Create Usage prediction.py
Browse files- Usage prediction.py +424 -0
Usage prediction.py
ADDED
|
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from torchvision import models
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from torch.utils.data import Dataset, DataLoader
|
| 12 |
+
from typing import Dict, List, Tuple, Optional, Union
|
| 13 |
+
from dataclasses import dataclass
|
| 14 |
+
import warnings
|
| 15 |
+
warnings.filterwarnings('ignore')
|
| 16 |
+
|
| 17 |
+
# ----------------------------
|
| 18 |
+
# Configuration
|
| 19 |
+
# ----------------------------
|
| 20 |
+
@dataclass
|
| 21 |
+
class InferenceConfig:
|
| 22 |
+
# Model Configuration
|
| 23 |
+
model_name: str = "resnet34"
|
| 24 |
+
embedding_dim: int = 128
|
| 25 |
+
normalize_embeddings: bool = True
|
| 26 |
+
checkpoint_path: str = "../../model/models_checkpoints/best_model.pth"
|
| 27 |
+
|
| 28 |
+
# Inference Settings
|
| 29 |
+
batch_size: int = 32
|
| 30 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
distance_threshold: float = 0.5 # Will be loaded from checkpoint
|
| 32 |
+
|
| 33 |
+
# Data Settings
|
| 34 |
+
remove_bg: bool = False
|
| 35 |
+
num_workers: int = 4
|
| 36 |
+
|
| 37 |
+
# Global configuration
|
| 38 |
+
CONFIG = InferenceConfig()
|
| 39 |
+
|
| 40 |
+
# ----------------------------
|
| 41 |
+
# Model Architecture (Same as training)
|
| 42 |
+
# ----------------------------
|
| 43 |
+
class ResNetBackbone(nn.Module):
|
| 44 |
+
"""ResNet backbone feature extractor."""
|
| 45 |
+
|
| 46 |
+
def __init__(self, model_name: str = "resnet34"):
|
| 47 |
+
super().__init__()
|
| 48 |
+
|
| 49 |
+
if model_name == "resnet18":
|
| 50 |
+
self.resnet = models.resnet18(weights=None)
|
| 51 |
+
elif model_name == "resnet34":
|
| 52 |
+
self.resnet = models.resnet34(weights=None)
|
| 53 |
+
elif model_name == "resnet50":
|
| 54 |
+
self.resnet = models.resnet50(weights=None)
|
| 55 |
+
else:
|
| 56 |
+
raise ValueError(f"Unsupported model_name: {model_name}")
|
| 57 |
+
|
| 58 |
+
# Remove the fully connected layer
|
| 59 |
+
self.resnet.fc = nn.Identity()
|
| 60 |
+
|
| 61 |
+
# Get output dimension
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
dummy = torch.randn(1, 3, 224, 224)
|
| 64 |
+
self.output_dim = self.resnet(dummy).shape[1]
|
| 65 |
+
|
| 66 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 67 |
+
return self.resnet(x)
|
| 68 |
+
|
| 69 |
+
class AdvancedEmbeddingHead(nn.Module):
|
| 70 |
+
"""Embedding head to project features to embedding space."""
|
| 71 |
+
|
| 72 |
+
def __init__(self, input_dim: int, embedding_dim: int, dropout: float = 0.5):
|
| 73 |
+
super().__init__()
|
| 74 |
+
|
| 75 |
+
self.input_dim = input_dim
|
| 76 |
+
self.embedding_dim = embedding_dim
|
| 77 |
+
|
| 78 |
+
if input_dim > embedding_dim * 4:
|
| 79 |
+
hidden_dim = max(embedding_dim * 2, input_dim // 4)
|
| 80 |
+
self.layers = nn.Sequential(
|
| 81 |
+
nn.Linear(input_dim, hidden_dim),
|
| 82 |
+
nn.LayerNorm(hidden_dim),
|
| 83 |
+
nn.GELU(),
|
| 84 |
+
nn.Dropout(dropout),
|
| 85 |
+
|
| 86 |
+
nn.Linear(hidden_dim, embedding_dim * 2),
|
| 87 |
+
nn.LayerNorm(embedding_dim * 2),
|
| 88 |
+
nn.GELU(),
|
| 89 |
+
nn.Dropout(dropout / 2),
|
| 90 |
+
|
| 91 |
+
nn.Linear(embedding_dim * 2, embedding_dim),
|
| 92 |
+
nn.LayerNorm(embedding_dim)
|
| 93 |
+
)
|
| 94 |
+
else:
|
| 95 |
+
self.layers = nn.Sequential(
|
| 96 |
+
nn.Linear(input_dim, embedding_dim),
|
| 97 |
+
nn.LayerNorm(embedding_dim)
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 101 |
+
x = x.flatten(1)
|
| 102 |
+
return self.layers(x)
|
| 103 |
+
|
| 104 |
+
class SiameseSignatureNetwork(nn.Module):
|
| 105 |
+
"""Siamese network for signature verification."""
