted features into a series of vector features to represent part-to-whole relationship with the hierarchical structure of the host-stress interactions of the specific stress. In addition, in order to alleviate over-fitting, a photochemical vegetation indices-based filter is placed as pre-processing operator to remove the non-photochemical noises from the input Sentinel-2 time series. 10 authors · Jun 29, 2023
- A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning In this work we introduce Sen4AgriNet, a Sentinel-2 based time series multi country benchmark dataset, tailored for agricultural monitoring applications with Machine and Deep Learning. Sen4AgriNet dataset is annotated from farmer declarations collected via the Land Parcel Identification System (LPIS) for harmonizing country wide labels. These declarations have only recently been made available as open data, allowing for the first time the labeling of satellite imagery from ground truth data. We proceed to propose and standardise a new crop type taxonomy across Europe that address Common Agriculture Policy (CAP) needs, based on the Food and Agriculture Organization (FAO) Indicative Crop Classification scheme. Sen4AgriNet is the only multi-country, multi-year dataset that includes all spectral information. It is constructed to cover the period 2016-2020 for Catalonia and France, while it can be extended to include additional countries. Currently, it contains 42.5 million parcels, which makes it significantly larger than other available archives. We extract two sub-datasets to highlight its value for diverse Deep Learning applications; the Object Aggregated Dataset (OAD) and the Patches Assembled Dataset (PAD). OAD capitalizes zonal statistics of each parcel, thus creating a powerful label-to-features instance for classification algorithms. On the other hand, PAD structure generalizes the classification problem to parcel extraction and semantic segmentation and labeling. The PAD and OAD are examined under three different scenarios to showcase and model the effects of spatial and temporal variability across different years and different countries. 4 authors · Apr 2, 2022
8 FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping The growing availability of high-quality Earth Observation (EO) data enables accurate global land cover and crop type monitoring. However, the volume and heterogeneity of these datasets pose major processing and annotation challenges. To address this, the French National Institute of Geographical and Forest Information (IGN) is actively exploring innovative strategies to exploit diverse EO data, which require large annotated datasets. IGN introduces FLAIR-HUB, the largest multi-sensor land cover dataset with very-high-resolution (20 cm) annotations, covering 2528 km2 of France. It combines six aligned modalities: aerial imagery, Sentinel-1/2 time series, SPOT imagery, topographic data, and historical aerial images. Extensive benchmarks evaluate multimodal fusion and deep learning models (CNNs, transformers) for land cover or crop mapping and also explore multi-task learning. Results underscore the complexity of multimodal fusion and fine-grained classification, with best land cover performance (78.2% accuracy, 65.8% mIoU) achieved using nearly all modalities. FLAIR-HUB supports supervised and multimodal pretraining, with data and code available at https://ignf.github.io/FLAIR/flairhub. Institut national de l'information géographique et forestière · Jun 8, 2025
- EuroCropsML: A Time Series Benchmark Dataset For Few-Shot Crop Type Classification We introduce EuroCropsML, an analysis-ready remote sensing machine learning dataset for time series crop type classification of agricultural parcels in Europe. It is the first dataset designed to benchmark transnational few-shot crop type classification algorithms that supports advancements in algorithmic development and research comparability. It comprises 706 683 multi-class labeled data points across 176 classes, featuring annual time series of per-parcel median pixel values from Sentinel-2 L1C data for 2021, along with crop type labels and spatial coordinates. Based on the open-source EuroCrops collection, EuroCropsML is publicly available on Zenodo. 5 authors · Jul 24, 2024
- Assessment of Sentinel-2 spatial and temporal coverage based on the scene classification layer Since the launch of the Sentinel-2 (S2) satellites, many ML models have used the data for diverse applications. The scene classification layer (SCL) inside the S2 product provides rich information for training, such as filtering images with high cloud coverage. However, there is more potential in this. We propose a technique to assess the clean optical coverage of a region, expressed by a SITS and calculated with the S2-based SCL data. With a manual threshold and specific labels in the SCL, the proposed technique assigns a percentage of spatial and temporal coverage across the time series and a high/low assessment. By evaluating the AI4EO challenge for Enhanced Agriculture, we show that the assessment is correlated to the predictive results of ML models. The classification results in a region with low spatial and temporal coverage is worse than in a region with high coverage. Finally, we applied the technique across all continents of the global dataset LandCoverNet. 5 authors · Jun 6, 2024 1