|
| 106 |
+
|
| 107 |
+
def __init__(self, config: InferenceConfig = CONFIG):
|
| 108 |
+
super().__init__()
|
| 109 |
+
self.config = config
|
| 110 |
+
|
| 111 |
+
# Initialize backbone
|
| 112 |
+
self.backbone = ResNetBackbone(model_name=config.model_name)
|
| 113 |
+
backbone_dim = self.backbone.output_dim
|
| 114 |
+
|
| 115 |
+
# Initialize embedding head
|
| 116 |
+
self.embedding_head = AdvancedEmbeddingHead(
|
| 117 |
+
input_dim=backbone_dim,
|
| 118 |
+
embedding_dim=config.embedding_dim,
|
| 119 |
+
dropout=0.0 # No dropout during inference
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
self.normalize_embeddings = config.normalize_embeddings
|
| 123 |
+
self.distance_threshold = config.distance_threshold
|
| 124 |
+
|
| 125 |
+
def forward(self, img1: torch.Tensor, img2: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 126 |
+
"""Forward pass for inference."""
|
| 127 |
+
# Extract features
|
| 128 |
+
f1 = self.backbone(img1)
|
| 129 |
+
f2 = self.backbone(img2)
|
| 130 |
+
|
| 131 |
+
# Get embeddings
|
| 132 |
+
emb1 = self.embedding_head(f1)
|
| 133 |
+
emb2 = self.embedding_head(f2)
|
| 134 |
+
|
| 135 |
+
# Normalize if configured
|
| 136 |
+
if self.normalize_embeddings:
|
| 137 |
+
emb1 = F.normalize(emb1, p=2, dim=1)
|
| 138 |
+
emb2 = F.normalize(emb2, p=2, dim=1)
|
| 139 |
+
|
| 140 |
+
return emb1, emb2
|
| 141 |
+
|
| 142 |
+
def predict_pair(self, img1: torch.Tensor, img2: torch.Tensor,
|
| 143 |
+
threshold: Optional[float] = None) -> Dict[str, torch.Tensor]:
|
| 144 |
+
"""Predict similarity between image pairs."""
|
| 145 |
+
self.eval()
|
| 146 |
+
with torch.no_grad():
|
| 147 |
+
emb1, emb2 = self(img1, img2)
|
| 148 |
+
distances = F.pairwise_distance(emb1, emb2)
|
| 149 |
+
|
| 150 |
+
thresh = threshold if threshold is not None else self.distance_threshold
|
| 151 |
+
predictions = (distances < thresh).long()
|
| 152 |
+
|
| 153 |
+
# Convert distance to similarity score (0-1, higher is more similar)
|
| 154 |
+
similarities = 1.0 / (1.0 + distances)
|
| 155 |
+
|
| 156 |
+
return {
|
| 157 |
+
'predictions': predictions,
|
| 158 |
+
'distances': distances,
|
| 159 |
+
'similarities': similarities,
|
| 160 |
+
'threshold': torch.tensor(thresh)
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
# ----------------------------
|
| 164 |
+
# Dataset for Batch Prediction
|
| 165 |
+
# ----------------------------
|
| 166 |
+
class PredictionDataset(Dataset):
|
| 167 |
+
"""Dataset for batch prediction from Excel."""
|
| 168 |
+
|
| 169 |
+
def __init__(self, excel_path: str, image_folder: str, config: InferenceConfig = CONFIG):
|
| 170 |
+
self.image_folder = image_folder
|
| 171 |
+
self.config = config
|
| 172 |
+
self.data = pd.read_excel(excel_path)
|
| 173 |
+
self.transform = self._get_transforms()
|
| 174 |
+
|
| 175 |
+
# Check required columns
|
| 176 |
+
required_cols = ['image_1_path', 'image_2_path']
|
| 177 |
+
missing_cols = [col for col in required_cols if col not in self.data.columns]
|
| 178 |
+
if missing_cols:
|
| 179 |
+
raise ValueError(f"Missing required columns: {missing_cols}")
|
| 180 |
+
|
| 181 |
+
def _get_transforms(self) -> transforms.Compose:
|
| 182 |
+
"""Get image transforms for inference."""
|
| 183 |
+
return transforms.Compose([
|
| 184 |
+
transforms.Resize((224, 224)),
|
| 185 |
+
transforms.ToTensor(),
|
| 186 |
+
transforms.Normalize(
|
| 187 |
+
mean=[0.485, 0.456, 0.406],
|
| 188 |
+
std=[0.229, 0.224, 0.225]
|
| 189 |
+
)
|
| 190 |
+
])
|
| 191 |
+
|
| 192 |
+
def __len__(self) -> int:
|
| 193 |
+
return len(self.data)
|
| 194 |
+
|
| 195 |
+
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
| 196 |
+
"""Return image pair and index."""
|
| 197 |
+
row = self.data.iloc[idx]
|
| 198 |
+
|
| 199 |
+
img1 = self._load_image(row['image_1_path'])
|
| 200 |
+
img2 = self._load_image(row['image_2_path'])
|
| 201 |
+
|
| 202 |
+
return img1, img2, idx
|
| 203 |
+
|
| 204 |
+
def _load_image(self, image_path: str) -> torch.Tensor:
|
| 205 |
+
"""Load and transform image."""
|
| 206 |
+
image = replace_background_with_white(
|
| 207 |
+
image_path, self.image_folder,
|
| 208 |
+
remove_bg=self.config.remove_bg
|
| 209 |
+
)
|
| 210 |
+
return self.transform(image)
|
| 211 |
+
|
| 212 |
+
# ----------------------------
|
| 213 |
+
# Image Processing
|
| 214 |
+
# ----------------------------
|
| 215 |
+
def estimate_background_color_pil(image: Image.Image, border_width: int = 10,
|
| 216 |
+
method: str = "median") -> np.ndarray:
|
| 217 |
+
"""Estimate background color from image borders."""
|
| 218 |
+
if image.mode != 'RGB':
|
| 219 |
+
image = image.convert('RGB')
|
| 220 |
+
|
| 221 |
+
np_img = np.array(image)
|
| 222 |
+
h, w, _ = np_img.shape
|
| 223 |
+
|
| 224 |
+
# Extract border pixels
|
| 225 |
+
top = np_img[:border_width, :, :].reshape(-1, 3)
|
| 226 |
+
bottom = np_img[-border_width:, :, :].reshape(-1, 3)
|
| 227 |
+
left = np_img[:, :border_width, :].reshape(-1, 3)
|
| 228 |
+
right = np_img[:, -border_width:, :].reshape(-1, 3)
|
| 229 |
+
|
| 230 |
+
all_border_pixels = np.concatenate([top, bottom, left, right], axis=0)
|
| 231 |
+
|
| 232 |
+
if method == "mean":
|
| 233 |
+
return np.mean(all_border_pixels, axis=0).astype(np.uint8)
|
| 234 |
+
else:
|
| 235 |
+
return np.median(all_border_pixels, axis=0).astype(np.uint8)
|
| 236 |
+
|
| 237 |
+
def replace_background_with_white(image_name: str, folder_img: str,
|
| 238 |
+
tolerance: int = 40, method: str = "median",
|
| 239 |
+
remove_bg: bool = False) -> Image.Image:
|
| 240 |
+
"""Replace background with white based on border color estimation."""
|
| 241 |
+
image_path = os.path.join(folder_img, image_name)
|
| 242 |
+
image = Image.open(image_path).convert("RGB")
|
| 243 |
+
|
| 244 |
+
if not remove_bg:
|
| 245 |
+
return image
|
| 246 |
+
|
| 247 |
+
np_img = np.array(image)
|
| 248 |
+
bg_color = estimate_background_color_pil(image, method=method)
|
| 249 |
+
|
| 250 |
+
# Create mask for background pixels
|
| 251 |
+
diff = np.abs(np_img.astype(np.int32) - bg_color.astype(np.int32))
|
| 252 |
+
mask = np.all(diff < tolerance, axis=2)
|
| 253 |
+
|
| 254 |
+
# Replace background with white
|
| 255 |
+
result = np_img.copy()
|
| 256 |
+
result[mask] = [255, 255, 255]
|
| 257 |
+
|
| 258 |
+
return Image.fromarray(result)
|
| 259 |
+
|
| 260 |
+
# ----------------------------
|
| 261 |
+
# Main Prediction Class
|
| 262 |
+
# ----------------------------
|
| 263 |
+
class SignatureVerifier:
|
| 264 |
+
"""Main class for signature verification predictions."""