- FLAIR #2: textural and temporal information for semantic segmentation from multi-source optical imagery The FLAIR #2 dataset hereby presented includes two very distinct types of data, which are exploited for a semantic segmentation task aimed at mapping land cover. The data fusion workflow proposes the exploitation of the fine spatial and textural information of very high spatial resolution (VHR) mono-temporal aerial imagery and the temporal and spectral richness of high spatial resolution (HR) time series of Copernicus Sentinel-2 satellite images. The French National Institute of Geographical and Forest Information (IGN), in response to the growing availability of high-quality Earth Observation (EO) data, is actively exploring innovative strategies to integrate these data with heterogeneous characteristics. IGN is therefore offering this dataset to promote innovation and improve our knowledge of our territories. 6 authors · May 23, 2023
4 Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications This technical report presents Prithvi-EO-2.0, a new geospatial foundation model that offers significant improvements over its predecessor, Prithvi-EO-1.0. Trained on 4.2M global time series samples from NASA's Harmonized Landsat and Sentinel-2 data archive at 30m resolution, the new 300M and 600M parameter models incorporate temporal and location embeddings for enhanced performance across various geospatial tasks. Through extensive benchmarking with GEO-Bench, the 600M version outperforms the previous Prithvi-EO model by 8\% across a range of tasks. It also outperforms six other geospatial foundation models when benchmarked on remote sensing tasks from different domains and resolutions (i.e. from 0.1m to 15m). The results demonstrate the versatility of the model in both classical earth observation and high-resolution applications. Early involvement of end-users and subject matter experts (SMEs) are among the key factors that contributed to the project's success. In particular, SME involvement allowed for constant feedback on model and dataset design, as well as successful customization for diverse SME-led applications in disaster response, land use and crop mapping, and ecosystem dynamics monitoring. Prithvi-EO-2.0 is available on Hugging Face and IBM terratorch, with additional resources on GitHub. The project exemplifies the Trusted Open Science approach embraced by all involved organizations. 32 authors · Dec 3, 2024
- LandCoverNet: A global benchmark land cover classification training dataset Regularly updated and accurate land cover maps are essential for monitoring 14 of the 17 Sustainable Development Goals. Multispectral satellite imagery provide high-quality and valuable information at global scale that can be used to develop land cover classification models. However, such a global application requires a geographically diverse training dataset. Here, we present LandCoverNet, a global training dataset for land cover classification based on Sentinel-2 observations at 10m spatial resolution. Land cover class labels are defined based on annual time-series of Sentinel-2, and verified by consensus among three human annotators. 2 authors · Dec 5, 2020
- GeoPlant: Spatial Plant Species Prediction Dataset The difficulty of monitoring biodiversity at fine scales and over large areas limits ecological knowledge and conservation efforts. To fill this gap, Species Distribution Models (SDMs) predict species across space from spatially explicit features. Yet, they face the challenge of integrating the rich but heterogeneous data made available over the past decade, notably millions of opportunistic species observations and standardized surveys, as well as multi-modal remote sensing data. In light of that, we have designed and developed a new European-scale dataset for SDMs at high spatial resolution (10-50 m), including more than 10k species (i.e., most of the European flora). The dataset comprises 5M heterogeneous Presence-Only records and 90k exhaustive Presence-Absence survey records, all accompanied by diverse environmental rasters (e.g., elevation, human footprint, and soil) that are traditionally used in SDMs. In addition, it provides Sentinel-2 RGB and NIR satellite images with 10 m resolution, a 20-year time-series of climatic variables, and satellite time-series from the Landsat program. In addition to the data, we provide an openly accessible SDM benchmark (hosted on Kaggle), which has already attracted an active community and a set of strong baselines for single predictor/modality and multimodal approaches. All resources, e.g., the dataset, pre-trained models, and baseline methods (in the form of notebooks), are available on Kaggle, allowing one to start with our dataset literally with two mouse clicks. 10 authors · Aug 25, 2024