|
| 265 |
+
|
| 266 |
+
def __init__(self, config: InferenceConfig = CONFIG):
|
| 267 |
+
self.config = config
|
| 268 |
+
self.device = torch.device(config.device)
|
| 269 |
+
self.model = self._load_model()
|
| 270 |
+
self.transform = self._get_transforms()
|
| 271 |
+
|
| 272 |
+
def _get_transforms(self) -> transforms.Compose:
|
| 273 |
+
"""Get image transforms."""
|
| 274 |
+
return transforms.Compose([
|
| 275 |
+
transforms.Resize((224, 224)),
|
| 276 |
+
transforms.ToTensor(),
|
| 277 |
+
transforms.Normalize(
|
| 278 |
+
mean=[0.485, 0.456, 0.406],
|
| 279 |
+
std=[0.229, 0.224, 0.225]
|
| 280 |
+
)
|
| 281 |
+
])
|
| 282 |
+
|
| 283 |
+
def _load_model(self) -> SiameseSignatureNetwork:
|
| 284 |
+
"""Load model from checkpoint."""
|
| 285 |
+
print(f"Loading model from: {self.config.checkpoint_path}")
|
| 286 |
+
|
| 287 |
+
# Initialize model
|
| 288 |
+
model = SiameseSignatureNetwork(self.config)
|
| 289 |
+
|
| 290 |
+
# Load checkpoint
|
| 291 |
+
checkpoint = torch.load(self.config.checkpoint_path, map_location=self.device, weights_only=False)
|
| 292 |
+
|
| 293 |
+
# Load model state
|
| 294 |
+
if 'model_state_dict' in checkpoint:
|
| 295 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 296 |
+
else:
|
| 297 |
+
# If checkpoint is just the state dict
|
| 298 |
+
model.load_state_dict(checkpoint)
|
| 299 |
+
|
| 300 |
+
# Load threshold if available
|
| 301 |
+
if 'prediction_threshold' in checkpoint:
|
| 302 |
+
model.distance_threshold = checkpoint['prediction_threshold']
|
| 303 |
+
print(f"Loaded threshold: {model.distance_threshold:.4f}")
|
| 304 |
+
|
| 305 |
+
# Load best EER if available
|
| 306 |
+
if 'best_eer' in checkpoint:
|
| 307 |
+
print(f"Model best EER: {checkpoint['best_eer']:.4f}")
|
| 308 |
+
|
| 309 |
+
model = model.to(self.device)
|
| 310 |
+
model.eval()
|
| 311 |
+
|
| 312 |
+
print("Model loaded successfully!")
|
| 313 |
+
return model
|
| 314 |
+
|
| 315 |
+
def predict_single_pair(self, image1_path: str, image2_path: str,
|
| 316 |
+
image_folder: str = "") -> Dict[str, float]:
|
| 317 |
+
"""Predict similarity for a single pair of images."""
|
| 318 |
+
# Load images
|
| 319 |
+
img1 = replace_background_with_white(
|
| 320 |
+
image1_path, image_folder, remove_bg=self.config.remove_bg
|
| 321 |
+
)
|
| 322 |
+
img2 = replace_background_with_white(
|
| 323 |
+
image2_path, image_folder, remove_bg=self.config.remove_bg
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
# Transform
|
| 327 |
+
img1_tensor = self.transform(img1).unsqueeze(0).to(self.device)
|
| 328 |
+
img2_tensor = self.transform(img2).unsqueeze(0).to(self.device)
|
| 329 |
+
|
| 330 |
+
# Predict
|
| 331 |
+
results = self.model.predict_pair(img1_tensor, img2_tensor)
|
| 332 |
+
|
| 333 |
+
return {
|
| 334 |
+
'is_genuine': bool(results['predictions'].item()),
|
| 335 |
+
'distance': float(results['distances'].item()),
|
| 336 |
+
'similarity_score': float(results['similarities'].item()),
|
| 337 |
+
'threshold': float(results['threshold'].item())
|
| 338 |
+
}
|
| 339 |
+
|
| 340 |
+
def predict_from_excel(self, excel_path: str, image_folder: str,
|
| 341 |
+
output_path: Optional[str] = None) -> pd.DataFrame:
|
| 342 |
+
"""Batch prediction from Excel file."""
|
| 343 |
+
# Create dataset and dataloader
|
| 344 |
+
dataset = PredictionDataset(excel_path, image_folder, self.config)
|
| 345 |
+
dataloader = DataLoader(
|
| 346 |
+
dataset,
|
| 347 |
+
batch_size=self.config.batch_size,
|
| 348 |
+
shuffle=False,
|
| 349 |
+
num_workers=self.config.num_workers,
|
| 350 |
+
pin_memory=True
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
# Prediction storage
|
| 354 |
+
all_predictions = []
|
| 355 |
+
all_distances = []
|
| 356 |
+
all_similarities = []
|
| 357 |
+
|
| 358 |
+
# Predict in batches
|
| 359 |
+
print(f"Processing {len(dataset)} pairs...")
|
| 360 |
+
with torch.no_grad():
|
| 361 |
+
for img1_batch, img2_batch, indices in tqdm(dataloader):
|
| 362 |
+
img1_batch = img1_batch.to(self.device)
|
| 363 |
+
img2_batch = img2_batch.to(self.device)
|
| 364 |
+
|
| 365 |
+
results = self.model.predict_pair(img1_batch, img2_batch)
|
| 366 |
+
|
| 367 |
+
all_predictions.extend(results['predictions'].cpu().numpy())
|
| 368 |
+
all_distances.extend(results['distances'].cpu().numpy())
|
| 369 |
+
all_similarities.extend(results['similarities'].cpu().numpy())
|
| 370 |
+
|
| 371 |
+
# Create results dataframe
|
| 372 |
+
results_df = dataset.data.copy()
|
| 373 |
+
results_df['prediction'] = all_predictions
|
| 374 |
+
results_df['is_genuine'] = results_df['prediction'].astype(bool)
|
| 375 |
+
results_df['distance'] = all_distances
|
| 376 |
+
results_df['similarity_score'] = all_similarities
|
| 377 |
+
results_df['threshold'] = self.model.distance_threshold
|
| 378 |
+
|
| 379 |
+
# Save if output path provided
|
| 380 |
+
if output_path:
|
| 381 |
+
results_df.to_excel(output_path, index=False)
|
| 382 |
+
print(f"Results saved to: {output_path}")
|
| 383 |
+
|
| 384 |
+
return results_df
|
| 385 |
+
|
| 386 |
+
def update_threshold(self, new_threshold: float):
|
| 387 |
+
"""Update the decision threshold."""
|
| 388 |
+
self.model.distance_threshold = new_threshold
|
| 389 |
+
print(f"Threshold updated to: {new_threshold:.4f}")
|
| 390 |
+
|
| 391 |
+
# Initialize verifier
|
| 392 |
+
config = InferenceConfig(
|
| 393 |
+
checkpoint_path="../../../../model/models_checkpoints/fa7e1bdc01814016ac8220bfbf1eb691/best_model.pth",
|
| 394 |
+
batch_size=32,
|
| 395 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
verifier = SignatureVerifier(config)
|
| 399 |
+
|
| 400 |
+
'''
|
| 401 |
+
# Example 1: Single pair prediction
|
| 402 |
+
print("\n--- Single Pair Prediction ---")
|
| 403 |
+
result = verifier.predict_single_pair(
|
| 404 |
+
image1_path="sig1.png",
|
| 405 |
+
image2_path="sig2.png",
|
| 406 |
+
image_folder="../../data/classify/preprared_data/images/"
|
| 407 |
+
)
|
| 408 |
+
'''
|
| 409 |
+
|
| 410 |
+
# Example 2: Batch prediction from Excel
|
| 411 |
+
print("\n--- Batch Prediction from Excel ---")
|
| 412 |
+
results_df = verifier.predict_from_excel(
|
| 413 |
+
excel_path="../../../../data/classify/preprared_data/labels/test_pairs_balanced_v12.xlsx",
|
| 414 |
+
image_folder="../../../../data/classify/preprared_data/images/",
|
| 415 |
+
output_path="./predictions_output.xlsx"
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# Print summary
|
| 419 |
+
genuine_count = results_df['is_genuine'].sum()
|
| 420 |
+
total_count = len(results_df)
|
| 421 |
+
print(f"\nPrediction Summary:")
|
| 422 |
+
print(f"Total pairs: {total_count}")
|
| 423 |
+
print(f"Genuine predictions: {genuine_count} ({100*genuine_count/total_count:.1f}%)")
|
| 424 |
+
print(f"Forged predictions: {total_count - genuine_count} ({100*(total_count-genuine_count)/total_count:.1f}%)")
|